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ABSTRACT 

This paper considers air traffic man­
agement as an AI planning problem, and 
develops a conceptual framework for plan­
ning in the Air Traffic Control (A TC) do­
main. In particular, if ATC is viewed as a 
planning problem, it becomes desirable to 
design the planner to be an efficient 
searcher. An Assumption-based Truth 
Maintenance System (ATMS) provides for 
efficient search in monotonic domains, i.e., 
in domains where the number of statements 
known to be true is strictly increasing over 
time, but there has been no discussion of 
the use of the A TMS in a nonmonotonic 
planning domain such as ATC. This paper 
examines a modification of the ATMS to in­
clude the nonmonotonicities inherent in 
the A TC domain, noting especially under 
what circumstances the advantages of the 
ATMS in standard problem-solving domains 
carry over to planning. The noninteract­
ing actions of the conceptualization of the 
A TC domain as presented are contrasted with 
the (problematic) interacting actions of 
other domains. These planning concepts 
will be incorporated in an automation aid 
for enroute arrival controllers, under de­
velopment at NASA Ames. 
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may be the case that the only way an ac­
ceptable solution can be generated in real­
time in a complex domain is to employ a 
nondeterministic, or heuristic, search of 
the solution space. An exhaustive search of 
the possibilities would most certainly be im­
practical in any real-world domain. Also, it 
is arguable that a declarative programming 
approach to the problem (where elements 
of the program are not machine or algo­
rithm instructions, but logical representa­
tions about the domain itself) is more desir­
able since it facilitates research and devel­
opment, evaluation, and future modification 
of the system in a way that conventional al­
gorithmic solutions cannot. In the case 
where the AI system is assisting in solving a 
problem that previously only a human ex­
pert could solve, the declarative approach 
facilitates knowledge engineering: the 
translation of human expertise into code 
that will enable the computer to perform 
similarly. For any sufficiently complex do­
main, the declarative approach seems to be 
the only practical alternative. 

Another factor in designing A TC adviso­
ry aids in particular points toward an AI 
approach: the high importance of con­
troller confidence in the ATC advisory aid. 
In any situation where a human controller 
and an advisory-generating system inter­
act, the controller must be convinced that 
the system is generating realistic solutions 
to the ATC problems. This can be accommo­
dated, at least in the early stages of the in­
troduction of the system, by an explanation 
capability, with which a controller can ask 
for the reasoning behind a recommended 
advisory and evaluate its logic and sensitiv­
ity to the intricacies of the situation. Such a 
capability is much easier to develop for a 
system that already represents the A TC do­
main in terms of the relations, objects, and 
rules the controller understands and uses. 



ATC AS PLANNING 

An earlier paper claimed that air traffic 
control (A TC) in the near-terminal area 
could be conceptualized as an AI planning 
problem. 1 That paper designs the ATC Advi­
sor as a forward planner, translating each 
proposed solution into parameters for a pro­
cedurally attached 4D descent advisor algo­
rithm. The 4D advisor is then invoked, pro­
viding the necessary data for the simulation 
of the proposed plan. The simulation is then 
evaluated for safety and efficiency. The re­
sults of this evaluation are used to order the 
set of proposed plans. 

The necessary existence of the 4D tra­
jectory advisor precludes an exclusively 
backward planning approach from goals to 
advisories, since there are no rules that 
have as consequents the facts derived by 
the 4D advisor. Furthermore, the goals in 
ATC are much less well-defined than the 
options available to a controller in any giv­
en situation. For a planner in the chess do­
main, it would be unreasonable to generate 
a plan by choosing a particular winning 
state and reason backwards until the cur­
rent state is reached; this is also the case in 
the ATC domain. Unfortunately, much of 
the r_esearch in planning has eschewed 
forward planners, in favor of general, do­
m ai n-i n dependent backward planners. 
However, if a domain-specific planner is de­
sired, then the generality of the backward 
approach will be of little use and may have 
serious limitations, since there are some 
problems which cannot be solved effi­
ciently without domain knowledge. For ex­
ample, one disadvantage of general back­
ward planning is its inability to handle 
some planning situations that involve con­
junctive goals. Sussman's Anomaly is an ex­
ample of such a problem in the blocks 
world. Consider the initial situation of block 
A on block B, block C on the table, with the 
goal being to have A on C on B . A backward 
planner will see that it cannot attain the C 
on B goal immediately, so it will solve the A 
on C goal. Of course, this prevents it from 
ever attaining the C on 8 goal without un-
doing what has already been 
"accomplished." A forward planner, 
equipped with the right heuristics, could 

solve this problem more efficiently. This is 
not to say that a backward planner with 
heuristics could not solve it; but if you have 
to use domain knowledge, backward plan­
ning seems to have no special advantage 
over forward planning. In fact there might 
be reasons to believe that forward planning 
is better, if people find it easier to deal with 
forward heuristics. 

