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Abstract 

Problem solving involves adapting known problem solving 

methods and strategies to the task at hand (Schunn & Reder, 

2001) and cognitive flexibility is considered to be “the human 

ability to adapt the cognitive processing strategies to face new 

and unexpected conditions of the environment” (Cañas et al., 

2005, p. 95). This work presents an ACT-R 6.0 model of 

complex problem solving behavior for the dynamic 

microworld game FireChief (Omodei & Wearing, 1995) that 

models the performance of participants predisposed to behave 

either more or less flexibly based on the nature of previous 

training on the task (Cañas et al., 2005). The model exhibits a 

greater or lesser degree of cognitive inflexibility in problem 

solving strategy choice reflecting variations in task training. 

The model provides an explanation of dynamic task 

performance compatible with the Competing Strategies 

paradigm (Taatgen et al., 2006) by creating a second layer of 

strategy competition that renders it more flexible with respect 

to strategy learning, and provides an explanation of cognitive 

inflexibility based on reward mechanisms.  

Keywords: complex problem solving; cognitive inflexibility; 
dynamic tasks; strategy use; adaptation.  

Introduction 

Problem solving involves adapting known problem solving 
methods and strategies to the task at hand (Schunn & Reder, 
2001) and cognitive flexibility is considered to be “the 
human ability to adapt the cognitive processing strategies to 
face new and unexpected conditions of the environment” 
(Cañas et al., 2005, p. 95). When approaching a new 
problem, it is thought that problem solvers with higher 
levels of cognitive flexibility will outperform those who are 
less flexible because the former tend to consider alternative 
ways to solve the problem (Stewin & Anderson, 1974) 
rather than rigidly adhering to well-used methods. In their 
study of cognitive flexibility, Cañas et al. (2005) found that 
participants became predisposed to behave either more or 
less flexibly based on the nature of previous training on the 
task. Those trained repeatedly on the same problem scenario 
developed a preference for how they solved the task, 
becoming faster and more fluid in their actions over time. 
When subsequently tested on a different scenario their 
behavior was inflexible in adapting to the new test 
conditions and performance suffered. In contrast, those 
trained on a series of varying problem solving scenarios 
demonstrated an ability to adapt their problem solving 
behavior flexibly to the challenges presented by the new test 
scenario. The work presented here describes an ACT-R 

model for the Cañas et al. (2005) problem solving task that 
demonstrates varying degrees of cognitive flexibility 
depending on the training regime it undergoes. Analysis of 
the model provides an explanation of cognitive inflexibility 
based on reward mechanisms.  

Background 

There are several cognitive modeling paradigms (Taatgen et 
al., 2006) for problem solving involving strategy selection. 
In the Competing Strategies paradigm (ibid.), several 
strategies are implemented in a cognitive architecture and 
then compete for use in solving a problem. According to 
Taatgen et al. (2006) utility learning can be used to 
determine the best strategy. This paradigm has been 
successfully applied in modeling problem solving behavior 
for static tasks  (Lovett & Anderson, 1996; Peebles & 
Bothell, 2004) and tasks in dynamically changing situations 
such as Air Traffic Control (Schunn & Reder, 2001; 
Schoelles & Gray, 2000).  

Dynamic problem solving tasks pose an added layer of 
complexity. In dynamic situations the problem solver needs 
to execute not only the appropriate action but also to 
implement it at the right time: a good decision at one 
moment could be ineffective the next. In order to obtain 
good performance both selection and execution of the 
chosen strategy must be effective.  

Problem solvers must also be ready to change strategy as 
and when the situation demands (Gonzalez et al., 2004); 
they must continuously process feedback in order to select 
appropriate actions within an ever-changing situation 
(Brehmer & Dörner, 1993). Underlying this ability, 
according to Schunn & Reder (2001), strategy choice is 
influenced by overall success and “Dynamic tasks bring to 
the forefront the importance of the ability to adapt to 
changing success rates” (p. 61). They argue that although 
participants may use a similar set of strategies they can 
differ in their ability to opportunistically apply those 
strategies in response to the situation.  

