
AIAA '87

AIAA-87 -2526-CP

Air Traffic Controller Aids for Planning of Arrival Traffic:
An AI Approach

Ronald L. Chrisley and Leonard Tobias

NASA Ames Research Center
Moffett Field, California

Guidance, Navigation and Control Conference
August 17-19, 1987/Monterey, California

AIR TRAFFIC CONTROLLER AIDS FOR PLANNING OF ARRIVAL TRAFFIC:
AN AI APPROACH

Ron Chrisley* and Leonard Tobias* *
NASA Ames Research Center

Moffett Field, California.

ABSTRACT

This paper considers air traffic man­
agement as an AI planning problem, and
develops a conceptual framework for plan­
ning in the Air Traffic Control (A TC) do­
main. In particular, if ATC is viewed as a
planning problem, it becomes desirable to
design the planner to be an efficient
searcher. An Assumption-based Truth
Maintenance System (ATMS) provides for
efficient search in monotonic domains, i.e.,
in domains where the number of statements
known to be true is strictly increasing over
time, but there has been no discussion of
the use of the A TMS in a nonmonotonic
planning domain such as ATC. This paper
examines a modification of the ATMS to in­
clude the nonmonotonicities inherent in
the A TC domain, noting especially under
what circumstances the advantages of the
ATMS in standard problem-solving domains
carry over to planning. The noninteract­
ing actions of the conceptualization of the
A TC domain as presented are contrasted with
the (problematic) interacting actions of
other domains. These planning concepts
will be incorporated in an automation aid
for enroute arrival controllers, under de­
velopment at NASA Ames.

INTRODUCTION

An Artificial Intelligence (AI)
to solving a realtime problem, such
may be preferred to a traditional,
mic approach for several reasons.

* Research Scientist
* * Research Scientist, Member AIAA

approach
as ATC,
algorith­
First, it

This paper Is declared a work of the U. S.
Government and Is therefore In the public
domain.

may be the case that the only way an ac­
ceptable solution can be generated in real­
time in a complex domain is to employ a
nondeterministic, or heuristic, search of
the solution space. An exhaustive search of
the possibilities would most certainly be im­
practical in any real-world domain. Also, it
is arguable that a declarative programming
approach to the problem (where elements
of the program are not machine or algo­
rithm instructions, but logical representa­
tions about the domain itself) is more desir­
able since it facilitates research and devel­
opment, evaluation, and future modification
of the system in a way that conventional al­
gorithmic solutions cannot. In the case
where the AI system is assisting in solving a
problem that previously only a human ex­
pert could solve, the declarative approach
facilitates knowledge engineering: the
translation of human expertise into code
that will enable the computer to perform
similarly. For any sufficiently complex do­
main, the declarative approach seems to be
the only practical alternative.

Another factor in designing A TC adviso­
ry aids in particular points toward an AI
approach: the high importance of con­
troller confidence in the ATC advisory aid.
In any situation where a human controller
and an advisory-generating system inter­
act, the controller must be convinced that
the system is generating realistic solutions
to the ATC problems. This can be accommo­
dated, at least in the early stages of the in­
troduction of the system, by an explanation
capability, with which a controller can ask
for the reasoning behind a recommended
advisory and evaluate its logic and sensitiv­
ity to the intricacies of the situation. Such a
capability is much easier to develop for a
system that already represents the A TC do­
main in terms of the relations, objects, and
rules the controller understands and uses.

ATC AS PLANNING

An earlier paper claimed that air traffic
control (A TC) in the near-terminal area
could be conceptualized as an AI planning
problem. 1 That paper designs the ATC Advi­
sor as a forward planner, translating each
proposed solution into parameters for a pro­
cedurally attached 4D descent advisor algo­
rithm. The 4D advisor is then invoked, pro­
viding the necessary data for the simulation
of the proposed plan. The simulation is then
evaluated for safety and efficiency. The re­
sults of this evaluation are used to order the
set of proposed plans.

The necessary existence of the 4D tra­
jectory advisor precludes an exclusively
backward planning approach from goals to
advisories, since there are no rules that
have as consequents the facts derived by
the 4D advisor. Furthermore, the goals in
ATC are much less well-defined than the
options available to a controller in any giv­
en situation. For a planner in the chess do­
main, it would be unreasonable to generate
a plan by choosing a particular winning
state and reason backwards until the cur­
rent state is reached; this is also the case in
the ATC domain. Unfortunately, much of
the r_esearch in planning has eschewed
forward planners, in favor of general, do­
m ai n-i n dependent backward planners.
However, if a domain-specific planner is de­
sired, then the generality of the backward
approach will be of little use and may have
serious limitations, since there are some
problems which cannot be solved effi­
ciently without domain knowledge. For ex­
ample, one disadvantage of general back­
ward planning is its inability to handle
some planning situations that involve con­
junctive goals. Sussman's Anomaly is an ex­
ample of such a problem in the blocks
world. Consider the initial situation of block
A on block B, block C on the table, with the
goal being to have A on C on B . A backward
planner will see that it cannot attain the C
on B goal immediately, so it will solve the A
on C goal. Of course, this prevents it from
ever attaining the C on 8 goal without un-
doing what has already been
"accomplished." A forward planner,
equipped with the right heuristics, could

solve this problem more efficiently. This is
not to say that a backward planner with
heuristics could not solve it; but if you have
to use domain knowledge, backward plan­
ning seems to have no special advantage
over forward planning. In fact there might
be reasons to believe that forward planning
is better, if people find it easier to deal with
forward heuristics.