However, the ability to handle Sussman's 
anomaly in particular, or conjunctive goals 
in general, cannot be a significant justifi­
cation for forward planning in our current 
conceptualization of the ATC domain, since 
there are very few, if any instances where 
the effects of one action that is being un­
dertaken to reach the goal remove the pre­
conditions necessary for another action 
that is necessary to reach the goal. Specifi­
cally, the actions available to the ATC Advi­
sor, when applied to one object, do not affect 
the preconditions required to apply any 
other action to any other object. This is an 
important particular fact about the A TC do­
main to which will be referred to below. 

Although it may be that a general, 
backward approach to planning is the best, 
when it is possible, there are nevertheless 
domains which require forward planrting, 
as does the ATC domain because of the non­
linear descent advisor algorithm. Very lit­
tle has been said about which forward 
planning systems are the best and how they 
may be improved. 

THE ATMS AND PLANNING 

This section will examine how the A TMS 
may be used in forward planning. Since 
forward planning requires search, any at­
tempts to develop an ATC advisory system as 
a forward planner must be sensitive to effi­
cient control of knowledge-based search. 
The ATMS is an efficient means of search­
ing the type of space a planner is confront­
ed with. The ATMS, like the TMS, avoids fu­
tile backtracking, rediscovering contradic­
tions and inferences, and the disadvantages 
of inefficient orderings of alternatives in 
normal problem-solving situations.3, 4 

However, the ATMS also allows an explicit 
comparison of the various hypothetical 



states, provide an efficient means of 
switching contexts from state to state, allow 
some valuable reasoning with inconsisten­
cy that the TMS prohibits, and is more effi­
cient because it does not need to provide for 
dependency-directed backtracking. 4 

The A TMS does this by factoring the as­
sumption space. All of the consequences of 
an assumption are saved and associated with 
that assumption. The set of sentences 
known to be true in a hypothetical world 
formed by assuming conjunctions of as­
sumptions is then easily calculated: it is the 
union of the sentences known to be true in 
either of the "parent" worlds, the worlds 
corresponding to the individual assump­
tions. Thus, there is no rederivation of 
facts. Once a fact is derived, it is stored away 
with a label so that it can be easily deter­
mined whether the fact holds in a particu­
lar hypothetical world, or set of assump­
tions. 

There are several potential uses for the 
A TMS in planning, but perhaps the most 
important aspect of this is how actions and 
their effects can be represented in an 
ATMS. Specifically, how can the ATMS han­
dle the frame problem? 

The method of application is trivial if the 
situation calculus5 is used. In the situation 
calculus, states that result from applying 
planning operators are explicitly repre­
sented, and facts are conceptualized as 
holding in a particular state. But there are 
several drawbacks to this approach, an im­
portant one being the necessity of frame 
axioms or copy rules that explicitly inform 
the problem solver what facts do not change 
from state to state. Thus much computation 
is spent on facts that do not change, as well 
as facts that do. Furthermore, it is not clear 
that any benefits would be derived from the 
ATMS, since there is no explicit relation 
between states. 

What is desired is a planning structure 
that will handle the frame problem, but one 
that will also allow efficient, ATMS-like 
search of the plan space. The STRIPS plan­
ning system6 is one of the best known 
planners that handles the frame problem 

adequately, although several possible limi­
tations of it have been discussed.7 ,8 STRIPS 
conceptualizes actions as operators on sets 
of sentences. An example of he structure of 
a STRIPS operator is given by ACTION = 
{P,A,D}, where P (the precondition) is a set 
of precondition formulas, A (the add list) is a 
set of formulas to be added by the operator, 
and D (the deiete list) is a set of formulas to 
be deleted by the operator. If ACTION is to 
be applied to a particular state of the world, 
every formula in the precondition set P 
must be satisfied. If they are, then every 
formula in the old state is copied into the 
new state except for those that are in the 
delete list D, as instantiated by the variable 
assignment V used to satisfy P. Also, every 
formula in the add list A, instantiated by V, 
is added to the new state. Thus, only the 
facts that changed are computed: the frame 
axioms required by the situation calculus 
are not needed. 

There are two possible ways one can use 
STRIPS . operators as assumptions. The con­
text independent method is to immediately 
assume all the operator instantiations that 
will be needed. As discussed previously, this 
is inappropriate for the ATC domain. If as­
sumptions correspond merely to the pres­
ence of a particular action in a plan, as op­
posed to a particular ordering of an action 
in the plan, then this method also has the 
disadvantage of not being able to readily 
deal with plans that may require more than 
one instantiation of the same operator. This 
is not an insurmountable problem, but it 
must be addressed if this approach is taken. 