This ability to adapt behavior may be affected by factors 
such as cognitive inflexibility, which can be produced as a 
consequence of the way problem solvers interact with the 
task at hand. As skill in a task improves and becomes more 
automatic so cognitive inflexibility may increase, 
particularly in tasks with a high level of consistency 
(Ackerman, 1988). For example, in a fire-fighting task, 
Cañas et al. (2005) found evidence of cognitive inflexibility 
in participants trained repeatedly on the same problem 
scenario who, having found an effective strategy, failed to 



relinquish it despite situational changes that reduced its 
effectiveness. This contrasted with participants trained on a 
variety of different problem scenarios. 

However, studies investigating cognitive inflexibility 
have not always drawn consistent results. For example, 
Schunn & Reder (2001) found no evidence for cognitive 
inflexibility in their study involving training on an Air 
Traffic Control task when situational changes affecting 
success on the task were introduced.  

The work presented here implements an ACT-R model of 
the Cañas et al. (2005) study to elucidate the mechanisms of 
cognitive inflexibility further in an attempt to reconcile 
these disparate findings. 

The FireChief Microworld 

The Cañas et al. (2005) study used a dynamic microworld 
game called FireChief (Omodei & Wearing, 1995) for the 
problem solving task. Figure 1 shows the FireChief display.  

Figure 1: The FireChief microworld display 
 

Players combat fires spreading in a landscape using truck 
and copter fire-fighting units. A FireChief problem scenario 
depicts a landscape comprising forest, clearings and 
property, the position of initial fires, fire-fighting units, and 
the direction and strength of the wind. Copter and trucks can 
be moved between landscape grid cells and Drop Water 
(DW) over cells to extinguish fires. Copters move three 
times faster than trucks and cannot be destroyed by fire, but 
a truck’s water tanks have double capacity and are able to 
Control Fire (CF) by creating a fire-break. Commands are 
issued through a combination of mouse and keyboard 
operations and their execution takes a fixed amount of time 
(4 seconds to DW; 2 seconds to CF) and a variable amount 
of time to Move a unit depending on distance and type of 
unit. Wind strength and direction are in the upper right-hand 
corner of the display. Task performance is inversely 
proportional to the number of cells destroyed by fire at the 
end of the trial.  

The FireChief problem state changes both independently 
and as a consequence of the participant’s actions and time 
pressure is directly related to fire development, which 
depends heavily on wind strength. 

The Cañas et al. (2005) study 

Each trial for the FireChief task lasts 260 seconds. The 
experimental data comprises a list of commands executed 

during each trial that is indexed to a detailed description of 
the changing scenario. The first 16 trials comprise the 
training phase and the last 8 trials the testing phase. There 
were two training conditions: constant and variable.  

In the constant training (CT) condition the problem 
scenario is exactly the same for each trial and wind strength 
and direction remains fixed. In the case of variable training 
(VT) a different scenario is presented in each of the sixteen 
trials. Trials vary in landscape composition, initial position 
of fire-fighting units and fires and, importantly, wind 
direction and strength varies throughout the trial.  

There are also two test conditions. In the Wind Direction 
Change (WDC) condition the wind changes direction every 
60 seconds. These shifts in wind direction have a dramatic 
impact on fire development. In the second Efficiency 
Reduction (ER) test condition, appliances deliver less water 
and are therefore less effective in extinguishing fires.  

As previously hypothesized, Cañas et al. (2005) found 
participants in the CT condition improved performance as 
the number of trials increased; however, during the test 
phase this same group demonstrated a distinct lack of 
flexibility in adapting their problem solving strategy to the 
new task demands. In contrast, participants in the VT 
condition demonstrated a greater facility for changing 
strategies under test conditions. The findings were 
consistent across both WDC and ER test conditions 

The Model 

The ACT-R 6.0 (Anderson et al., 2004) model interfaces to 
a LISP version of the FireChief microworld (De Obeso 
Orendain & Wood, 2010). Task knowledge comprises both 
procedural (condition-action) rules that produce behavior 
according to four high level strategies: Barrier, Non-
Barrier, Stop, and Follow (ibid.) and three declarative 
knowledge components that impact this behavior: (1) the 
goal chunk, the main task objective is to extinguish the fire; 
(2) the strategy specification chunk, which defines whether 
the model will use a mixture of DW and CF commands, 
whether or not a barrier will be created, and which method 
of attacking the fire is preferred (attack weak fires, attack 
strong fires or attack the strongest fire); and (3) the intention 
chunk, used to track the current intention (stored in the 
ACT-R imaginal buffer, Anderson et al., 2004). Intentions 
emanate from steps in pursuit of the main goal, according to 
the chosen strategy. 

