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Abstract

A study investigating the way in which people solve
alphabetic analogical reasoning tasks (cf Copycat;
Hofstadter & Mitchell, 1995), revealed that participants
tend to use the same basic strategy, which was modelled
in the cognitive architecture ACT-R. Performance
evaluations indicate an average goodness of fit of
66.75% and a 100% goodness of fit on a subset of
problems for which participants were significantly more
likely to produce a single 'typical' response (p<0.05). The
model is discussed in the context of various features of
human analogical reasoning which were observed in the
study, and in relation to Hoftstadter and Mitchell's (1995)
discussion of 'elegant' solutions to problems.

Introduction
Analogical reasoning is about seeing similarities
between different concepts, and making inferences
based on these perceived similarities (Holyoak &
Thagard, 1997). It plays an important role in problem
solving, learning, social interaction (Hofstadter &
Mitchell, 1995), scientific discovery and the arts
(Boden, 1991). Observations of human development
show that even before the age of two, children begin to
develop the capacity for analogical thinking, without
the aid of any formal training; evidently, the human
mind is an analogical mind (Holyoak & Thagard,
1997).

Cognitive modelling has proven a valuable approach
for investigating the cognitive underpinnings of
analogy-making. Models such as Gentner's Structural
Mapping Engine (SME)(1989), Holyoak and Thagard's
(1997) Analogical Constraint Mapping Engine (ACME)
and Hofstadter and Mitchell's Copycat (1995),
successfully solve analogical problems in a human-like
way, and have furthered our understanding of
analogical thought.

The purpose of the work reported here was to
investigate various aspects of analogical reasoning. A
model for analogical reasoning was derived by
ascertaining human responses in analogical reasoning
tasks, and implemented in the cognitive architecture
ACT-R (Anderson  & Lebiere, 1998), which has proven
a successful platform for modelling phenomena ranging
from perception to problem solving, including
analogical reasoning (Anderson & Lebiere, 1998).

Our work was inspired by the Copycat project
(Hofstadter & Mitchell, 1995). Copycat operates in a
highly idealised domain, consisting solely of alphabetic
letter-strings, as a means of investigating reasoning
about concepts and categories. According to its makers,
by focusing on a highly idealised world, major
properties of analogy-making can be isolated and
explored more clearly, than when the focus is on real
world problems (Mitchell, 1993). Focusing on this
limited task, the Copycat program has proven to be
capable of sophisticated analogical reasoning, and has
even been credited with creativity (Boden, 1991).

Alphabetic Analogical Reasoning
An example of the alphabetic analogical reasoning tasks
that were the focus of both the Copycat project and our
work, is given in Figure 1. The problem can be read as:
'If it is known that "ABC" changes to "ABD", then what
would "IJK" change to?'.

Figure 1: Problem example.

Most people in our study, reported below, answer
"IJL", by changing the last letter to its alphabetic
successor. Other possible answers include "IJD","IJK"
and "IJX". What answer is chosen, depends on the
flexibility with which the source is perceived (compare
"change the last letter to 'D'" with "change the last letter
to any other random letter"). The range of responses
Copycat can produce to this type of problem is
compatible with answers given by human participants
(Mitchell, 1993).

The empirical investigations carried out in
conjunction with the Copycat project, presented human
participants with five 'target' problems (see Table 1),
and variations of these; corresponding to five clusters of
alphabetic analogical reasoning tasks. In addition to the
rather straightforward problems from cluster 1, the
clusters address the effect of letter grouping (cluster 2),
reversal of alphabetic flow (cluster 3) and encountering

left-hand-side right-hand-side
source ABC Æ ABD
target IJK Æ ?



the alphabetic boundary (cluster 5) on answer-
construction. The target problem from cluster 4,
demonstrates tasks where the source consists of letter
groups of different length; namely 1-2-3 ("M-RR-JJJ").
"ABC" can be regarded as 1-2-3 as well; being the first,
second and third letter of the alphabet. This numerical
congruence would be reflected by answering "M-RR-
JJJJ", rather than "M-RR-KKK". The different types of
tasks indicate that the same source ("ABC"Æ"ABD")
can be viewed in different ways, depending on the
context provided by the target.