However, the ability to handle Sussman's
anomaly in particular, or conjunctive goals
in general, cannot be a significant justifi­
cation for forward planning in our current
conceptualization of the ATC domain, since
there are very few, if any instances where
the effects of one action that is being un­
dertaken to reach the goal remove the pre­
conditions necessary for another action
that is necessary to reach the goal. Specifi­
cally, the actions available to the ATC Advi­
sor, when applied to one object, do not affect
the preconditions required to apply any
other action to any other object. This is an
important particular fact about the A TC do­
main to which will be referred to below.

Although it may be that a general,
backward approach to planning is the best,
when it is possible, there are nevertheless
domains which require forward planrting,
as does the ATC domain because of the non­
linear descent advisor algorithm. Very lit­
tle has been said about which forward
planning systems are the best and how they
may be improved.

THE ATMS AND PLANNING

This section will examine how the A TMS
may be used in forward planning. Since
forward planning requires search, any at­
tempts to develop an ATC advisory system as
a forward planner must be sensitive to effi­
cient control of knowledge-based search.
The ATMS is an efficient means of search­
ing the type of space a planner is confront­
ed with. The ATMS, like the TMS, avoids fu­
tile backtracking, rediscovering contradic­
tions and inferences, and the disadvantages
of inefficient orderings of alternatives in
normal problem-solving situations.3, 4

However, the ATMS also allows an explicit
comparison of the various hypothetical

states, provide an efficient means of
switching contexts from state to state, allow
some valuable reasoning with inconsisten­
cy that the TMS prohibits, and is more effi­
cient because it does not need to provide for
dependency-directed backtracking. 4

The A TMS does this by factoring the as­
sumption space. All of the consequences of
an assumption are saved and associated with
that assumption. The set of sentences
known to be true in a hypothetical world
formed by assuming conjunctions of as­
sumptions is then easily calculated: it is the
union of the sentences known to be true in
either of the "parent" worlds, the worlds
corresponding to the individual assump­
tions. Thus, there is no rederivation of
facts. Once a fact is derived, it is stored away
with a label so that it can be easily deter­
mined whether the fact holds in a particu­
lar hypothetical world, or set of assump­
tions.

There are several potential uses for the
A TMS in planning, but perhaps the most
important aspect of this is how actions and
their effects can be represented in an
ATMS. Specifically, how can the ATMS han­
dle the frame problem?

The method of application is trivial if the
situation calculus5 is used. In the situation
calculus, states that result from applying
planning operators are explicitly repre­
sented, and facts are conceptualized as
holding in a particular state. But there are
several drawbacks to this approach, an im­
portant one being the necessity of frame
axioms or copy rules that explicitly inform
the problem solver what facts do not change
from state to state. Thus much computation
is spent on facts that do not change, as well
as facts that do. Furthermore, it is not clear
that any benefits would be derived from the
ATMS, since there is no explicit relation
between states.

What is desired is a planning structure
that will handle the frame problem, but one
that will also allow efficient, ATMS-like
search of the plan space. The STRIPS plan­
ning system6 is one of the best known
planners that handles the frame problem

adequately, although several possible limi­
tations of it have been discussed.7 ,8 STRIPS
conceptualizes actions as operators on sets
of sentences. An example of he structure of
a STRIPS operator is given by ACTION =
{P,A,D}, where P (the precondition) is a set
of precondition formulas, A (the add list) is a
set of formulas to be added by the operator,
and D (the deiete list) is a set of formulas to
be deleted by the operator. If ACTION is to
be applied to a particular state of the world,
every formula in the precondition set P
must be satisfied. If they are, then every
formula in the old state is copied into the
new state except for those that are in the
delete list D, as instantiated by the variable
assignment V used to satisfy P. Also, every
formula in the add list A, instantiated by V,
is added to the new state. Thus, only the
facts that changed are computed: the frame
axioms required by the situation calculus
are not needed.

There are two possible ways one can use
STRIPS . operators as assumptions. The con­
text independent method is to immediately
assume all the operator instantiations that
will be needed. As discussed previously, this
is inappropriate for the ATC domain. If as­
sumptions correspond merely to the pres­
ence of a particular action in a plan, as op­
posed to a particular ordering of an action
in the plan, then this method also has the
disadvantage of not being able to readily
deal with plans that may require more than
one instantiation of the same operator. This
is not an insurmountable problem, but it
must be addressed if this approach is taken.