The model identifies its preferred strategy by comparing 
the utility of its four strategy rules, combined with a 
situation assessment, and retrieves the corresponding 
strategy specification chunk. This chunk remains unaltered 
throughout the entire trial, unless there is a strategy change.  

Overall the model behavior reflects the use of procedural 
knowledge over declarative knowledge: it is constructed in 
such a way that it is mainly controlled by the utility learning 
mechanism. The content of the three declarative chunks 
determine which rules are applicable in different situations, 
but there is always more than one eligible rule, so the 
decision about what to do next is taken in terms of utility.  



ACT-R’s utility learning mechanism 

Utility designates the perceived value of implementing a 
procedural rule, and thereby its associated behavior, and is 
updated via a reward mechanism reflecting task success. 
Throughout runtime, Rule utilities are compared during the 
process of conflict resolution where only the rule with the 
highest utility is selected and thereby acted upon. In ACT-R 
when a reward is triggered the utility values of all rules that 
have fired since the last reward are updated. The actual 
reward allocated depends on the absolute value of the 
reward and the length, in time, between the giving of the 
reward and the execution of that rule. The consolidation of 
strategies and the existence of cognitive inflexibility 
discussed here are explained in terms of utility variations in 
the set of rules indentified as key in implementing a 
strategy. A key rule is one that enters the conflict set during 
ACT-R conflict resolution and hence competes in 
determining the next intention or action of the model.  

Achieving adaptivity 

The considerable variability observed in participants’ 
protocols suggests that for the FireChief task there is 
variation not only in strategy choice, but also in the chosen 
method of execution. The dynamic nature of FireChief 
introduces a dynamic component into the execution of 
strategies that forces a second layer of competition between 
alternative courses of action within the same strategy. For 
this reason a paramount feature of the model is to enable 
this kind of competition. In the FireChief task there are four 
fire-fighting units (Copter, Truck), three commands (DW, 
CF, Move) and four hundred locations. From a very broad 
perspective the model’s operations are devoted to 
determining the agent, type and spatial location of the next 
command and a strategy functions as a mechanism for 
helping the model to constrain this decision. Two types of 
control coexist within the model. The current representation 
of the task (the strategy specification chunk) guides actions 
through top-down control. Nevertheless bottom-up control 
is particularly relevant when considering dynamic tasks 
therefore feedback from the environment is used to guide 
the further selection of actions by triggering a wider variety 
of rules than those specified in the strategy chunk. 

 

 
 

Figure 2: The basic cycle of the model comprising a 

second layer of within-strategy competition  
 

The model uses an adaptation of the Competing Strategies 
paradigm (Taatgen et al., 2006): the core of the model is the 
Decision Point/Action/Reward cycle shown in figure 2. 

 The basic cycle starts with a Decision Point (identifying 

eligible rules) continues with the Execution of an action 

(rule-firing), and finishes with the awarding of a Reward. 

The branching factor at every Decision Point is variable and 

there are External Events that can interrupt the flow of 

actions in the cycle such as alarms and visible changes in 

the environment that prevent the effects of an action taking 

place, for example, a cell catching fire before a CF 

command is completed. The model is designed in such a 

way that Decision Points occur frequently. In this way the 

model is mainly governed by the utility values of its rules. 

This bottom-up control feature results in the emergence of 

interesting behaviors (observed in participants) such as 

“waiting behavior”: when a truck is Moved to a cell with the 

intention of issuing a CF command, if the movement’s 

length is shorter than 2 cells, the model tends to wait for the 

unit to arrive (incurring in a waste of time but increasing the 

probability of issuing the CF command as soon as the unit 

arrives, rendering its success more likely). The description 

and analysis of emergent behaviors is outside the scope of 

this paper.  
The same set of rules is used for modeling performance of 

the task under both training conditions from the Cañas et al. 
(2005) study. However, rewards for task performance and 
thus specific rule utility values will vary according to the 
unique experience of the model on any given trial (model 
run). Furthermore, these utility values will accumulate over 
both training and testing phase. 