Table 1: Five target problems.

Source Target Type
1 IJKÆ? Successor
2 IIJJKKÆ? Grouped
3 KJIÆ? Reversed
4 MRRJJJÆ? Numerical
5

ABCÆABD

XYZÆ? Boundary

Elegance & Typicality
In the Copycat project, rare and non-obvious responses
to analogical reasoning tasks were referred to as more
'elegant' than their simpler counterparts. For example,
answering items from cluster 3 in a numerical way (as
described above) was seen as more ‘elegant’ than
disregarding this numerical correspondence. Hofstadter
and Mitchell (1995) seem to suggest that analogical
questions that have been solved on a deeper conceptual
level, are in a way 'better' than the alternative options,
and therefore more interesting to research. In inspecting
the data gathered by Mitchell (1993), however, it was
striking that some answers given by participants
occurred more frequently than others; and these did not
correspond to the elegant answers.

Intrigued by the notion of 'elegance', the work
discussed here repeated Mitchell's empirical
investigations in order to obtain, firstly, a statistical
analysis of the typicality of responses to the suite of
analogical reasoning problems posed by Mitchell, and
secondly, detailed protocols of the steps involved in the
reasoning process. The question to be posed was
whether an 'elegant' solution might otherwise be viewed
as a non-typical solution, in statistical terms; further,
might detailed protocol analyses provide evidence
concerning how a single mechanism might be involved
in producing these typical responses. As such, these
typical answers might provide a natural ideal for the
ACT-R model to emulate.

A Study of Analogical Reasoning Behaviour

Method
Participants: Forty people volunteered for the
experiment. 21 were male and 19 female. Participants
included both native (n=19) and non-native (n=21)

speakers of English, with males and females being
equally represented in both groups.

Procedure: Each person was given a computerised test.
The test comprised 22 analogical reasoning problems
previously used in Mitchell's (1993) study (see Table
2). The questions posed were distributed across the five
clusters of analogical reasoning tasks, described above
(see Table 1). Participants were asked to read the
instructions, and then solve the problems in their own
time. Following the test, participants were asked to type
explanations to their solutions, where the answer given
to a problem did not correspond to any of the answers
previously found in Mitchell's study.

Results
The most typical answer, or solution, given to each
question, is shown in Table 21. A c2 test was conducted
for each question to determine whether any answer was
given significantly more frequently than any other.

Where a single response was significantly more
frequent (p < 0.05), the response was considered to be a
'typical' answer. Using this criterion, 13 out of the 22
items were answered typically (see Table 2). Typical
answers appeared predominantly for problems in
clusters 1, 2 and 5, with proportionately fewer in
clusters 3 and 4.

                                                            
1 The full range of answers given by participants, is presented
and discussed further in Grob (2002).

Table 2: Most frequent answers given by participants
to 22 alphabetic analogical reasoning problems. T
denotes whether the answer given could statistically be
considered typical. Three answers predominated for
problems in cluster 3(*).

Type N Item Most frequent answer(s) T
cluster 1  1 IJK IJL +

 2  XLG XLH +
 3  XCG XCH +
 4  ABCD ABCE +
 5  CDE CDF +
 6  CAB CAC -
 7  CMG CMH +

cluster 2  8  IIJJKK IIJJLL +
 9  HHWWQQ HHWWRR +
 10  LMFGOP LMFGOQ -
 11  LMNFGHOPQ LMNFGHOPR +

cluster 3  12  KJI KJH*, LJI, KJJ -*
 13  EDC EDD*, FDC, EDB -*
 14  CBA CBB*, DBA, CBZ -*

cluster 4  15  MRRJJJ MRRKKK -
 16  MRR MRS -
 17  MMRRRJJJJ MMRRRKKKK -
 18  RSSTTT RSSUUU +
 19  XPQDEF XPQDEG -

cluster 5  20  XYZ XYA +
 21  GLZ GLA +
22  CMZ CMA +



Interestingly, for each task in cluster 3, three
alternative answers predominated. Collectively, these
three answers (shown in Table 2) accounted for a
significantly higher proportion (p<0.5) of the total set of
responses than the remaining collection of answers.