The other method is the context depen­
dent assumption method. The design of such
a planner that will be considered here is
one in which there exists a set of control
rules that hypothesize some subset of all the
actions whose precondition lists are satis­
fied in the current context. For simplicity,
assume a very simple (but inefficient) con­
trol in which all such possible actions are
hypothesized. Then the STRIPS implemen­
tation of an action ACTION = {P,A,D} in
such an ATMS is:

IF CONTROL and P => ASSUME that
ACTION is being undertaken with

the variable bindings B that satis­
fied P.

IF ACTION is being undertaken with
bindings B => ASSERT every ex­
pression in A and retract every
expression in D (with free vari­
ables bound in accordance with 8).

In graph-theoretical terms, if the first
rule matches in an environment, or hypo­
thetical world corresponding to a particular
set of assumptions, called C 1 , it creates a
new daughter context C 2 corresponding to
the hypothetical world just like C 1 , but in
which the assumption that ACTION is un­
dertaken is also present. Every fact in C 1 is
"inherited" by C 2 -- the STRIPS assumption.
The second rule is a STRIPS-like simulation
of A CT I O N , modifying which facts are
known to be true in the new context.

The context-dependent method is more
desirable for the A TC domain, since there
are so many operator instantiations; thus, it
is desirable to assume only those that are
prom1smg in a given situation. It also
promises to be a solution to the problem of
multiple occurrences of the same action in a
plan vs. the nonordered nature of action as­
sumptions. This potential should be the
subject of further research.

Although the TMS and the A TMS both
allow a limited form of nonmonotonic in­
ference 4, it is not immediately apparent
how they can provide for the type of non­
monotonicity that a STRIPS-like planning
system can require. To deal with the frame
problem in STRIPS, certain facts must be
retracted when an action is performed.
However, an apparent incompatibility be­
tween the monotonicity of de Kleer's ATMS
and using STRIPS operators as assumptions
derives from the following: If fact F is true
in the state corresponding to an assumption
set S, then F must be true in any super-set
of S . This is a direct consequence of the
definition of a "merge" of assumption sets,
the union operation mentioned above. Or as
de Kleer puts it:

"... problem solvers act, changing the
world, and this cannot be modeled in a

pure ATMS in which there is no way to pre­
vent the inheritance of a fact into a daugh­

ter context." 9

This is clearly unacceptable for the a
STRIPS system if assumptions are to corre­
spond to operators. For example, LIGHT - 0 N
may be a fact true in a world corresponding
to an assumption set S of operators, but it is
not necessarily true in any world corre­
sponding to a super-set of S; i.e., it is not
true in S U {TU RN-OFF-LIGHT}, where
LI G HT - 0 N in a member of T U R N · 0 F F •
LI G H T's delete list.

Thus, in an ATMS that uses assumptions
to represent actions, facts must be retracted.
A description of how the ATMS apparatus
may be used to implement retraction is giv­
en by Morris and Nado.10 The basic idea of
their implementation is to make every added
fact dependent on an additional non-dele­
tion assumption. Then, if an action is to
delete a fact, the fact corresponding to that
action is given a justifier that makes it in­
consistent with the non-deletion assump­
tion. It is constructive to point out that
deleting a fact in STRIPS is equivalent, in a
TMS, to changing its status from IN, or
known to be true, to O UT, a status where the
fact is neither known to be true nor false.
Thus it will at least be needed to reintroduce
the notions of retraction and IN /0 UT that
the ATMS shed from its TMS roots.

The retraction issue is important, since
an important test of whether an ATMS helps
in searching the plan space is to determine
whether it prevents rederiving inferences,
even with retractions involved. The nomi­
nal ATMS approach to avoiding fact red­
erivation is to have a simple function that
will compute the facts true in a context from
the facts true in the parents of the context.
One view is that the normal merge function,
set union, can be used in a planning domain
if you restrict the domain to having only
mutually commutative operators. In gener­
al, two actions are said to be commutative if
the order in which they are executed makes
no effective difference. The particular
definition of this in terms of STRIPS is that
two operators A and 8 are said to be com­
mutative if the set of sentences known to be

true after first applying operator A and
then B to the initial world model is always
identical to the set of sentences known to be
true after applying operator B first, then A ,
to the initial world model.

This view is seemingly common. For ex­
ample, Morris and Nado, who seem sensitive
to many of the details of the ATMS in plan­
ning nevertheless introduce the merge
problem as being a consequence of non­
commutative actions:

"More generally, a difficulty arises in that
the effect of changes may depend on the or­
der in which they are applied, resulting in
an ambiguous merge." (Ref. 10, p 15).