The other method is the context depen­
dent assumption method. The design of such 
a planner that will be considered here is 
one in which there exists a set of control 
rules that hypothesize some subset of all the 
actions whose precondition lists are satis­
fied in the current context. For simplicity, 
assume a very simple (but inefficient) con­
trol in which all such possible actions are 
hypothesized. Then the STRIPS implemen­
tation of an action ACTION = {P,A,D} in 
such an ATMS is: 

IF CONTROL and P => ASSUME that 
ACTION is being undertaken with 



the variable bindings B that satis­
fied P. 

IF ACTION is being undertaken with 
bindings B => ASSERT every ex­
pression in A and retract every 
expression in D (with free vari­
ables bound in accordance with 8). 

In graph-theoretical terms, if the first 
rule matches in an environment, or hypo­
thetical world corresponding to a particular 
set of assumptions, called C 1 , it creates a 
new daughter context C 2 corresponding to 
the hypothetical world just like C 1 , but in 
which the assumption that ACTION is un­
dertaken is also present. Every fact in C 1 is 
"inherited" by C 2 -- the STRIPS assumption. 
The second rule is a STRIPS-like simulation 
of A CT I O N , modifying which facts are 
known to be true in the new context. 

The context-dependent method is more 
desirable for the A TC domain, since there 
are so many operator instantiations; thus, it 
is desirable to assume only those that are 
prom1smg in a given situation. It also 
promises to be a solution to the problem of 
multiple occurrences of the same action in a 
plan vs. the nonordered nature of action as­
sumptions. This potential should be the 
subject of further research. 

Although the TMS and the A TMS both 
allow a limited form of nonmonotonic in­
ference 4, it is not immediately apparent 
how they can provide for the type of non­
monotonicity that a STRIPS-like planning 
system can require. To deal with the frame 
problem in STRIPS, certain facts must be 
retracted when an action is performed. 
However, an apparent incompatibility be­
tween the monotonicity of de Kleer's ATMS 
and using STRIPS operators as assumptions 
derives from the following: If fact F is true 
in the state corresponding to an assumption 
set S, then F must be true in any super-set 
of S . This is a direct consequence of the 
definition of a "merge" of assumption sets, 
the union operation mentioned above. Or as 
de Kleer puts it: 

"... problem solvers act, changing the 
world, and this cannot be modeled in a 

pure ATMS in which there is no way to pre­
vent the inheritance of a fact into a daugh­

ter context." 9 

This is clearly unacceptable for the a 
STRIPS system if assumptions are to corre­
spond to operators. For example, LIGHT - 0 N 
may be a fact true in a world corresponding 
to an assumption set S of operators, but it is 
not necessarily true in any world corre­
sponding to a super-set of S; i.e., it is not 
true in S U {TU RN-OFF-LIGHT}, where 
LI G HT - 0 N in a member of T U R N · 0 F F • 
LI G H T's delete list. 

Thus, in an ATMS that uses assumptions 
to represent actions, facts must be retracted. 
A description of how the ATMS apparatus 
may be used to implement retraction is giv­
en by Morris and Nado.10 The basic idea of 
their implementation is to make every added 
fact dependent on an additional non-dele­
tion assumption. Then, if an action is to 
delete a fact, the fact corresponding to that 
action is given a justifier that makes it in­
consistent with the non-deletion assump­
tion. It is constructive to point out that 
deleting a fact in STRIPS is equivalent, in a 
TMS, to changing its status from IN, or 
known to be true, to O UT, a status where the 
fact is neither known to be true nor false. 
Thus it will at least be needed to reintroduce 
the notions of retraction and IN /0 UT that 
the ATMS shed from its TMS roots. 

The retraction issue is important, since 
an important test of whether an ATMS helps 
in searching the plan space is to determine 
whether it prevents rederiving inferences, 
even with retractions involved. The nomi­
nal ATMS approach to avoiding fact red­
erivation is to have a simple function that 
will compute the facts true in a context from 
the facts true in the parents of the context. 
One view is that the normal merge function, 
set union, can be used in a planning domain 
if you restrict the domain to having only 
mutually commutative operators. In gener­
al, two actions are said to be commutative if 
the order in which they are executed makes 
no effective difference. The particular 
definition of this in terms of STRIPS is that 
two operators A and 8 are said to be com­
mutative if the set of sentences known to be 



true after first applying operator A and 
then B to the initial world model is always 
identical to the set of sentences known to be 
true after applying operator B first, then A , 
to the initial world model. 