Analysis of Findings
Almost all typical answers can be formed by applying
the simple rule: 'Change the last item to its alphabetic
successor'. with item denoting either a single letter, or a
group of the same letters. If the last item is a 'Z' (as in
cluster 5) then a continuous circular notion of the
alphabet is applied, and successor 'A' is given. When
the left hand target consists of a reversed letter string,
such as in cluster 3, only one potential answer is formed
by applying above specified rule; the other two equally
frequent answers, take into account the reversed
alphabetic order of the characters to which the rules
'Change the last item to its predecessor' and 'Change the
first item to its successor' apply respectively.

The remaining tasks for which there was no ‘typical’
answer, also fitted the predominant rule 'Change the last
item to its successor.' Only item 16 diverged from this
pattern. Though the task "MRR" should be answered
with "MSS" according to this main rule, only the last of
the two letters is changed to its successor, yielding
"MRS". Possibly, this is because the item has the exact
same length as the left hand source, suggesting a
mapping of the last "R" of "MRR" on the "C" of
"ABC".

No significant differences in answer-patterns were
found on basis of gender (p=0.811), native language
(p=0.186) or the combination of the two (p=0.2).

The explanations of unusual answers that had been
gathered in our study, described how many people
answered by looking for an underlying pattern in the
left-hand target. The most commonly applied strategy
in less straightforward questions, was to count how far
the letters in the target were removed from each other in
the alphabet and use this information when forming an
answer. Other strategies included basing the answer on
acoustic qualities (rhyme), or referring to the
adjuxtaposition of letters on a computer keyboard.
Answers of this kind demonstrated the flexibility of the
mechanisms involved in referring to a wider knowledge
to solve problems. To gain further insight in how
participants solve alphabetic analogical reasoning tasks,
a second, more systematic study was conducted.

A Study of the Analogical Reasoning Task
To investigate the process of solving an alphabetic
analogical reasoning task, a verbal protocol analysis
was carried out.

Method
Two participants who had not taken part in the previous
study were given a test involving the 5 target questions
(see Table 1), plus an additional problem “XLG”,
which was included to test participants’ reactions to an
apparently random stimulus string. The participants
were instructed to solve the problems in their own time
and, whilst doing so, to recount verbally, the steps
involved in their reasoning about how to solve the
problems.

Results
The accounts of our participants, combined with the
post hoc explanations obtained from our previous study,
indicate that the steps involved in solving an alphabetic
analogical reasoning task appear to be as follows:

1. Represent the left-hand source
2. Represent the right-hand source
3. Infer the source-rule
4. Represent the left-hand target
5. Map the left-hand target onto the left-hand source
6. Apply the source-rule
7. Give the answer

When mapping (step 5) is unsuccessful, target-
representation (step 4) is applied recursively, until
either a satisfying mapping has been established; or one
runs out of patience. When mapping (step 5) an item
from cluster 3 the source rule (which was formed in
step 3) can also be adapted to reflect the 'oppositeness'
between left-hand target and left-hand source.

An ACT-R Model of Analogical Reasoning
The derived protocol provided the specification for
modelling analogical reasoning. The model was
specified in the cognitive architecture ACT-R, which is
both a specific theory on cognition, as well as a
software environment for simulating human cognition2.

