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Abstract 

The Connectionist Navigational Map (CNM) 
is a parallel distributed processing architec­
ture for the learning and use of robot spa­
tial maps. It is shown here how a robot can, 
using a recurrent network (the CNM predic­
lit•e map), learn a. model of its environment 
that allows it to predict what sensations it 
would have if it were to move in a partic­
ular way. It is shown how this predictive 
ability can be used (via the CNM orienting 
system) to enable the robot to determine its 
current location. This ability, in turn, can 
be used, when given a desired sensation, to 
generate sequences of goal states that pro­
vide a route to a place with the desired sen­
sory properties. This sequence is given to 
the CNM's inverse model, which in turn gen­
erates a sequence of actions that effects the 
desired state transitions, thus providing a 
sort of "content-addressable" planning capa­
bility. Finally, the theoretical motivation be­
hind this work is discussed. 

1 INTRODUCTION 

The Connectionist Navigational Map (CNM) is a sys­
tem being developed to impart to an autonomous 
robot the ability to map its spatial environment and 
use this map to navigate in that environment. The pri­
mary theoretical motivation for constructing the sys­
tem is to understand how a robot can make the the 
transition from pre-conceptual to conceptual represen­
tations of space. 1 

The CN~l is being designed with a Heathkit Hero 2000 
robot as the intended testbed. The features of the 

• Also affiliat.ed with Xerox PARC Systems Sciences 
Lab, :3333 Coyote Hill Road, Palo Alto, CA 94304. Email: 
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1 See section 6. 

Hero 2000 that are relevant to this paper are that it 
is autonomous and mobile, its primary sense is sonar 
range-finding, and its spatial environment is a floor 
of research offices in a modern building. It is this 
experimental situation that is implicit in the follow­
ing discussion and illustrating examples. For instance. 
the notion of "sensations" in the case of Hero can be 
taken to be a vector of n numbers, the first indicat­
ing, roughly, the distance to the closest surface directlv 
ahead, the next number indicating the distance to th·e 
closest surface at a heading of 2: radians to the right 
of front, etc. Also, it is important to the proper func­
tioning of the CNM that the sensations to which the 
robot attends are static, i.e., the sensation vector for 
a given location in the world is constant. 

There are three main components of the CNM system: 

• the forward model, or predictive map; 

• the ability to determine to which place on the map 
a particular sensation might correspond, or on­
enting system 2 ; 

• the ability to generate the actions that will reach 
a desired state, which is provided by the inverse 
model. 

Each of these components will be discussed in turn. 

2 THE PREDICTIVE :MAP 

One can view the process of robot map construction 
as the learning of a model of the environment, such 
that once the model is learned, the robot can use it to 
predict what sensations would occur if it moved in a 

2 The usage of "orienting system" here should not be 
confused with the usage of "orienting subsystem~ in Car­
penter and Grossberg's various papers on Adaptive Reso­
nance Theory, e.g. (Carpenter and Grossberg '87). "Ori­
enting" is used here in a way similar to the way one does 
when talking of orienting oneself using a field map and 
com pa..ss. or the north star. 



particular ego-centrically specified manner ( e.g "rotate 
i radians to the right", "move forward 10 feet"). 3 

Of course, this will require the agent to have some 
kind of representation of its current location, since, 
in general, the mapping from actions to sensations 
is dependent on where one is in the world. That is, 
the mapping sensations x actions ...... sensations is 
one-to-many, since more than one place can have the 
same sensory properties. Thus, the spatial environ­
ment, and therefore a model of it, can be seen instead 
as a function from current state and current action 
to predicted sensations. The input consists of a state 
vector, corresponding to the current location / of the 
robot, and a vector representing the move m being 
made. The output of the network is a vector that is 
supposed to be equal to the sensation vector the robot 
would receive from its senses if it were actually at the 
place that is reached by making the move m at location 
I. 

2.1 TOPOLOGICAL AND DESCRJPTIVE 
MAPPINGS 

There is more structure to space than the mapping 
states x actions ...... sensations indicates. Specifically, 
location and action determine a new location, which 
itself determines the sensations of the robot. Thus, it 
might be easier to learn a model if its structure reflects 
this regularity of the spatial environment. Consider 
the PDP architecture depicted in figure 1. 