This view is seemingly common. For ex­
ample, Morris and Nado, who seem sensitive 
to many of the details of the ATMS in plan­
ning nevertheless introduce the merge 
problem as being a consequence of non­
commutative actions: 

"More generally, a difficulty arises in that 
the effect of changes may depend on the or­
der in which they are applied, resulting in 
an ambiguous merge." (Ref. 10, p 15). 

But this is misleading, and to be fair, the 
treatments by Morris and Nado, as well as 
by Kalme, 11 indicate that they realize that 
interaction, as opposed to commutativity is 
what is crucial. To show this, consider a 
blocks world domain where the action of 
sliding a block is allowed. Let A and C be 
blocks on the left and right ends, respec­
tively, of a row of blocks on the table. Then 
certainly the result of pushing A two loca­
tions to the right and then C three locations 
to the left will be the same as performing 
the same actions in an inverted order. But 
this does not mean that the worlds resulting 
from the composition of actions are directly 
computable, via some simple merge func­
tion, from the states that result after per­
forming these actionas on A and C indepen­
dently. Whether you wish to view the con­
clusion of this example as "commutativity is 
not enough to insure the applicability of a 
simple union merge function", or as "the 
above definition of commutativity was inad­
equate, and should instead require non-in­
teraction between the actions" is a matter of 
choice. 

Morris and Nado offer the following 
definition of when a particular merge oper­
ation is acceptable: 

Theorem 3: A sufficient condition for a 
merge to be unambiguous is that the an­
cestor subgraph may not contain two 
worlds, one of which deletes a fact and the 

other of which adds it, such that neither is 
an ancestor of the other. (Ref. 10, p 16). 

Intuitively, it seems that the only do-
mains that will allow a simple merge oper­
ator to meet the above requirements will be 
artificial, or uninteresting, or both. How­
ever, in the ensuing discussion of primary 
and secondary facts, it will be seen how a 
particular conceptualization of a non-triv­
ial domain like A TC will allow the simple 
union merge to satisfy the requirements of 
Morris and Nada's theorem. That is, it will 
be shown how one can use STRIPS and the 
ATMS on a non-interacting basis of a do­
main in order to cheaply calculate the ef­
fect of actions in the entire domain. 

The following example illustrates the 
computational savings that noninteracting 
actions allow, and demonstrates a context in 
which the A TC domain can be considered 
non-interacting. Suppose that an aircraft, 
U A 11 4, which is near touchdown, decides to 
execute a missed approach, and a revised 
plan for this aircraft is generated. Note that 
this initial replanning is done indepen­
dently of other aircraft which may be pre­
sent in the terminal area. However, 
rescheduling UA 114 along the desired 
routing results in a conflict situation be­
tween UA 114 and another aircraft CO 71 8; 
i.e., the separation time between them when 
they are intrail is 30 seconds less than that 
which is allowed. For each flight, the plan­
ning alternatives are SPEED-UP, SLOW­
DOWN, and HOLD, the latter option being 
the least desirable. Given that CO 71 8 will 
be ahead of U A 1 1 4 when they are intrail, a 
hypothesized SLOW-DOWN for CO718 and a 
hypothesized SPEED-UP for UA 114 can be 
heuristically ruled out as options, since a 
conflict will probably still exist even if 
these advisories are followed, while H O L D 
should be considered for either flight only 
if necessary. Therefore, S L O W - D O W N 
(UA114) and SPEED-UP (CO718) are hy­
pothesized. In each hypothetical world, 
suppose it is discovered that there is still a 
conflict of 12 seconds between the aircraft 
when they are intrail. But the world that 
results from taking both actions can be 
computed directly, automatically, from the 
parent worlds, and it is discovered without 



further inference that this world will avoid 
conflict by roughly 6 seconds. 

This example demonstrates another im­
portant difference between using the A TMS 
in planning and in other problem-solving 
domains: in planning it is not always desir­
able to tag non-solutions as contradictions. 
Otherwise the worlds that were the parents 
of the eventual solution would have been 
tagged as contradictory worlds (no-goods), 
and there would have been no further 
merging or reasoning involving them, thus 
missing the most efficient plan. 

Attempting to use the ATMS directly in 
interacting planning domains remains a 
problem. To accommodate the necessary 
ability to retract facts, the merge operation 
for computing conjunctions of assumption 
sets in interacting domains must be rede­
fined. Morris and N ado suggest several 
merge algorithms. An adaptation of one of 
these, the "pessimistic merge" algoritm, is 
used in ART*, which defines the facts true 
in the merge of two assumption sets to be 
the union of the facts in each of the merg­
ing worlds minus any facts that are O UT in 
either parent.12 However, there is no indi­
cation that a general merge exists for non­
interacting domains. 

The mixing of commutative and non­
commutative operators in a domain does not 
seem to be a problem; however, it will not 
generally be possible to avoid rederiving 
inferences in a world formed by two or 
more interacting action assumptions. 