Problem Representation
The model starts with  representing the problem to be
solved (See Figure 2). Representation takes place on
two levels. On the syntactic level, the left or right hand
side of the problem is represented in terms of its
individual letters; and on the semantic level the
relations that exist between the neighbouring letters are
expressed. Consistent with the behaviour of the
participants, it is assumed that when reading a letter
string for the first time, people directly pick up on the
repetition of letters (e.g. "A-A") as well as
successorship (e.g. "A-B"). The model therefore
encodes these relationships immediately they are
encountered.
                                                            
2 See Anderson & Lebiere (1998) for a full account of ACT-R



Figure 2: Flowchart of how the model solves a problem.

When a letter is repeated, this is represented by
increasing a counter for that letter in the syntactic
representation (see Table 3). In this way, groups of the
same letters, are directly encoded as groups in the
syntactic representation. No explicit representation of
repeated characters is encoded at the semantic level; the
'sameness' between consecutive letters is implied by the
counter following the letter itself. Thus, items in the
semantic representation encode the relationship
between neighbouring items in the syntactic
representation, which can be either single letters or
groups of the same letters.

When two consecutive letters are dissimilar, the
alphabetic relationship between them is encoded in the
semantic representation: a relationship can be labelled
either 'next' (for successive letters) or 'other' for non-
consecutive letters. When encoding of the entire string
is complete, the program constructs a higher level
semantic representation labelling the complete string as
either a 'successorgroup', when a semantic
representation consists of only 'next'-items (e.g. next-
next), or an 'othergroup': when one or more of the items

is 'other'. These labels, then, reflect the semantic
relationships encoded at the lower level.

Worked Example
To exemplify the process of solving an analogical
reasoning task, Table 4 lists the steps the model takes
when solving "ABC" Æ "ABD" therefore "IIJJKK" Æ
"?". Representing both sides of the source is carried out
in the manner described above. Following this, the
source-rule is formed; this describes how the left-hand
source has been transformed to form the right-hand
source.

The source-rule is built in two stages from the
syntactic representations produced during the previous
stage of processing. In the case of "ABC"Æ"ABD",
first the A's are compared, then the B's and then the C
with the D. This produces the source-rule 'same-same-
next' which translates into 'change the third letter to its
successor'.

Following this process would lead to the question
"ABC"Æ"ABD" therefore  “IIJJKK"Æ?, being solved
with "IIKJKK". However, in accordance with our study
findings, this rule is transformed into a higher level rule
in which the string is encoded as two components: a
'body' and a 'last'. This produces the rule: 'body = same
and last = next'.

After the source-rule has been formed, the left hand
sides are mapped onto each other. Both "ABC" and
"IIJJKK" are successor groups, and thus a perfect
mapping is found. The answer can now be constructed.

The source-rule is applied to each letter in the
syntactic representation of the left-hand target. The first
letter, 'I' has a counter of 2 and is part of the body. As
the rule for the body is 'same', the I is copied twice into
the answer The 'J's are part of the body as well, so by
applying the same rule, the answer now consists of
"IIJJ". Finally the "K", with counter 2, is the 'last'
element and here the source-rule states that the 'next'

represent
rh-source

represent
lh-source

define
source rule

represent
lh-target

construct
answer

give
answer

redefine
source-rule

map
left-hand

sides

random       same

 other                             opposite

Table 3: Example of how the model represents string
"AABL" (the | shows how far the model has
processed the string)

Progress Syntactic Semantic
|AABL - -

A|ABL A(1) -

AA|BL - A(2) -

AAB|L A(2)-B(1) next-

AABL| A(2)-B(1)-L(1) next-other

"othergroup"

Table 4: Overview of how the model solves the
problem "ABC" -> "ABD", "IIJJKK" -> "?"showing
the result of each consecutive step.