As said before, the input consists of a state vector 
and an action vector, the output is a vector that is 
supposed to be equal to the sensation vector the robot 
would receive from its senses if it were at the place that 
is reached by making the move at the location repre­
sented by the state vector. The network is a composi­
tion of two mappings: a T mapping and a D mapping 
(explained below). The recurrence between the hid­
den layer 4 and the state vector portion of the input 
layer allows this network to be a viable architecture 

3 lt should be ma.de clear a.t the outset what is meant by 
a. "map". "Map" is not ta.ken to imply any kind of visual or 
ima.gistic representation. Rather, a. map is any data struc­
ture that associates representations with actual locations, 
and with other representations that indicate the proper­
ties that that represented location ha.s. Furthermore, the 
location representations are related to each other in a way 
that indicates what kind of motion would be required to 
get from one to the other. The point is that there isn't 
much weight being put on the word "map" itself, and if 
one prefers, one can just mentally replace it with "descrip­
tive/topological data structure". The rea.son why this kind 
of data structure should be of any interest is brought out 
in section 2.1. 

~In all discussions of network architectures in this pa­
per, I suppress any mention of a hidden layer unless the 
activation patterns of that layer are used somewhere else 
in the network. For example, it is consistent with figure 
1 (and is presumed by my discussion) that there may be 
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Figure 1: A PDP architecture for learning a predic­
tive mapping (states x actions ...... sensations) by com­
posing a topological mapping T ( states x actions 1-+ 

states) with a descriptive mapping D ( states 1-+ 

sensations). 

for a predictive map. The activity pattern on the hid­
den units at time t is sent back to become the state 
representation in the input at time t + 1.5 This im­
poses a relation on the patterns representing states, so 
that they become meaningful and useful. For exam­
ple, if the robot considers moving forward and then 
turning right, it can use the map to predict what sen­
sations it would have after those moves by calculating 
D(T(T(l, forward), right)), where I is a state vector 
corresponding to the robot's location before the moves, 
and D and T are the mappings indicated in figure 1. It 
is the recurrent connection in the network that allows 
this composition of the T mapping. 

The mapping also becomes learnable, since all neces­
sary inputs and outputs are provided or can be calcu­
lated. 

Learning a model of the environment, then, can be 
decomposed into learning two mappings: a topological 
mapping T from states 6 and actions to states, and a 
descriptive mapping D from states to sensations. 

a. hidden layer between the input and output layers of the 
descriptive mapping, D. 

5 Such a. use of recurrence ha.s been suggested by ( Jor­
dan '86) and (Elman '88). A notable difference is that Jor­
da.n's network has recurrent links from the outputs, while 
Elma.n's network has recurrent links from the hidden units, 
as does the architecture in figure 1. 

6 1 will hereafter use "state" instead of "location" not 
only because the network will have to represent orienta­
tions as well as locations, but because I want to allow ac­
tivity patterns in the network to be interpreted in ways 
that do not involve the objective, absolute places that the 
word "location" connotes. 



2.2 A PRIORI AND EMPIRICAL 
TOPOLOGIES 

There are two approaches to having a mapping net­
work learn a model of the environment. In one ap­
proach, the topological mapping is assumed to be 
known a priori, and the network only has to learn the 
descriptive mapping. The structure of space is known; 
all that remains to construct the map is to "fill it in." 

In the second approach, no such a priori knowledge 
is assumed; the network must learn both mappings. 
Although there are many reasons why such a "tab­
ula rasa" strategy would be more appropriate for the 
purposes of psychological modeling and philosophical 
understanding, one should not underestimate the ad­
vantages of an a priori topology for the purposes of 
engineering a working navigational system. The "em­
pirical topology" that would result from learning both 
mappings would most likely fail to guarantee such es­
sential properties as idempotency under the null ac­
tion, invertibility, and composability, in the mappings 
it produces. For example, it would be possible for a 
network to learn a topology where the following are 
true: 

T(x,null) =f; x; 
T(x, a)= y but T(y, a- 1) :f; x; 
T(x, a)= y and T(y, b) = z, 

but T(x,boa) =f; z; 

where a- 1 is the inverse of an action (moving back 2 
feet as opposed to moving forward 2 feet), and boa is 
an action that is equivalent to performing a, then b. 