Because the A TMS must handle retract 
and IN/ 0 UT relationships, several of the 
ATMS advantages de Kleer mentions are lost. 
For instance, the outing problem, dealt with 
effectively by the ATMS in monotonic do­
mains, must be dealt with again. And unlike 
the A TMS ( which does not allow retraction) 
but like the TMS (which uses retraction as a 
means to get some of the effects an A TMS 
does) a system like the one being described 
will need some kind of dependency-directed 

* ARTTM is an automated reasoning tool developed 
by Inference Corporation; the ATC Advisor uses 
ART™. 

updating scheme. If P lets you derive Q 
from P => Q, and P is later retracted, it is 
often desirable to change Q's status from IN 
to OUT. 

PRIMARY AND SECONDARY 
RELATIONS 

The need for an efficient dependency­
directed updating scheme that an A TMS in a 
planning domain requires can be satisfied 
by conceptualizing the domain into primary 
and secondary relations l 3. The idea behind 
primary and secondary relations is simply 
this: that there exists some subset, a basis 
set , of the predicates in a domain such that 
all the other predicates can be expressed 
completely in terms of the members of the 
basis set. In a trivial sense, this notion is 
domain independent: there is always the 
trivial basis set of all the predicates. But the 
notion seems to be domain independent in a 
broader sense as well. because many do­
mains, including ATC, have an underlying 
set of primary qualities that form a proper 
subset of all the relations. 

A formal definition of this notion of 
primary relations is desired, but there seem 
to be some fundamental problems in giving 
such a definition. One approach is to draw 
upon the metaphor of linear algebra. One 
can view the space of sentences for a given 
model as an analog of a linear vector space. 
In linear algebra it is straight forward to 
define the notion of a basis for a space, a 
minimal set of vectors which still spans the 
space, in terms of the linear independence 
of a set of vectors: a set of vectors is linearly 
independent if they span the O vector 
uniquely. Define a set of predicates B to be 
logically independent in a model S iff for 
every predicate P in 8 there does not exist a 
sentence comprised entirely of the other 
predicates in 8 that is logically equivalent 
to P. Note that this sentence cannot involve 
constant symbols either, or else every 
predicate could be expressed as a disjunction 
of equalities. Thus there can be no sentence 
of the form 'v x [P(x) iff B(x)] that is true 
in the model, where x is the vector of all 
free variables of P, the predicate being de­
fined, and where B ( x) is a sentence com-



posed entirely of other predicates in B with 
just those variables in x free. 

Perhaps logical independence can be 
more clearly seen to be an analog of the 
standard linear algebraic definition of lin­
ear independence when it is defined as fol­
lows: a set of predicates B is logically inde­
pendent if the only contradictory sentences 
(the analog of the O vector) formed from 
them, when written in disjunctive normal 
form, involve, for at least one predicate P in 
the set, P and its negation, , P. 

Both of these definitions are problemat­
ic, since they are extensional-based defini­
tions in a particular model. What relations 
are defined as logically independent will 
depend on the particular model. For in­
stance, in the blocks world, if the model one 
is using to make the primary/secondary 
distinction assigns the same set of objects to 
the predicate R E D as it does to O N- TA B L E, 
these two predicates will not be indepen­
dent, since they are co-extensional. Intu­
itively, it is desirable to rely on the inten­
tion of the predicates so that models in 
which the extensions of the two predicates 
differ can be anticipated. This is the inher­
ent problem of relying on one model to con­
struct the basis. Solutions to this might in­
clude: 1) using sets of models, or systemati­
cally varying models to get at the intention; 
2) using domain knowledge about the 
predicates to differentiate intentionally 
distinct but extensionally identical predi­
cates. 

Given some (perhaps nonformal) defi­
nition of logical independence, however, 
define a set of predicates 8 to be a basis for a 
model S if 1) B is logically independent 
with respect to S; and 2) for every predicate 
P in S, there is a sentence composed en­
tirely of the predicates in B that is logically 
equivalent to P. Note that since every 
predicate is logically equivalent to some 
sentence of B predicates, every sentence s 
in the model is logically equivalent to some 
other sentence of B predicates. Define such 
a sentence to be a basic sentence for s in S 
with respect to B . Also note that there may 
be many such sentences for a particular 
model, sentence, and basis. 