But this is misleading, and to be fair, the
treatments by Morris and Nado, as well as
by Kalme, 11 indicate that they realize that
interaction, as opposed to commutativity is
what is crucial. To show this, consider a
blocks world domain where the action of
sliding a block is allowed. Let A and C be
blocks on the left and right ends, respec­
tively, of a row of blocks on the table. Then
certainly the result of pushing A two loca­
tions to the right and then C three locations
to the left will be the same as performing
the same actions in an inverted order. But
this does not mean that the worlds resulting
from the composition of actions are directly
computable, via some simple merge func­
tion, from the states that result after per­
forming these actionas on A and C indepen­
dently. Whether you wish to view the con­
clusion of this example as "commutativity is
not enough to insure the applicability of a
simple union merge function", or as "the
above definition of commutativity was inad­
equate, and should instead require non-in­
teraction between the actions" is a matter of
choice.

Morris and Nado offer the following
definition of when a particular merge oper­
ation is acceptable:

Theorem 3: A sufficient condition for a
merge to be unambiguous is that the an­
cestor subgraph may not contain two
worlds, one of which deletes a fact and the

other of which adds it, such that neither is
an ancestor of the other. (Ref. 10, p 16).

Intuitively, it seems that the only do-
mains that will allow a simple merge oper­
ator to meet the above requirements will be
artificial, or uninteresting, or both. How­
ever, in the ensuing discussion of primary
and secondary facts, it will be seen how a
particular conceptualization of a non-triv­
ial domain like A TC will allow the simple
union merge to satisfy the requirements of
Morris and Nada's theorem. That is, it will
be shown how one can use STRIPS and the
ATMS on a non-interacting basis of a do­
main in order to cheaply calculate the ef­
fect of actions in the entire domain.

The following example illustrates the
computational savings that noninteracting
actions allow, and demonstrates a context in
which the A TC domain can be considered
non-interacting. Suppose that an aircraft,
U A 11 4, which is near touchdown, decides to
execute a missed approach, and a revised
plan for this aircraft is generated. Note that
this initial replanning is done indepen­
dently of other aircraft which may be pre­
sent in the terminal area. However,
rescheduling UA 114 along the desired
routing results in a conflict situation be­
tween UA 114 and another aircraft CO 71 8;
i.e., the separation time between them when
they are intrail is 30 seconds less than that
which is allowed. For each flight, the plan­
ning alternatives are SPEED-UP, SLOW­
DOWN, and HOLD, the latter option being
the least desirable. Given that CO 71 8 will
be ahead of U A 1 1 4 when they are intrail, a
hypothesized SLOW-DOWN for CO718 and a
hypothesized SPEED-UP for UA 114 can be
heuristically ruled out as options, since a
conflict will probably still exist even if
these advisories are followed, while H O L D
should be considered for either flight only
if necessary. Therefore, S L O W - D O W N
(UA114) and SPEED-UP (CO718) are hy­
pothesized. In each hypothetical world,
suppose it is discovered that there is still a
conflict of 12 seconds between the aircraft
when they are intrail. But the world that
results from taking both actions can be
computed directly, automatically, from the
parent worlds, and it is discovered without

further inference that this world will avoid
conflict by roughly 6 seconds.

This example demonstrates another im­
portant difference between using the A TMS
in planning and in other problem-solving
domains: in planning it is not always desir­
able to tag non-solutions as contradictions.
Otherwise the worlds that were the parents
of the eventual solution would have been
tagged as contradictory worlds (no-goods),
and there would have been no further
merging or reasoning involving them, thus
missing the most efficient plan.

Attempting to use the ATMS directly in
interacting planning domains remains a
problem. To accommodate the necessary
ability to retract facts, the merge operation
for computing conjunctions of assumption
sets in interacting domains must be rede­
fined. Morris and N ado suggest several
merge algorithms. An adaptation of one of
these, the "pessimistic merge" algoritm, is
used in ART*, which defines the facts true
in the merge of two assumption sets to be
the union of the facts in each of the merg­
ing worlds minus any facts that are O UT in
either parent.12 However, there is no indi­
cation that a general merge exists for non­
interacting domains.

The mixing of commutative and non­
commutative operators in a domain does not
seem to be a problem; however, it will not
generally be possible to avoid rederiving
inferences in a world formed by two or
more interacting action assumptions.

Because the A TMS must handle retract
and IN/ 0 UT relationships, several of the
ATMS advantages de Kleer mentions are lost.
For instance, the outing problem, dealt with
effectively by the ATMS in monotonic do­
mains, must be dealt with again. And unlike
the A TMS (which does not allow retraction)
but like the TMS (which uses retraction as a
means to get some of the effects an A TMS
does) a system like the one being described
will need some kind of dependency-directed

* ARTTM is an automated reasoning tool developed
by Inference Corporation; the ATC Advisor uses
ART™.

updating scheme. If P lets you derive Q
from P => Q, and P is later retracted, it is
often desirable to change Q's status from IN
to OUT.