Rewarding the execution of commands 

Within the model positive rewards are received for 
successfully completing commands and negative rewards 
for failing to execute commands successfully or for wasting 
time (this means that the utility of a rule can be negative). In 
this way, any action that contributes to the successful 
completion of a command is rewarded predisposing the 
model to continually issue commands. External reward: 
final performance 

In addition to built-in ACT-R utility learning mechanisms 
a further external reward mechanism affects the utility of the 
four strategy rules. The strategy rule invoked for a given 
trial is modified at the end of each trial based on final 
performance (the amount of non-destroyed terrain 
remaining at the end of the trial). For instance, if the rule 
that selects the Stop strategy is fired and the final 
performance achieved during the trial is high, the rule’s 
utility is increased. Manipulating rule utilities outside the 
standard ACT-R mechanism, has also been used elsewhere 
(e.g., Schoelles & Gray, 2000).   

Results 

Data fitting: The model was fitted to the Cañas et al. (2005) 
study participant data as described in De Obeso Orendain & 
Wood (2010).  

Performance: During the training phase the average 
performance of participants in the CT group is 78.7 while 



the average performance of the model for CT is 77.1. In the 
VT group, the average performance of participants is 78.45 
versus 81.2 for the model. The fit of the model is better for 
the Barrier and Stop strategies (r

2
=.987) which are the most 

structured strategies (De Obeso Orendain & Wood, 2010).  
Strategy use: For the CT training scenario the Barrier 

strategy using CF commands to construct a fire-break (ibid.) 
is a good option because the fire develops quickly and soon 
reaches an intensity that surpasses the capability of the fire-
fighting units. In the CT condition both participants and the 
model use the Barrier strategy increasingly more frequently, 
by trial 16 participants use the Barrier strategy 71% of the 
time while the model is using it 79% of the time.  

Strategy change: During the training phase participants 
in the VT group change strategy with more frequency than 
participants in the CT group, the model captures this 
tendency (r

2
=.93 RMSD=1.43). The fact that both 

participants and model use the Barrier strategy more 
frequently, and there is less strategy change, during CT 
facilitates the consolidation of this strategy in the CT group. 

Learning in CT: A significant performance increment 
was obtained by comparing the first (1-4) and last four 
training trials (12-16) for both participants and the model. 
(F(1,33)=4.417, p<.05 and F(1,33)=5.17 p<.05 
respectively). This means that consolidating the use of the 
Barrier strategy is beneficial by objective criteria.    

Cognitive inflexibility: After the training period both 
participants and the model undergoing the CT condition 
exhibit inflexibility on two levels: strategy choice and 
strategy implementation. Both kinds of inflexibility can be 
traced to variations in key rule utility values induced by the 
two training conditions.  

The set of rules available for use are exactly the same for 
both training conditions (a single model undergoes either of 
the training conditions). However, the pattern of change in 
utility values varies as a consequence of the training 
received. As shown in figure 3 for the Barrier strategy: over 
the sixteen training trials average utility values of Barrier 
strategy rules for the CT group (TOP-DOWN CT) far exceed 
those for the VT group (TOP-DOWN VT). 

This contributes towards an explanation of cognitive 
inflexibility in strategy choice. As a consequence of the CT 
condition, the reward function shapes the utility values of 
the model’s rules in such a way that it becomes relatively 
insensitive to changes in reward. The high utility values of 
rules for the preferred Barrier strategy in the CT group 
shield the model from relatively small variations in success. 
When creating a barrier is no longer the best approach, such 
as occurs during the test phase, the model will eventually 
change its behavior through repeated negative reward after 
the utility values of the rules for the preferred strategy have 
reduced sufficiently in comparison to the rules for 
alternative strategies. But this takes time, giving rise to the 
observable phenomenon of cognitive inflexibility.  

In contrast, the model subjected to the VT condition is 
more sensitive to changes in reward during the test phase 
because its rules for implementing alternative strategies are 
more evenly weighted; because the differences between 
their utility values is smaller, a small amount of negative 
reward is able to trigger a switch to an alternative strategy.  

Differences in utility also contribute towards an 
explanation of cognitive inflexibility in strategy 
implementation, again discussed here in relation to the 
Barrier strategy.  

There are a range of actions that might be involved in 
constructing a barrier by a variety of methods represented as 
the set of rules available whenever the Barrier strategy is 
selected. One subset of rules comprises methods that 
implement the Barrier strategy in a structured top-down 
manner. For example, top-down Barrier strategy rules 
systematically identify the next section of the barrier to be 
constructed by locating CF commands in grid cells adjacent 
to that section of the barrier just formed.  