Thus, PDP learning methods might produce topolo­
gies that can play an important role in explaining 
navigation behavior in animals, and in understanding 
concept acquisition,7 but it is hard to see how they 
could produce a topological mapping that would be as 
accurate and general as a hand-crafted topology that 
had these three desirable properties, inter alia, built­
in. This is not to say that such topologies could not be 
learned; but the development of such general topolo­
gies from experience alone, while theoretically of great 
import, and even potentially superior in terms of sheer 
performance, is not a prerequisite for a working sys­
tem. 

2.3 LEARNING THE TOPOLOGICAL 
AND DESCRIPTIVE MAPPINGS 

The best strategy for learning the predictive map will 
depend on which of the two kinds of topologies, a 
priori and empirical, is being used. All the learning 
strategies considered in this paper assume the kind 
of learning situations available to back-propagation of 
error in multi-layer, feed-forward networks. Specifi-

7 An elaboration of such philosophical benefits can be 
found in section 6. 
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Figure 2: A schematic spatial environment used to il­
lustrate the holistic nature of the activity pattern t--+ 

world state referential relation. Capital letters indi­
cate the (idealized) sonar sensation at that location. 

cally, in learning a mapping F : X 1-+ Y, the net­
work is presented with a number of samples, ( x;, Yi), 
where x; E X, y; E Y, and F(x;) = y;. This 
leaves much of the learning process unspecified (e.g., 
whether the samples are presented simultaneously, al­
lowing epochal learning, or serially, requiring learning 
on a particular sample before the next sample can be 
examined), thus allowing for several distinct possible 
learning strategies. However, before discussing these 
different strategies, an observation needs to be made 
about the holistic nature of maps. 

2.3.1 Maps are holistic 

The place that a particular symbol on a conventional 
road map represents is not an intrinsic property of the 
symbol, but is determined by where the symbol is in 
some reference frame: how the symbol is spatially re­
lated to other symbols. Similarly, which world state 
a particular CNM activity pattern represents is not 
determined merely by the intrinsic properties of that 
pattern, or even by that pattern and the sensory prop­
erties assigned to it under the descriptive mapping; 
rather, a pattern's referent is also determined by its 
connections, under the topological mapping, to other 
activity patterns and their sensory associations given 
by the descriptive mapping. 

For example, consider the spatial environment de­
picted in figure 2. 

Note that in this toy world there are two qualitatively 
identical places, (2, 3) and ( 4, 1), each with the ideal­
ized sonar sensation P. Now suppose that there hap­
pen to be two activity patterns in the CNM, x 10 and 
x 2, that, when input to the descriptive mapping, yield 



P. That is: 

D(x10) = D(x2) = P. 

It is impossible to tell from this information alone 
which of the two places each pattern represents. Thus 
it would not be possible to determine what input pat­
tern to give to the network in order for it to learn a 
mapping involving the place (2, 3). 

But suppose that the topological mapping had the fol­
lowing properties: 

T(x10,a) = x3; 
D(x3) = Q; 
T(x2, a)= x4; 
D(x4) = R; 

where a is an action that results in the robot moving 
to the west. 

In this case, there would be an indication that x 10 rep­
resents (2, 3) and x2 represents ( 4, 1): the topological 
relations between patterns as defined by T helps de­
termine the referents of the patterns themselves. But 
note that the four properties above do not conclusively 
determine the reference of x 10 and x 2 : the relation of 
x10 and x2 to other states in the CNM might indi­
cate just the opposite, with the above mappings being 
a local error. For example, we might have, for the 
north-bound action /3: 

T(x;, /3) = Xi+i for 10 :S i :S 14; 
D(x;) = M for 10 :Si :S 14; 
T(x2, {3) = x1; 
D(xi) = N; 

which would indicate just the opposite: that x 2 rep­
resents (2,3) and x10 represents (4, 1); the evidence 
for this conclusion would be even stronger if Q and 
R were very similar. Thus, not only do the referen­
tial properties of states depend on both the topological 
and descriptive mappings, but reference also depends 
on the entire mappings. 

2.3.2 Empirical topologies: learning both 
mappings at once 

As mentioned above, in the standard approach to get­
ting a PDP network to learn a mapping, a database 
of input/output pairs for which the mapping holds is 
required. For the CNM predictive map, this would re­
quire a set of pairs where each pair comprises a state 
vector and an action vector as input, and a sensation 
vector as the desired output. 