PRIMARY AND SECONDARY
RELATIONS

The need for an efficient dependency­
directed updating scheme that an A TMS in a
planning domain requires can be satisfied
by conceptualizing the domain into primary
and secondary relations l 3. The idea behind
primary and secondary relations is simply
this: that there exists some subset, a basis
set , of the predicates in a domain such that
all the other predicates can be expressed
completely in terms of the members of the
basis set. In a trivial sense, this notion is
domain independent: there is always the
trivial basis set of all the predicates. But the
notion seems to be domain independent in a
broader sense as well. because many do­
mains, including ATC, have an underlying
set of primary qualities that form a proper
subset of all the relations.

A formal definition of this notion of
primary relations is desired, but there seem
to be some fundamental problems in giving
such a definition. One approach is to draw
upon the metaphor of linear algebra. One
can view the space of sentences for a given
model as an analog of a linear vector space.
In linear algebra it is straight forward to
define the notion of a basis for a space, a
minimal set of vectors which still spans the
space, in terms of the linear independence
of a set of vectors: a set of vectors is linearly
independent if they span the O vector
uniquely. Define a set of predicates B to be
logically independent in a model S iff for
every predicate P in 8 there does not exist a
sentence comprised entirely of the other
predicates in 8 that is logically equivalent
to P. Note that this sentence cannot involve
constant symbols either, or else every
predicate could be expressed as a disjunction
of equalities. Thus there can be no sentence
of the form 'v x [P(x) iff B(x)] that is true
in the model, where x is the vector of all
free variables of P, the predicate being de­
fined, and where B (x) is a sentence com-

posed entirely of other predicates in B with
just those variables in x free.

Perhaps logical independence can be
more clearly seen to be an analog of the
standard linear algebraic definition of lin­
ear independence when it is defined as fol­
lows: a set of predicates B is logically inde­
pendent if the only contradictory sentences
(the analog of the O vector) formed from
them, when written in disjunctive normal
form, involve, for at least one predicate P in
the set, P and its negation, , P.

Both of these definitions are problemat­
ic, since they are extensional-based defini­
tions in a particular model. What relations
are defined as logically independent will
depend on the particular model. For in­
stance, in the blocks world, if the model one
is using to make the primary/secondary
distinction assigns the same set of objects to
the predicate R E D as it does to O N- TA B L E,
these two predicates will not be indepen­
dent, since they are co-extensional. Intu­
itively, it is desirable to rely on the inten­
tion of the predicates so that models in
which the extensions of the two predicates
differ can be anticipated. This is the inher­
ent problem of relying on one model to con­
struct the basis. Solutions to this might in­
clude: 1) using sets of models, or systemati­
cally varying models to get at the intention;
2) using domain knowledge about the
predicates to differentiate intentionally
distinct but extensionally identical predi­
cates.

Given some (perhaps nonformal) defi­
nition of logical independence, however,
define a set of predicates 8 to be a basis for a
model S if 1) B is logically independent
with respect to S; and 2) for every predicate
P in S, there is a sentence composed en­
tirely of the predicates in B that is logically
equivalent to P. Note that since every
predicate is logically equivalent to some
sentence of B predicates, every sentence s
in the model is logically equivalent to some
other sentence of B predicates. Define such
a sentence to be a basic sentence for s in S
with respect to B . Also note that there may
be many such sentences for a particular
model, sentence, and basis.

The standard idea for the use of the pri­
mary/secondary distinction is to have the
planner update only the basis facts, and
then derive secondary facts as needed from
the (consistent) primary model. If a prima­
ry fact is deleted, all secondary facts derived
from it are deleted as well (changed from IN
to OUT status). Thus, one can see why it does
not seem that unlikely that a non-trivial
domain such as ATC can have basis with
non-interacting actions. The basis relations
of the A TC domain depend only on one
flight, so that changing a flight F 1 's plan is
the only way to change primary facts about
F 1 : replanning another flight F 2 cannot
influence or be influenced by the primary
relations involved in replanning F 1 . Mor­
ris and N ado's criterion is met.

This straightforward application of the
primary/secondary distinction has been
criticized by Waldinger7. Waldinger did
admit that the primary/secondary distinc­
tion does: 1) simplify action descriptions; 2)
makes model updating more efficient; and
3) allows the system designer to introduce
new relationships without needing to modi­
fy the actions' descriptions, which are all
valid points. Nevertheless, it was argued: 1)
keeping an updated model of just the prima­
ry facts is still expensive; 2) not all rela­
tions that are derived from P need to be
deleted when P is deleted, thus necessitating
unnecessary rederivation; 3) it may be im­
possible to define some lesser relationships
in terms of the important ones. The first
point is not a substantial criticism since
Waldinger has already admitted that his ap­
proach is less efficient. The second point is
the most telling of the three, although its
solution lies in a sophisticated logical-de­
pendency scheme, if such a solution exists.
The last criticism should be kept in mind,
but it does not seem very likely (cf the
comments above about the trivial basis of all
predicates). If fact, it seems very likely that
Waldinger did not mean this literally, given
the context of the remark.