Step Result
Represent left source ls-syntactic = A(1)-B(1)-C(1)

ls-semantic = "successorgroup" (next-next)
Represent right source rs-syntactic = A(1)-B(1)-D(1)

rs-semantic = "othergroup" (next-other)
Infer source-rule source-rule = body(same)-last(next)
Represent left target lt-syntactic = I(2)-J(2)-K(2)

lt-semantic = "successorgroup" (next-next)
Map left sides "successorgroup"="successorgroup"

=> same
Construct Answer lt-syntactic source-rule application

I(2)-
    J(2)-
         K(2)

Body(same)

Last(next)

I-I-
    J-J-
         L-L

Give Answer Output = I-I-J-J-L-L



letter needs to be taken. Therefore the successor of "K"
is retrieved3 and strung to the answer twice, giving the
final result "I-I-J-J-L-L" as output.

Mapping Non-Standard Problems
In the example just described, mapping between left
hand source and left hand target is immediately
successful; however, for several problems, mapping
does not proceed in this straightforward manner.

When encountering a reversed item like "KJI", or a
'random' numerical item like "MRRJJJ", the target is
initially represented semantically as "othergroup".
Mapping now becomes a problem, as the
representations of left-hand target and source don't
match ("othergroup"<>"successorgroup"). Therefore,
the model tries to re-represent the left-hand target.
Effectively, when the letters in the target are
alphabetically very close to each other,4 the program
checks the target in reverse order from right to left. In
the case of "KJI" this gives the semantic encoding: -
next-next-, because the model is now reading it from
right to left. This encoding is then transformed to
"predecessorgroup" in the second stage of semantic
processing. Attempting to map "predecessorgroup" onto
"successorgroup", prompts the model to switch the
source-rule, to reflect the fact that predecessor is the
opposite of successor.

The model has two ways of inverting the source rule,
both of which have a 50% chance of being selected. In
one case, the source rule “take the successor of the last
item” (body=same, last=next), is changed to “take the
predecessor  of the last item” (body=same,  last=
previous), yielding the solution “KJI”Æ”KJH”. In the
other case the rule is changed to “take the successor of
the first item” (first=next, tail=same), which gives
“KJI”Æ”LJI”. If no predecessorgroup can be found
either, as is the case for item "MRRJJJ", the left hand
target is encoded as a "randomgroup" and the answer is
formed by applying the original source-rule, which
gives "MRRJJJ"Æ"MRRKKK".

A final special case is encountered, when the model
is given a problem from cluster 5, such as "XYZ".
When the model wants to find the successor of 'Z', an
error is retrieved. In accordance with participant
behaviour, the model now recruits more general
knowledge. Firstly it checks whether there is something
'special' about the letter 'Z' and retrieves that it is the
'last' letter in the alphabet. This enables the model to
access the more general knowledge, that the successor
of something which is last in a list, is the first item of

                                                            
3 Retrieval of successors and predecessors in the model is
done via a re-implementation of the ALPHA model for letter
retrieval (Klahr et al, 1983). For further details see Grob
(2002)

4 See Grob (2002) for precise details

that list. By retrieving the fact that the letter 'A' is the
'first' letter of the alphabet, the problem is now solved
with "XYZ"Æ"XYA". Of course, the same type of
reasoning applies when looking for the predecessor of
'A'.

Evaluation
The model was run on the 22 problems shown in Table
2. The answers given by the model are presented in
Table 5. To judge the performance of the model,
goodness of fit was defined as the percentage of the
answers that the model could give that were the same as
the data to which it is compared. The model gives a
66,75% goodness of fit overall, when compared with
the answers given to all 22 problems, by the 40
participants in our study.

The model was designed particularly to model the
production of answers considered to be most 'typical'
under our definition.  When looking at the performance
of the model on the tasks for which typical answers had
been identified, the model shows a 100% goodness of
fit. It should be noted, that though the items from
cluster 3 weren’t typical accoring to our statistical
definition, they each show an interesting pattern of
three possible answers, of which the model is able to
reproduce two.