However, the spatial world does not provide an agent 
with explicit information as to which state it is in. 
A mapping network which does not assume an a pri­
ori correspondence between states of the network and 
states of the world will have to generate its own system 
of representation of world states. Thus, the point just 
made about the holism of maps is relevant in choosing 
a learning strategy. Since, as we saw, the representa-

tional relationship between an activity pattern and a 
world state depends on both the topological and the 
descriptive mappings, the pattern that corresponds to 
a particular world state will change as the two map­
pings in the network change. This means that the 
input/output mapping to be learned will be dynamic. 
The network's learning task will be a "moving target" 
situation 8 : the desired output for a given input will 
change as the weights of the network, and hence the 
mappings they realize, evolve. 

Several standard approaches to collecting the in­
put/ output pairs for the learning process would be of 
little use then. For example one could not just select 
the samples on the basis of the world states one wants 
the network to learn about. It might be easy enough to 
get the desired output, but what should the state vec­
tor input be? One would have to come up with some 
way of determining, given a network and its current 
weights, what pattern represents a particular location. 
We have already seen that this procedure would be de­
pendent on the state of the entire network, and that 
the topological evidence can be contradictory. It is 
very likely, then that the computational cost of the 
procedure would be prohibitively high. Furthermore, 
it would require some teacher to actually choose and 
collect this data. 

An alternative strategy is to let the robot generate 
the samples itself by moving through the environment. 
That is, make the samples causally and temporally 
related to their predecessors and successors. The robot 
starts with an arbitrary state vector and makes some 
move. The desired output is the sensations it receives 
at the location reached by the move. Thus, the first 
training sample is created. Another action is chosen, 
and it, along with state vector on the hidden units, 
would become the input for the next sample, etc. 

Note that this is not merely a matter of incorporating 
context. It is common, for example, in training net­
works for speech recognition or text-to-speech tasks 
to present to the network the samples as they are en­
countered in the environment, as this facilitates incor­
porating context effects. The network gets its input 
from a window on the input stream, and the window 
is moved down the input stream to provide another 
input. The actual order of the windowed input is irrel­
evant, however: the window could be placed anywhere 
on the stream to generate a useful input sample. But 
this assumes an input stream that exists independently 
of the network's states, whereas the strategy of using 
environment-determined inputs for the CNM is in or­
der to generate such a stream. Nor is the importance 
of ordering related to superficially similar schemes that 

8 Both (Mikkulainen and Dyer '88) and (Chalmers '90) 
explicitly mention the "moving target" nature of their net­
works' learning situation. In both cases, the networks were 
successful in developing an appropriate representational 
system. 
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Figure 3: An illustration of the orienting system. A 
bird's-eye view of a two dimensional world is displayed. 
Rectilinear solid lines indicate walls. The robot is ac­
tually at location A, from whence it receives its sen­
sory data (radial lines). Its state vector initially cor­
responds to location B. The state vector is iteratively 
modified so as to reduce the difference between ex­
pected and actual sensations. The trajectory of succes­
sive state modifications is shown, with the final fixed­
point, C, being a rather good estimate of the actual lo­
cation. (The orientation of the robot, which remained 
constant throughout all simulations described in this 
paper, is indicated by the horizontal bar extending 
from the robot's circular image.) 

topological network is given a very good initial state, 
then perhaps one can have both a general and adap­
tive topology. Of course, simply allowing the weights 
of a "correct" topological network to be modified does 
not guarantee that it will successfully compensate for 
regular distortions in space, nor that it will optimally 
distribute its representational resources. Nor does it 
guarantee that the generality of the initial topological 
mapping can be maintained. Rather, these possibili­
ties will have to be explored in future research. 

3 THE ORIENTING SYSTEM 

Two observations explain the need for an orienting sys­
tem: 

• Most means of using a map for navigation require 
the robot to know which map representation ( a 
position on the paper in the case of a standard 
map; a state vector in the case of the CNM) cor­
responds to the current world state (location of 
the robot). 

• Even with the best topological models and most 
accurate sensors, odometry-based location es-

timations drift away from the actual location 
quickly. 

The orienting system, then, is a system that, given 
the robot's movement history, the predictive map, and 
recent sensory information, attempts to the find the 
activation pattern that corresponds to the current lo­
cation. 