However, another idea for
primary facts, planning, and the
been suggested: use the ATMS
the state space for the planner.
require a conceptualization of

integrating
ATMS has

to generate
This would

the domain

into primary and derived relations. The
system would then specify in advance all
the possible primary facts it may encounter,
and use them as assumptions to generate the
state space. The A TMS would then do the
necessary bookkeeping for the secondary
or derived facts. It would be the planner's
responsibility to be able to determine which
hypothetical world corresponds to which
planning state, but once found, no red­
erivation would be necessary. Unfortu­
nately, one of the requirements for this ap­
proach is that there be a small bound on the
number of operator instantiations in the
domain, which is not a characteristic of our
conceptualization of the ATC domain. For
example, there are potentially an infinite
number of instantiations of the HOLD oper­
ator: when and how long a controller may
want to hold an aircraft at a particular way­
point are both continuous variables. Thus
the number of necessary assumptions would
be virtually infinite.

However, one could envision an incre­
mental version of this system, where the
initial assumptions in the ATMS are only the
basis facts known in the initial state. Then
the planner would use domain knowledge to
select an operator, use the 4D algorithm to
determine what new basis facts are true in
that world, and add these as assumptions in
the ATMS. As above, the planner would be
responsible for control and the mainte­
nance of primary facts, while the ATMS
would prevent any recomputation of de­
rived, secondary data, but it would not be
necessary to specify the state space in ad­
vance. This idea of using an ATMS to effi­
ciently organize the state space is a
promising one and deserves closer evalua­
tion.

THE SEMANTICS OF STRIPS

Lifschitz 8 has demonstrated that some
intuitive soundness conditions for STRIPS
operators actually cause STRIPS to be un­
sound. He proposes some modifications to
the basic STRIPS structure that would make
STRIPS sound according to the definition of
soundness he proposes, but that would limit
the expressiveness of STRIPS. However, if
the conceptualization of the domain is sen-

sitive to the notion of what will be called the
primary/secondary relation distinction,
then the soundness condition can be restat­
ed so that it still matches our intuitions
about what such a soundness condition
should be, and also provides for a sound, ex­
pressive variant of STRIPS that exploits the
primary/secondary relation distinction.

The definition of soundness that Lifs-
chitz initially offers seems intuitive
enough:

Definition A: An operator descrip­
tion (P,D,A) is sound relative to
an action f if, for every state s
such that P is satisfied in s,

(i) f is applicable in state s;
(ii) every sentence which is

satisfied in s and does not
belong to D is satisfied in
f(s);

(i i i) A is satisfied in f(s).

A STRIPS system I. is sound if the initial
model is satisfied in the initial state, and
each operator description (P 8, D 8, A 8) is
sound relative to f 8. Define a sequence of
operators (a plan) to be accepted by I. if the
model produced by applying the ith opera­
tor proves the precondition of the i +1th op­
erator. Lifschitz then proves a soundness
theorem, which claims that if I. is sound,
and a plan p is accepted by I., then the ac­
tion corresponding to the plan f p is appli­
cable in so, and the final model produced by
executing p is satisfied by f p (so). There­
fore, if the individual STRIPS operators can
be shown to be sound, then a STRIPS plan­
ning system will not yield models of the
world that are unsatisfied, i.e. impossible.

The problem that Lifschitz points out is
that according to this definition of sound­
ness, no usual STRIPS system is sound. Con­
sider a schematic of the operator descrip­
tion corresponding to the action of turning
on a light:

TURN-ON-LIGHT =
P = LIGHT-OFF;
A = {ROOM-UT, LIGHT-ON};
D = {ROOM-DARK, LIGHT-OFF}.

This can be safely taken as an example of a
typical operator description in the usual use
of STRIPS. Lifschitz points out the obvious
unsoundness of this operator: consider any
sentence of the form (LIGHT-OFF OR X),
where X is any sentence not satisfied in
f { s). Clearly, if this operator is applied to a
model of a state s, then these sentences must
be satisfied in the state s. They are also not
in the delete list. So if the operator is to be
sound they must be satisfied in f { s). But
they are not. If the operator is to be sound,
the delete list must be infinite and, as Lifs­
chitz suggests, perhaps non-recursive.

Lifschitz's proposals for solving this
problem are not satisfying. He initially
suggests that one could simply require
STRIPS to be sound on the ground atoms.
But this would require that the only non­
ground atoms you can allow are those that
are true in all worlds, thus preventing
STRIPS from being a powerful formalism.

His second suggestion of using essential
formulas as a means of providing a sound­
ness condition for special STRIPS formula­
tions is a step in the right direction, but it is
still limiting. The idea is to allow STRIPS to
operate on particular non-ground atoms,
which must be specified in advance. The
awkwardness of this approach is a direct
consequence of the same element in his
third definition of soundness that caused
problems in the first two approaches:
membership in the delete list determines
what is deleted.