The standard idea for the use of the pri­
mary/secondary distinction is to have the 
planner update only the basis facts, and 
then derive secondary facts as needed from 
the (consistent) primary model. If a prima­
ry fact is deleted, all secondary facts derived 
from it are deleted as well (changed from IN 
to OUT status). Thus, one can see why it does 
not seem that unlikely that a non-trivial 
domain such as ATC can have basis with 
non-interacting actions. The basis relations 
of the A TC domain depend only on one 
flight, so that changing a flight F 1 's plan is 
the only way to change primary facts about 
F 1 : replanning another flight F 2 cannot 
influence or be influenced by the primary 
relations involved in replanning F 1 . Mor­
ris and N ado's criterion is met. 

This straightforward application of the 
primary/secondary distinction has been 
criticized by Waldinger7. Waldinger did 
admit that the primary/secondary distinc­
tion does: 1) simplify action descriptions; 2) 
makes model updating more efficient; and 
3) allows the system designer to introduce 
new relationships without needing to modi­
fy the actions' descriptions, which are all 
valid points. Nevertheless, it was argued: 1) 
keeping an updated model of just the prima­
ry facts is still expensive; 2) not all rela­
tions that are derived from P need to be 
deleted when P is deleted, thus necessitating 
unnecessary rederivation; 3) it may be im­
possible to define some lesser relationships 
in terms of the important ones. The first 
point is not a substantial criticism since 
Waldinger has already admitted that his ap­
proach is less efficient. The second point is 
the most telling of the three, although its 
solution lies in a sophisticated logical-de­
pendency scheme, if such a solution exists. 
The last criticism should be kept in mind, 
but it does not seem very likely (cf the 
comments above about the trivial basis of all 
predicates). If fact, it seems very likely that 
Waldinger did not mean this literally, given 
the context of the remark. 

However, another idea for 
primary facts, planning, and the 
been suggested: use the ATMS 
the state space for the planner. 
require a conceptualization of 

integrating 
ATMS has 

to generate 
This would 

the domain 



into primary and derived relations. The 
system would then specify in advance all 
the possible primary facts it may encounter, 
and use them as assumptions to generate the 
state space. The A TMS would then do the 
necessary bookkeeping for the secondary 
or derived facts. It would be the planner's 
responsibility to be able to determine which 
hypothetical world corresponds to which 
planning state, but once found, no red­
erivation would be necessary. Unfortu­
nately, one of the requirements for this ap­
proach is that there be a small bound on the 
number of operator instantiations in the 
domain, which is not a characteristic of our 
conceptualization of the ATC domain. For 
example, there are potentially an infinite 
number of instantiations of the HOLD oper­
ator: when and how long a controller may 
want to hold an aircraft at a particular way­
point are both continuous variables. Thus 
the number of necessary assumptions would 
be virtually infinite. 

However, one could envision an incre­
mental version of this system, where the 
initial assumptions in the ATMS are only the 
basis facts known in the initial state. Then 
the planner would use domain knowledge to 
select an operator, use the 4D algorithm to 
determine what new basis facts are true in 
that world, and add these as assumptions in 
the ATMS. As above, the planner would be 
responsible for control and the mainte­
nance of primary facts, while the ATMS 
would prevent any recomputation of de­
rived, secondary data, but it would not be 
necessary to specify the state space in ad­
vance. This idea of using an ATMS to effi­
ciently organize the state space is a 
promising one and deserves closer evalua­
tion. 

THE SEMANTICS OF STRIPS 

Lifschitz 8 has demonstrated that some 
intuitive soundness conditions for STRIPS 
operators actually cause STRIPS to be un­
sound. He proposes some modifications to 
the basic STRIPS structure that would make 
STRIPS sound according to the definition of 
soundness he proposes, but that would limit 
the expressiveness of STRIPS. However, if 
the conceptualization of the domain is sen-

sitive to the notion of what will be called the 
primary/secondary relation distinction, 
then the soundness condition can be restat­
ed so that it still matches our intuitions 
about what such a soundness condition 
should be, and also provides for a sound, ex­
pressive variant of STRIPS that exploits the 
primary/secondary relation distinction. 

The definition of soundness that Lifs-
chitz initially offers seems intuitive 
enough: 

Definition A: An operator descrip­
tion (P,D,A) is sound relative to 
an action f if, for every state s 
such that P is satisfied in s, 

(i) f is applicable in state s; 
(ii) every sentence which is 

satisfied in s and does not 
belong to D is satisfied in 
f(s); 

( i i i ) A is satisfied in f(s). 

A STRIPS system I. is sound if the initial 
model is satisfied in the initial state, and 
each operator description ( P 8, D 8, A 8) is 
sound relative to f 8. Define a sequence of 
operators (a plan) to be accepted by I. if the 
model produced by applying the ith opera­
tor proves the precondition of the i +1th op­
erator. Lifschitz then proves a soundness 
theorem, which claims that if I. is sound, 
and a plan p is accepted by I., then the ac­
tion corresponding to the plan f p is appli­
cable in so, and the final model produced by 
executing p is satisfied by f p (so). There­
fore, if the individual STRIPS operators can 
be shown to be sound, then a STRIPS plan­
ning system will not yield models of the 
world that are unsatisfied, i.e. impossible. 