3.1 STATE ESTIMATION: GRADIENT 
DESCENT IN ACTIVATION SPACE 

Suppose the robot has constructed an acceptable, but 
not necessarily highly accurate, predictive map for a 
given region. But suppose, for some reason, the robot 
is in a different world state (Pactual) than the one that 
corresponds to the current state vector ( x). Then it 
is no surprise that D(z) -:/= S(Pactual), where S is the 
function from world states to the sensations they cause 
in the robot. Thus, there is error in the CNM: there 
is a difference between what is expected and what is 
observed. 

Normally, error in a network is reduced or eliminated 
by modifying the weights of that network. But we are 
assuming that the map is more or less correct. Ex hy­
pothesi, the source of error in this robot's CNM is its 
erroneous state estimation, not its predictive map as a 
whole. The way to reduce error becomes clear, then: 
use the error to modify the erroneous state vector, not 
the weights. Back-propagate the error signal from the 
output of the descriptive mapping network to the in­
put, and change the activation patterns of the input 
units in proportion to the negative gradient of the er-

. ror. Propagate this new input through the descriptive 
mapping again. If the output is still substantially dif­
ferent from what is observed, then back-propagate this 
error again, and so on. 11 

A state vector z; is a fixed-point of this iterative pro­
cess if D(z;) = S(Pactualr That is, the network will, 
if the process converges, 2 find a state vector that is 
consistent with the current sensory data. This process 
is depicted in figure 3. 

11 The idea of using back-propagation to alter activations 
instead of weights has been considered before. (Williams 
'86) introduced the idea; (Mikkulainen and Dyer '88) used 
it to generate better internal representations; (Linden and 
Kindermann '89) and (Kindermann and Linden '90) pro­
vide good analyses of the procedure, and apply it to pattern 
completion problems, as well as other uses; (Chen, Belew, 
and Salomon '90) apply the idea to finding fixed points in 
iterative associative memories. 

12 A rigorous study of the convergence properties of the 
orienting system has not yet been performed, but infor­
mally tested cases generally converge, even with a poor 
predictive map. 



improve learning times, accuracy, or convergence. 

This iterative means of actually generating the train­
ing samples does not mean that learning has to be 
serial. One could, after collecting enough data, use an 
epochal learning strategy, in which all weight changes 
from each sample are calculated before any are made. 
But this would necessitate either a human assistant or 
prior navigation routines in order to generate actions 
for the robot while the data is being collected, since 
the CNM would not be able to be used for navigation 
until after the data for the epochal learning had been 
collected and some learning had taken place. 

In a non-epochal system, the weights are changed after 
each sample presentation. (Jordan '90) has shown that 
it is possible in such cases to learn the inverse model 
at the same time as the forward model. In the case 
of CNM, this means that navigational abilities should 
be able to be learned at the same time as the predic­
tive map. If so, the robot's navigational system could 
choose the actions to be taken, even at the very first 
stages of learning, as Jordan's systems do. Thus, no 
human teacher would be required; the system would 
be capable of generating all of its inputs and desired 
outputs. 9 

2.3.3 Learning with a priori topologies 

There are two kinds of a priori topology: fixed and 
variable. In a fixed topology, the weights that im­
plement the topological mapping are frozen 10 , with 
learning in the CNM only changing the weights that 
implement the descriptive mapping; as said before, all 
that remains to construct the map is to "fill it in". A 
variable a priori topology, on the other hand, initial­
izes the topological mapping to some ideal state, but 
allows subsequent modification and refinement on the 
basis of experience. 

To learn a predictive map with a fixed a priori topol­
ogy, one would initialize the robot's state vector to 
the one that corresponds, in the a priori topology, to 
the initial location of the robot. Then, the robot would 
chose a move to make. The topology is again consulted 
to yield the state vector that corresponds to the loca­
tion that robot would occupy if it were to make that 
move. This vector is used as input to the descriptive 
mapping, which yields a predicted sensation as output. 
The robot makes the move, and uses the difference be­
tween what it actually observes and what it expected 
to observe as an error signal for weight change in the 
descriptive mapping network. 