In comparison, other rules involve a greater degree of 
bottom-up control in implementing actions. For example, a 
bottom-up strategy rule might locate the next section of the 
barrier to be constructed by looking to see where the fire is 
before making a decision about where to put the next 
section of the barrier. These top-down and bottom-up rules 
compete throughout the creation of a barrier (while the 
Barrier strategy is selected) and those selected by ACT-R 
give rise to the final form of the barrier.  

 
Figure 3: Changes in top-down strategy and bottom-up 

responsive Barrier rule utilities during training  
 

Figure 3 shows the average utility values for these two 
notional subsets of rules over the sixteen training trials: the 
utility of the rules implementing the strategy top-down 
increases as more trials are completed during CT (TOP-

DOWN CT) as their repeated use is continuously rewarded.  
This phenomenon occurs only when the problem scenario 
does not vary dramatically between trials so that there is no 
significant variation in the effectiveness (and thus reward 
value) of the actions being executed on repeated trials. In 
comparison the bottom-up responsive rules involve many 
more perceptual actions to locate the spread of fire, taking 
longer to construct the barrier, consequently receiving a 
relatively lower reward (BOTTOM-UP CT). Over time, this 
serves to increase the probability of using the top-down 
subset of rules in the CT group producing the divergence 
shown in Figure 3. The utility values for the same notional 
subsets of rules for the VT group, again, remain more 
evenly balanced owing to the variability in training 
rewarding the top down implementation of the strategy less 
consistently. 



As in the case of strategy choice, CT leads to cognitive 
inflexibility in strategy implementation, with potentially 
insufficient regard given to sensing the environment over 
top-down construction of the barrier, when conditions 
change, as witnessed for the CT group under test conditions. 

Testing phase: Comparisons were made to determine the 

impact of cognitive inflexibility on performance in the first 

testing trial. The average performance in the 17
th

 trial in the 

ER condition in better for participants/model after CT 

(86.09/78.14) than after VT (72.19/69.83). Both participants 

and the model in the CT group use the Barrier strategy 

more effectively than the VT group in the ER condition, an 

indication that these participants have consolidated the 

Barrier strategy following a top-down approach. The CT 

group does not need to change strategy because using CF 

commands is the only sure way to stop the fire in the ER 

condition (and constructing a barrier using CF is the best 

approach and therefore has an advantage). The average 

performance in the 17
th

 trial in the WDC condition is better 

for participants/model after VT (78.51/78.14) than after CT 

(71.38/74.87). This is because shifts in wind direction make 

fire behavior unpredictable so flexible behavior is required. 

This flexibility is best achieved using more situation-

sensitive responsive rules such as those contributing more 

bottom-up control in the creation of the barrier.  
Control of behavior: Figure 3 shows that the model 

trained in the CT condition has a clear preference for the use 
of top-down control while the model trained in the VT 
condition has no such preference. This difference has an 
impact in the WDC test phase when the wind changes 
direction in trial 17 at second 60. In a model trained in the 
VT condition the bottom-up rules are more easily able to 
win the competition through small variations in utility 
values following negative reward. Therefore, when the 
change in the wind occurs, the model will probably select 
the next target cell based on the location of the fire. On the 
other hand, the behavior of a model trained in the CT 
condition will reflect its high utility rules implementing the 
top-down approach to the creation of the barrier so it will 
continue to place the next section of barrier without recourse 
to observing the fire.  The risk is that when the form of the 
barrier is constructed without considering the actual shape 
of the fire it may not be effective. In this sense the 
automation of the strategy (cf. Ackerman, 1988) runs the 
risk of deterring the problem solver from extracting relevant 
information about the problem state to guide behavior.  

To validate the results obtained with the cognitive model, 
further evidence to support this interpretation was sought 
from the spatial distribution of CF commands in the Cañas 
et al. (2005) study data for participants during the WDC 
testing phase: groups CT-WDC and VT-WDC to determine 
whether the semicircle pattern, a top-down control outcome, 
was present. These test groups were chosen because the 
wind direction change test condition alters the path of the 
fire in such a way as to make the top-down control 
implementation of the Barrier strategy less effective than a 
bottom-up more responsive mode of barrier construction. It 
was found is that the CT-WDC group data presents a 
semicircle pattern of barrier, evidence of top-down 

application of the Barrier strategy, whilst the VT-WDC 
group does not. This indicates that the semicircular pattern 
does not emerge in the VT group behavior because the 
variability of both the VT condition and the WDC testing 
phase does not reward the rules implementing it.  
 