The problem that Lifschitz points out is 
that according to this definition of sound­
ness, no usual STRIPS system is sound. Con­
sider a schematic of the operator descrip­
tion corresponding to the action of turning 
on a light: 

TURN-ON-LIGHT = 
P = LIGHT-OFF; 
A = {ROOM-UT, LIGHT-ON}; 
D = {ROOM-DARK, LIGHT-OFF}. 



This can be safely taken as an example of a 
typical operator description in the usual use 
of STRIPS. Lifschitz points out the obvious 
unsoundness of this operator: consider any 
sentence of the form (LIGHT-OFF OR X), 
where X is any sentence not satisfied in 
f { s). Clearly, if this operator is applied to a 
model of a state s, then these sentences must 
be satisfied in the state s. They are also not 
in the delete list. So if the operator is to be 
sound they must be satisfied in f { s). But 
they are not. If the operator is to be sound, 
the delete list must be infinite and, as Lifs­
chitz suggests, perhaps non-recursive. 

Lifschitz's proposals for solving this 
problem are not satisfying. He initially 
suggests that one could simply require 
STRIPS to be sound on the ground atoms. 
But this would require that the only non­
ground atoms you can allow are those that 
are true in all worlds, thus preventing 
STRIPS from being a powerful formalism. 

His second suggestion of using essential 
formulas as a means of providing a sound­
ness condition for special STRIPS formula­
tions is a step in the right direction, but it is 
still limiting. The idea is to allow STRIPS to 
operate on particular non-ground atoms, 
which must be specified in advance. The 
awkwardness of this approach is a direct 
consequence of the same element in his 
third definition of soundness that caused 
problems in the first two approaches: 
membership in the delete list determines 
what is deleted. 

As long as one is willing to redefine 
STRIPS (or a least create a new variant of 
it), the following modification to the STRIPS 
operator application procedure is offered as 
a partial solution to the soundness problem: 
not only are the sentences in D deleted from 
the model to which the operator is applied, 
but so are any sentences provable from D . 
To define the soundness of this variant of 
STRIPS, define an operator to be sound in 
the same way as definition A above, except: 

ii) every sentence which is satis­
fied in s and which is not provable 
from D is satisfied in f(s). 

This new STRIPS and definition of 
soundness is immune to criticisms like the 
above involving turning on the light. But it 
is not yet clear if there are other reasons 
why such operators might not be accept­
able. Consider the case where PO => Q() 
and P () are in in the initial model, and Q () 
is in the delete list. Then the new STRIPS 
variant defined above would cause the im­
plication to be deleted and the formula P to 
remain. Call this the "sentential P => Q 
problem" (note that this does not happen in 
the non-sentential case; see below). There 
certainly might be instances where one 
would want STRIPS to do just the opposite. 
How can this distinction be made? 

Some formulas (usually implications) 
can be given some immunity status, by be­
ing included in a basis set B (This set is not 
to be confused with idea of basis relations, 
although a connection will be proposed be­
low). Then STRIPS would never be allowed 
to delete formulas in B . These formulas are 
therefore ones that are true in all states of 
the world, similar to the notion that Lifs­
chitz was trying to reach via essential for­
mulas. But there still remains the P => Q 
problem for protected sententials and non­
sententials: If the sentence P => Q does not 
participate in the deletion process, the 
cause of Q 's presence in the model, P , will 
not be removed and Q will just be rededuced. 
So the basis formulas must participate in the 
deletion process. 

The simple way to do this would be to ad­
mit only formulas that are not proved by D 
U B. However, the delete lists, D, have a 
negative bias, indicating what is no longer 
true, while the basis formulas, B , have a 
positive bias, expressing what is true in all 
worlds. This causes problems like the fol­
lowing: B = {P => Q}, D = {Q}, but [D U BJ 
I- P, so P is not deleted as desired. 

One way to counteract this is to give the 
sets B and D the same bias. Thus a formula 
is admitted only if its negation is not proved 
by B U -, D. A straight forward interpreta­
tion of the notion of a set of formulas' 
negation is simply the set of the negations 
of each of the formulas, although alterna­
tive definitions are possible. But if formulas 



of D are non-atomic, this method might be 
incoherent. As an example, consider the 
delete list D = { P => Q, --,Q}. This seems like 
an intelligible thing for an action to do, but 
--,D = {P and --,Q, Q}, from which anything 
is provable, so nothing is admitted. This 
does not seem to be an intended conse­
quence of deleting P => Q and --, Q . This is 
also a motivation for not making the bias of 
B and D the same by changing B to not 
--, B .since the elements of B will almost cer­
tainly be complex, and probably of the form 
of implications. 