However, there are several reasons why an a priori, 

9 How the inverse model is to be learned and used for 
navigation is discussed in sections 4 and 5. 

10 Actually, in the case of a fixed topology, there seems to 
be no practical reason for having the topological mapping 
implemented in a PDP network at all. 

fixed topology might be unacceptable: 

• Error due to noise, failure, or unforesee­
able events. This isn't just a problem for fixed 
topologies: any means of predicting future states 
from the current one will be faced with the uncer­
tainty and error that comes from being embedded 
in a complex physical world. This is addressed in 
the CNM by the orienting system, which refines 
the robot's estimate of its current location based 
on the coherence between the robot's current sen­
sations and the sensory expectations provided by 
the predictive map. See section 3. 

• Systematic error. General orienting and local­
ization abilities are necessary, as just mentioned, 
but other, systematic sources of error could be 
handled with simpler methods in order to prevent 
an over-reliance on the orienting system, which 
could be computationally expensive or unreliable. 
Specifically, the CNM should be able to reflect 
the fact that the world isn't topologically uniform, 
but there are pockets of topological regularity in 
a heterogeneous space. For example, the topolog­
ical mapping should be able to take into account 
that the kind of state transition that a move m 
effects in a room with thick carpeting is differ­
ent from the transition effected by m in a tiled 
corridor, that floors can be sloped in some areas, 
etc. These deviations from a uniform topological 
mapping are systematic enough that they could 
be addressed directly by allowing slight modifi­
cations to the topological mapping, rather than 
relying exclusively on orienting strategies. 

• Limited resources. A network has a finite 
quantity of representational resources, which it 
must distribute over space, which is infinitely 
dense. A fixed a priori topology will have a distri­
bution of representational states over world states 
that will be independent of the qualitative char­
acter of those world states. For example, the 
amount of actual distance corresponding to the 
minimal effective difference between state vectors 
will most likely be constant in an a priori fixed 
topology. Even if it isn't constant, it certainly 
won't vary in a way related to the presence of ob­
stacles, doors, walls, etc. in the environmen_t. A 
more optimal use of the limited representat10nal 
resources of a network would be to allow, e.g., a 
sparse representation of regions in which there are 
few or no obstacles, while regions around doors, 
or areas cluttered with permanent furniture are 
modeled in finer detail, with a smaller grain size. 
This requires an adaptive, variable topology. 

The point is that the only major drawback of an em­
pirical topology was that it seemed unlikely that a 
fully general topology could be learned throug~ the 
weak method of error minimization. However, 1f the 



3.2 SIMULATION DETAILS 

To generate behavior like that illustrated in figure 3, 
a 2D world, with walls and a robot, was simulated. 
The sonar sensations of the robot at any given time 
were calculated by finding the distance to the nearest 
wall at each of the angles 2;1:; k = 1, 2, ... , 8 from the 
current orientation of the robot. Each component of 
the input vector was one of these distances, or 100, 
whichever was less ( to reflect the range limitations of 
sonar). 

A fixed a priori topology was used for the sake of sim­
plicity and experimental control, so the robot only 
had to learn the descriptive mapping. Each sample 
in the training data consisted of an activation vector 
corresponding to a location, and the sensory input the 
robot had at that location. This data was collected 
by moving the robot around the environment, peri­
odically storing the current location coordinates and 
the current sensations ( distances at the eight angles). 
The coordinates were scaled to be within the range 
0 • • • 100. Each scaled coordinate and (pre-scaled) dis­
tance was then translated into a four-unit activation 
vector using a representation scheme roughly based on 
one mentioned in (Hancock '88). A simplified descrip­
tion of the translation procedure is: if the value to 
be coded is 0, 33, 66, or 100, then all the units have 0 
activation except for the unit 1, 2, 3 or 4, respectively, 
which has an activation of 1; if the value to be encoded 
is 0.25 of the way between 33 and 66 (i.e., 41.25), then 
unit 2 has an activation of 0.75 and unit 3 has an 
activation of 0.25, etc. These four-unit vectors were 
composed to make the appropriate input and output 
vectors (i.e., the input vector was composed of two 
four-unit vectors, one for each 2D coordinate, while 
the output vector had 32 units, 4 units for each of the 
8 sensed distances). Roughly 200 samples were col­
lected in this manner. The absolute orientation of the 
robot was kept constant. 

The network was trained on this data, using Scott 
Fahlman's Quickprop algorithm (Fahlman '88), and 
his Lisp implementation of this algorithm. The net­
work had 8 hidden units, and converged to within 1 % 
of its final error within 500 trials. 