As long as one is willing to redefine
STRIPS (or a least create a new variant of
it), the following modification to the STRIPS
operator application procedure is offered as
a partial solution to the soundness problem:
not only are the sentences in D deleted from
the model to which the operator is applied,
but so are any sentences provable from D .
To define the soundness of this variant of
STRIPS, define an operator to be sound in
the same way as definition A above, except:

ii) every sentence which is satis­
fied in s and which is not provable
from D is satisfied in f(s).

This new STRIPS and definition of
soundness is immune to criticisms like the
above involving turning on the light. But it
is not yet clear if there are other reasons
why such operators might not be accept­
able. Consider the case where PO => Q()
and P () are in in the initial model, and Q ()
is in the delete list. Then the new STRIPS
variant defined above would cause the im­
plication to be deleted and the formula P to
remain. Call this the "sentential P => Q
problem" (note that this does not happen in
the non-sentential case; see below). There
certainly might be instances where one
would want STRIPS to do just the opposite.
How can this distinction be made?

Some formulas (usually implications)
can be given some immunity status, by be­
ing included in a basis set B (This set is not
to be confused with idea of basis relations,
although a connection will be proposed be­
low). Then STRIPS would never be allowed
to delete formulas in B . These formulas are
therefore ones that are true in all states of
the world, similar to the notion that Lifs­
chitz was trying to reach via essential for­
mulas. But there still remains the P => Q
problem for protected sententials and non­
sententials: If the sentence P => Q does not
participate in the deletion process, the
cause of Q 's presence in the model, P , will
not be removed and Q will just be rededuced.
So the basis formulas must participate in the
deletion process.

The simple way to do this would be to ad­
mit only formulas that are not proved by D
U B. However, the delete lists, D, have a
negative bias, indicating what is no longer
true, while the basis formulas, B , have a
positive bias, expressing what is true in all
worlds. This causes problems like the fol­
lowing: B = {P => Q}, D = {Q}, but [D U BJ
I- P, so P is not deleted as desired.

One way to counteract this is to give the
sets B and D the same bias. Thus a formula
is admitted only if its negation is not proved
by B U -, D. A straight forward interpreta­
tion of the notion of a set of formulas'
negation is simply the set of the negations
of each of the formulas, although alterna­
tive definitions are possible. But if formulas

of D are non-atomic, this method might be
incoherent. As an example, consider the
delete list D = { P => Q, --,Q}. This seems like
an intelligible thing for an action to do, but
--,D = {P and --,Q, Q}, from which anything
is provable, so nothing is admitted. This
does not seem to be an intended conse­
quence of deleting P => Q and --, Q . This is
also a motivation for not making the bias of
B and D the same by changing B to not
--, B .since the elements of B will almost cer­
tainly be complex, and probably of the form
of implications.

One solution is to require that a formula
be admitted iff its negation is not provable
from any set consisting of an element of D
and the members of B. Now consider the
following: B = {Q}, D = {P => Q}. Then B U
--,D is a contradiction, which may seem in­
appropriate; but if Q is always true, then P
=> Q must always be true. This approach
will suffice for now, although alternative
mechanisms can be imagined, with inter­
esting differences; consider requiring that
a formula be admitted iff its negation is not
provable from the cross-product of B U --, D.

Although it looks as if a sound, yet pow­
erful version of STRIPS has been described,
it is not yet clear how the operators in such
a formalism can be derived and made effi­
cient and complete. For these reasons, the
notion of primary and secondary relations
is again used, and one can require the mem­
bers of the delete lists to only be constructed
out of primary relations. Since all sec­
ondary relations can be derived from the
primary relations, one could simply include
a basic sentence for all of the secondary
relations in the protected set B . The idea is
superficially the same as Lifschitz's essen­
tial sentences, except that by referring to
essential relations only, the prima-
ry/secondary relations approach allows
much more flexibility. It was seen above
that the formalism had to be complexified if
one wished to include compiex formulas in
D. It remains a conjecture that with basis
relations there would be no need to delete
complex formulas. How will this restriction
address the three issues of conceptualiza­
tion, efficiency, and completeness?

Since one of the criteria with which a
planning system can be evaluated is the
ability (of a knowledge engineer) to actu­
ally provide operator descriptions that meet
these soundness requirements, some formal
notion of the ability to produce operator de­
scriptions needs to be introduced to serve as
a bridge between theory and practice. Thus
the Action Conceptualization Hypothesis
(ACH) is introduced:

For any action it is possible to
conceptualize the effects that ac­
tion has on the primary qualities
of the domain.

Note that it is not as important to claim that
this is always true as it is to claim that if this
is not true for a particular domain, then
there is little hope of a successful planning
system using any known Artificial Intelli­
gence approach. In this respect, the ACH
seems to be rather uncontentious. Of
course, one cannot formalize "primary qual­
ities", for reasons similar to the extension
vs. intention problem in formalizing logical
independence, above.