Discussion 

The model captures the behavior of both training groups 
with a single set of rules for implementing all four strategies 
either or both bottom-up and top-down control. Participants 
in the CT group have the opportunity to consolidate their 
strategies and hence generate quick, fluid actions; while 
those in the VT group execute more controlled, albeit 
flexible, actions. When the testing phase begins people in 
the CT group are less (cognitively) flexible in adapting to 
the new demands of the task. In general terms, participants 
in the VT condition changed strategy more often and 
showed more cognitive flexibility during the testing phase. 
The model demonstrates how cognitive inflexibility can be 
traced to the utility values of rules governing behavior 
indicating the potential role of reward feedback learning 
mechanisms in complex problem solving in dynamic 
domains. 

The CT condition presents to the model more stable 
feedback from the environment (in the form of rewards) to 
its actions in comparison with the VT condition. In the CT 
condition the model tends to respond by executing CF 
commands in a fashion that resembles a barrier. As 
experience in the task is gained, the model learns how to 
deploy this strategy with more efficiency.  

The ACT-R reinforcement learning mechanism is able to 
capture the phenomenon of cognitive inflexibility but in 
order to achieve this it was necessary to provide the model 
with adequate responsiveness. Rather than following a 
recipe to implement a strategy, the approach used in this 
research was the Decision Point/Action/Reward cycle which 
(using standard ACT-R mechanisms) maximizes the number 
of decision points during strategy execution and thereby 
enforces competition between rules in selecting the next 
action at almost every time step so that the model can find 
the best way of implementing a strategy. This reflects the 
model’s dependence on ACT-R’s sub-symbolic processes. 
In this way, the model was able to capture critical aspects of 
the data including interesting phenomena such as waiting 
behavior. This indicates that in complex dynamic tasks 
participants may be aware of the consequences of their 
actions over relatively small time intervals.     

This study contributes to our understanding about strategy 
use in complex dynamic tasks: which strategies are used, 
how they are selected, and how strategy execution changes 
as experience is gained. Good performance is linked to an 
effective combination of strategic control with attention to 
changing task demands.  

The cognitive model also prescribes a mechanism in 
which environmental feedback controls how actions are 
selected in a highly dynamic task. Through the 
implementation of the cognitive model it was found, for 
example, that strategy execution depends on the fine-tuning 
of ACT-R production rule utilities as a consequence of 



environmental rewards. Selecting actions based on utility 
comparisons facilitates a fluid and quick selection of actions 
that is instrumental in obtaining good performance, 
particularly in dynamic and time pressured situations. In 
dynamic tasks there is a continuous competition between 
top-down and bottom-up control. This competition is 
mediated by the characteristics of the learning process such 
as those exemplified in the Cañas et al. (2005) study, for 
which in the CT condition the top-down form of control 
dominates. The account provided by the model is that rules 
implementing top-down strategic control come to dominate 
behavior increasingly over rules implementing bottom-up 
responsive behavior during the CT phase owing to task 
consistency. This phenomenon increases the probability of 
performing well in the CT problem scenario but also 
produces cognitive inflexibility. 

 As mentioned in the introduction, Schunn & Reder 
(1996) found no evidence for cognitive inflexibility in their 
ATC study regarding strategy selection (choice of runway – 
long or short – on which to land aircraft) despite a long 
training period. However, we can learn from the work 
presented here; this would indicate that rules involved in the 
selection of choices in behaviour (for example, choosing 
between runways on which to land aircraft) have similar 
utility. A critical factor that enabled the dominance of 
certain rules in FireChief was the high consistency of the 
CT trial. In this respect, the ATC task is only partially 
consistent. An examination of the Ackerman (1988) study, 
from which the data for the second experiment of Schunn & 
Reder (1991) was extracted, reveals that weather conditions 
(wind speed, wind direction, and ground condition) varied 
randomly about twice a minute, and also that within each 
trial aircraft type, of which there are four, are randomly 
drawn from the queue. It seems that this experimental 
design shares more similarity with the VT condition in the 
Cañas et al. (2005) study rather than the CT condition, so 
when experimental changes are introduced no subset of 
rules has become dominant.  

This research also provides an explanation of how 
dynamic tasks can be modeled using the Competing 
Strategies paradigm by incorporating an additional layer of 
within-strategy execution competition, enabling the bottom-
up manifestation of strategies, such as that described here. 
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