After convergence, the behavior displayed in figure 3 
was generated as follows. The robot was placed at the 
location A, and its current location coordinates were 
encoded into an input vector via the process described 
above. This input was forward-propagated through 
the network to produce an output vector, o. This was 
compared to the actual sensations the robot was re­
ceiving, s, to yield an error signal ½( s - o )2 . This error 
was back-propagated in the normal manner (Rumel­
hart, Hinton, and Williams '86). The error signal at 
each input unit was normalized by dividing it by the 
number of weights from which the unit received an er­
ror signal. This error value was then multiplied by 
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Figure 4: An illustration of how the simple orienting 
system is dependent on initial conditions. The system 
converges on the location ( C), closest to the initial 
guess, that best matches the actual sensory data. The 
robot is roughly in the same actual location (A) as it 
was in figure 3, but since it has a different initial guess 
(B) as to where it is, the orienting system produces a 
different ( and in some sense incorrect) estimate of the 
current location. This ambiguity can be overcome, if 
desired, by chaining constraints (see text). 

a scale factor of 0.2, and then added to the activa­
tion of each input unit. Activation values less than 0 
or greater than 1 were truncated to O and 1, respec­
tively. This process was iterated until a fixed-point was 
reached. Each change of input activation corresponds 
.to a revision of the network's estimate of the robot's 
location, and is depicted in figure 3 by the chain-like 
succession of robot images. 

3.3 OVERCOMING AMBIGUITY: 
CHAINING CONSTRAINTS 

Of course, since any state vector Xi for which D(xi) = 
S(Pactual) is a fixed-point of the orienting system, there 
is no guarantee that the state converged to corresponds 
to Pactual · Rather, the orienting system will ( most 
likely) converge to the state vector, closest to the ini­
tial state, for which D(x) = S(Pactua/). See figure 
4, which was produced using the simulation just de­
scribed for figure 3. 

Note that even though this orientation scheme is sus­
ceptible to local minima, this does not mean that it 
can't be useful in navigation. For example, odome­
ter drift is a constant problem, but it seldom happens 
that a robot's estimate is so wrong that the orienting 
system would converge to the wrong location. Thus, 
even the "nearest-neighbor" orienting system just de­
scribed would be of use whenever the odometer drift 



is bad enough to make corrections based on the pre­
dictive map to be of use (i.e., whenever the odometer 
drift is greater than the relatively high margin of er­
ror of the predictive map), but not so bad that the 
robot could drift into another sensory "well" between 
consultations of the orienting system. 

Furthermore, the final state vector is not (necessarily) 
the closest in actual space, but in activation space. 
Thus, if the network uses a state vector space of a di­
mensionality higher than actual space, and it uses an 
empirical ( or at least variable) topology, it might be 
able to construct the mapping between state vectors 
and world states to be such that minimizing distance 
in activation space would correspond to some interest­
ing trajectory in real space. For example, the orient­
ing system might converge to a state vector for which 
D( x) = S(Pactual ), but that also has some higher-order 
similarity to the initial state, such as "being in a room 
with one exit", rather than being merely the closest 
in a raw spatial sense. Such possibilities are suggested 
by the analysis in (Servan-Schreiber, Cleeremans, and 
McClelland '89) of the internal representations of a 
network that learns a finite state grammar, and war­
rant further exploration. 

These qualifications aside, it is nevertheless in general 
desirable to have an orientation system that will work 
even when the initial location estimate is very poor, 
and when the state vector topologies are of little use. 
In such a case, the orienting system can operate by 
chaining constraints. 

To chain constraints for orienting, a cascade structure 
like the one in figure 5 is used. All D and T mappings 
are copies of the descriptive and topological mappings, 
previously learned. SVi is initialized to the initial state 
estimate, and the current sensations are stored at AS 1 . 

All other values are as yet undetermined. 

The basic orienting process occurs between SVi and 
AS1: SVi is modified until PS1 matches AS 1 . Then 
a move is made, and the activation pattern for this 
move is imposed on M 1 . SVi and M 1 are propagated 
to PSVi, and SVi is initialized to PSVi. The move at 
M1 is made. 