Table 5: Answers given by the model on the 22 tasks

Type N Item Most Frequent Model Same
1 IJK IJL IJL +
2  XLG XLH XLH +
3  XCG XCH XCH +
4  ABCD ABCE ABCE +
5  CDE CDF CDF +
6  CAB CAC CAC +

cluster 1

7  CMG CMH CMH +
8  IIJJKK IIJJLL IIJJLL +
9  HHWWQQ HHWWRR HHWWRR +

10  LMFGOP LMFGOQ LMFGOQ +

cluster 2

11  MNFGHOPQ LMNFGHOPR LMNFGHOPR +
KJH KJH +
LJI LJI +

12  KJI

KJJ - --
EDB EDB +
FDC FDC +

13  EDC

EDD - -
CBZ CBZ +
DBA DBA +

cluster 3

14  CBA

CBB - -
15  MRRJJJ MRRKKK MRRKKK +
16  MRR MRS MSS -
17  MMRRRJJJJ MMRRRKKKK MMRRRKKKK +
18  RSSTTT RSSUUU RSSUUU +

cluster 4

19  XPQDEF XPQDEG XPQDEG +
20  XYZ XYA XYA +
21  GLZ GLA GLA +

cluster 5

22  CMZ CMA CMA +



Conclusion
The model presented here appears successful in
answering the 22 problems in a typical, human-like
way, but there are a number of ways in which its
performance does not match that of the participants in
our study. First, when a source and target do not map
perfectly onto each other, the model merely checks to
see whether the target has a reversed alphabetic letter
ordering. Our participants, however, tried to re-
represent the target in many ways, especially counting
distances between letters, to arrive at a satisfactory
answer. The full range and inventiveness of these
observed strategies would be difficult to emulate; still,
the model might at least be adapted to be able to apply
numerical knowledge.

Secondly, when dealing with problems from cluster
3, the system can only choose to reverse the source rule,
to reflect the reversed alphabetic flow in the target.
However, some of the participants in our study chose to
apply the rule: 'change the last letter(group) to its
successor'. This, of course, is a rule the model is already
able to deal with, and a simple adjustment to the model
would enable it to capture this behaviour.

Finally, the present model has only been tested on 22
problems with source ABCÆABD. Of course many
more alphabetic analogical reasoning tasks can be
imagined, and further research is needed to identify
more precisely what the present model can and cannot
handle, and why. Ultimately, the computational model
should not only be able to describe typical answers, but
predict them as well.

Discussion and Future Work
Whereas in Copycat (Hofstadter & Mitchell, 1995), a

new modeling framework was built, the present work
shows that typical alphabetic analogical reasoning can
be successfully modelled in the more general cognitive
architecture ACT-R. However, many features of ACT-
R have of yet not been fully employed. Future research
should make the model depend more heavily on ACT-
R, adding to its explanatory strength.

Given the observed typicality of answers, the
question arises, why some people give non-typical
answers. Do they, for example, generate typical
solutions, but ignore them in the quest for more
interesting solutions, or are these non-typical solutions
their first best guesses? In this context, we should note
that only one individual in our study gave a typical
answer to every problem. There appeared to be a
continuum from individual participants who gave
mostly typical answers and a few non-typical answers,
to individual participants who gave mostly non-typical
answers and a few that were typical.

The answers that were regarded as more elegant in
the Copycat project, do not seem to be favoured by

people such as the participants in our study. The work
presented here suggests that typical answers are the
product of reasoning on a lower representational level
than in the production of elegant answers.
Consideration of these more elegant answers, therefore
appears unhelpful in understanding how humans
generally deal with these types of questions.

However, Hofstadter and Mitchell (1995) link
analogy making to creativity, by suggesting that
answers based on a higher level of representation, are
more ‘creative’. It would be interesting to see whether a
positive relationship between giving more elegant
answers on the alphabetic analogical reasoning task and
some general measure of creativity, does indeed exist.
By extending the computational model to produce such
'elegant' solutions, we perhaps become better placed to
understand what constitutes 'creativity' of this kind.
This is an issue for further work.
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