Define an operator description O to be
basically sound relative to an action f if it is
sound in the model identical to S except that
only the primary relations exist. Of course,
it must be defined for such a model, so it
must only use primary relations. Then by
application of our ACH, it can be claimed
that for any domain since there always
exists a basis set for a model of that domain,
with the members of the basis set
corresponding to the primary qualities of
the domain, if A is an action in the domain, a
corresponding operator description O A that
is basically sound can be produced.

From this, it can be claimed that sound
operator descriptions can always be pro­
duced, since basically sound operators can
be produced. Thus it has been made explicit
what conditions must hold about a domain in
order for STRIPS to be sound in that domain.

Also, the STRIPS formalisms mentioned
above require an efficient means of deter­
mining whether a fact is implied by B U --, D.
Since every sentence has an equivalent ba-

sis sentence, the use of delete and add lists
using only primary relations can facilitate
this provability check. The structure of B
and D will dictate the degree to which this
can be done; thus, it is not surprising that
representing D in terms of a minimal basis
will minimize computation, although this
has not been proven.

Completeness issues are also relevant to
the primary/secondary distinction. It is
easy to imagine a completeness analog of
the ACH, which would ensure general com­
pleteness. Of course, true completeness is
not desirable or possible, but some notion of
basic completeness might be introduced
using primary relations and some artificial
criteria to limit the scope of required com­
pleteness. For example, an operator could
be said to be complete if it designates as I N
in the post-action model all sentences that
are 1) basic; 2) satisfied in the correspond­
ing post-action world; and 3) were previ­
ously known to be IN in the pre-action mod­
el. In such a scheme, the set of sentences
whose IN /0 UT statuses are updated would
only increase via add lists.

CONCLUDING REMARKS

The planning formalisms discussed
herein demonstrate that the noninteracting
nature of the ATC domain can be exploited to
provide an efficient planner that avoids the
frame problem. Further specification of
particular planning operators and prima­
ry/secondary relation distinctions is neces­
sary, as is more research in system display
and controller-machine interaction issues
in order to completely integrate these for­
malisms. An analysis of a multi-level ATMS
(such as ART™) is a natural extension to this
work.

ACKNOWLEDGMENTS

We would like to thank the many people
who gave constructive comments on our
ideas and this paper, and would especially
like to thank Johan de Kleer, Robert Filman,
Michael Georgeff, Matthew Ginsberg, Ben­
jamin Grosof, Charles Kalme, Vladimir Lifs­
chitz, L. M. Pereira, Nils Nilsson, Paul
Rosenbloom, Devika Subramanian, and

Chuck Williams for their assistance and/or·
encouragement.

REFERENCES
lTobias, L., and Scoggins, J. L., "Time­

Based Air Traffic Management Using Expert
Systems", IEEE Control Systems Magazine,
Vol. 7, No. 2, April, 1987.

2Nilsson, Nils J., Principles of Artificial
Intelligence, Palo Alto: Tioga Publishing
Corporation, 275-360.

3ooyle, Jon, "A Truth Maintenance Sys­
tem" in Artificial Intelligence, 12:231-272,
1979.

4de Kleer, Johan, "An Assumption-based
TMS", Artificial Intelligence, 28: 127-162,
1986.

5McCarthy, John, "Situations, Actions,
and Causal Laws," Stanford University Arti­
ficial Intelligence Project Memo no. 2;
reprinted in Semantic Information Pro­
cessing, Marvin Minsky (editor), pp 410-
418, Cambridge: MIT Press, 1968.

6Fikes, Richard E. and Nilsson, Nils,
"STRIPS: A New Approach to the Application
of Theorem Proving in Problem Solving",
Artificial Intelligence, 2:189-208, 1971.

7Waldinger, Richard, "Achieving
al Goals Simultaneously", Machine
gence, 8:94 -136, 1977.

Sever­
Intelli-

8Lifschitz, Vladimir, "On the Semantics
of STRIPS", Reasoning about Action and
Plans: Proceedings of the 1986 Workshop.
Timberline, Oregon, 1986.

9cte Kleer, Johan, "Problem Solving with
the ATMS", Artificial Intelligence, 28:197-
224, 1986.

lOMorris, Paul H. and Nado, Robert A.,
"Representing Actions with an Assumption­
based Truth Maintenace System", A A A I - 8 6
Proceedings, 13-17, 1986.

11 Kalme, C., "The Structure of the ART
Viewpoint Graph and the Dynamics of Rule
Firing Across the Graph," Inference Corpo­
ration, 1984.

12Williams, Chuck, "Managing Search in
a Knowledge-based System", Inference Cor­
poration, Los Angeles, CA, 1984.

13Fahlman, Scott E., "A Planning System
For Robot Construction Tasks", Artificial
Intelligence, 5:1-49, 1974.