One solution is to require that a formula 
be admitted iff its negation is not provable 
from any set consisting of an element of D 
and the members of B. Now consider the 
following: B = {Q}, D = {P => Q}. Then B U 
--,D is a contradiction, which may seem in­
appropriate; but if Q is always true, then P 
=> Q must always be true. This approach 
will suffice for now, although alternative 
mechanisms can be imagined, with inter­
esting differences; consider requiring that 
a formula be admitted iff its negation is not 
provable from the cross-product of B U --, D. 

Although it looks as if a sound, yet pow­
erful version of STRIPS has been described, 
it is not yet clear how the operators in such 
a formalism can be derived and made effi­
cient and complete. For these reasons, the 
notion of primary and secondary relations 
is again used, and one can require the mem­
bers of the delete lists to only be constructed 
out of primary relations. Since all sec­
ondary relations can be derived from the 
primary relations, one could simply include 
a basic sentence for all of the secondary 
relations in the protected set B . The idea is 
superficially the same as Lifschitz's essen­
tial sentences, except that by referring to 
essential relations only, the prima-
ry/secondary relations approach allows 
much more flexibility. It was seen above 
that the formalism had to be complexified if 
one wished to include compiex formulas in 
D. It remains a conjecture that with basis 
relations there would be no need to delete 
complex formulas. How will this restriction 
address the three issues of conceptualiza­
tion, efficiency, and completeness? 

Since one of the criteria with which a 
planning system can be evaluated is the 
ability (of a knowledge engineer) to actu­
ally provide operator descriptions that meet 
these soundness requirements, some formal 
notion of the ability to produce operator de­
scriptions needs to be introduced to serve as 
a bridge between theory and practice. Thus 
the Action Conceptualization Hypothesis 
(ACH) is introduced: 

For any action it is possible to 
conceptualize the effects that ac­
tion has on the primary qualities 
of the domain. 

Note that it is not as important to claim that 
this is always true as it is to claim that if this 
is not true for a particular domain, then 
there is little hope of a successful planning 
system using any known Artificial Intelli­
gence approach. In this respect, the ACH 
seems to be rather uncontentious. Of 
course, one cannot formalize "primary qual­
ities", for reasons similar to the extension 
vs. intention problem in formalizing logical 
independence, above. 

Define an operator description O to be 
basically sound relative to an action f if it is 
sound in the model identical to S except that 
only the primary relations exist. Of course, 
it must be defined for such a model, so it 
must only use primary relations. Then by 
application of our ACH, it can be claimed 
that for any domain since there always 
exists a basis set for a model of that domain, 
with the members of the basis set 
corresponding to the primary qualities of 
the domain, if A is an action in the domain, a 
corresponding operator description O A that 
is basically sound can be produced. 

From this, it can be claimed that sound 
operator descriptions can always be pro­
duced, since basically sound operators can 
be produced. Thus it has been made explicit 
what conditions must hold about a domain in 
order for STRIPS to be sound in that domain. 

Also, the STRIPS formalisms mentioned 
above require an efficient means of deter­
mining whether a fact is implied by B U --, D. 
Since every sentence has an equivalent ba-



sis sentence, the use of delete and add lists 
using only primary relations can facilitate 
this provability check. The structure of B 
and D will dictate the degree to which this 
can be done; thus, it is not surprising that 
representing D in terms of a minimal basis 
will minimize computation, although this 
has not been proven. 

Completeness issues are also relevant to 
the primary/secondary distinction. It is 
easy to imagine a completeness analog of 
the ACH, which would ensure general com­
pleteness. Of course, true completeness is 
not desirable or possible, but some notion of 
basic completeness might be introduced 
using primary relations and some artificial 
criteria to limit the scope of required com­
pleteness. For example, an operator could 
be said to be complete if it designates as I N 
in the post-action model all sentences that 
are 1) basic; 2) satisfied in the correspond­
ing post-action world; and 3) were previ­
ously known to be IN in the pre-action mod­
el. In such a scheme, the set of sentences 
whose IN /0 UT statuses are updated would 
only increase via add lists. 

CONCLUDING REMARKS 

The planning formalisms discussed 
herein demonstrate that the noninteracting 
nature of the ATC domain can be exploited to 
provide an efficient planner that avoids the 
frame problem. Further specification of 
particular planning operators and prima­
ry/secondary relation distinctions is neces­
sary, as is more research in system display 
and controller-machine interaction issues 
in order to completely integrate these for­
malisms. An analysis of a multi-level ATMS 
(such as ART™) is a natural extension to this 
work. 
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