The sensations after the move are stored at AS 2 , and 
the orienting process occurs between SVi and AS 2 . If 
the first orienting process yielded an incorrect guess as 
to the location before the move, then there will most 
likely be a discrepancy between P SVi and SV 2 . This 
is a source of error that can be back-propagated to the 
original SVi, which is changed accordingly, and the 
entire process repeats from the beginning. Of course, 
one move may not be enough to disambiguate, or the 
initial guess might have been correct. In such a case, 
the process is extended to SV 3 , and so on. In order 
to prevent memory overflow, older states, moves, and 
sensations can be forgotten. 

ASl 

SVl 

Figure 5: Using the method of chaining constraints in 
order to find the state vector that corresponds to the 
current world state. The modification to a state vector 
is determined not only by what error it yields under the 
descriptive mapping, but also by the error produced 
under the descriptive mapping by state vectors that 
follow and depend upon it. SV = state vectors; PSV 
= predicted state vectors; AS = actual sensations; PS 
= predicted sensations; M = moves; D = descriptive 
mappings; T = topological mappings; E = sources of 
error. 

Simulations examining this more robust means of ori­
enting are currently underway. 

4 THE INVERSE MODEL 

At least part of the task of navigation is this: given 
where I am and where I want to be, how do I get there? 
In the case of the CNM, this might correspond to the 
robot being given two state vectors, a and b, with a 
representing its current location and b representing its 
desired location, and the task being to come up with 
a move or set of moves that will take the robot from 
R( a) to R( b), where R( x) is the world state to which 
x refers. 

Of course, it would be very unlikely that this problem 
could be solved in general by a. simple mechanism, for 
states that a.re arbitrarily distant from ea.ch other, sep­
arated by arbitrary obstacles. Rather, a simple mech­
anism can only provide moves that make transitions 
between relatively local states, and it must be up to 
some other system to find the sequence of states to be 
traversed. Such a system will be discussed in the next 
section; for now we will consider how the CNM could 
compute the function P : states x states 1-+ actions 
for nearby states. 



4.1 DERIVING THE INVERSE MODEL 
FROM THE PREDICTIVE MAP 

There are several ways a robot could use the predictive 
map to compute the function P: 

• A priori solutions. Any CNM with an a pri­
ori topological mapping might just as well have 
an a priori inverse topological mapping. For in­
stance, if the a priori mapping used the Cartesian 
coordinate system to represent states, and had as­
sociated with each move a corresponding vector, 
(Ax, Ay), that indicated the change of state that 
action produces, then it should be trivial to also 
have the inverse association, from the difference 
between the actual and desired state, to a move 
that makes that transition. 13 

• Heuristic search. The robot could input a into 
the map, and test, for various moves m, whether 
T(a, m) = b. If not, another mis tried. However 
it is unclear what means of sampling the spac~ 
of moves (other than obvious heuristics such as 
"If you have just tried move m, don't try m - 1") 

would make a feasible search strategy. 

• Gradient descent in activation space. In a 
manner similar to the mechanism proposed for 
the orienting system, the inverse model could be 
computed by inputting the a and an initial move 
_"guess" m to the mapping T. The error T(a, m)-b 
1s back-propagated to the input units, and the 
move vector is changed so as to effect a gradient 
descent reduction of error .14 

Although this last idea seems very promising, and is 
currently under investigation, 15 the possibility of actu­
ally learning the inverse model directly ( as opposed to 
being given it, or deriving it from the forward model) 
should be considered. 

4.2 LEARNING THE INVERSE MODEL 

(Jordan '90) discusses how a network might learn an 
inverse model similar to the kind we are considering. 
One major difference is that Jordan assumes that the 
state information is available, or in other words, that 

13 Of course, such a topology will have all the problems of 
inflexibility mentioned before; a. va.ria.ble, a priori, inverse 
topology might overcome some of these problems. The 
learning involved in such a topology will be similar to tha.t 
in a.n empirical topology; see section 4.2. 

14 Although gradient descent (the third item) is, strictly 
speaking, a. form of heuristic search (the second item), I 
mean to make a distinction here between heuristics on the 
(conceptual) level of actions (heuristic search) and those 
on the (non-conceptual) level of activations (gradient de­
scent). For a discussion of the conceptual/non-conceptual 
distinction, see section 7 and (Cussins '90). 

15 This idea is also being investigated by others; see 
(Thrun, Moller, and Linden '90). 

the sensory information also serves as the state infor­
mation. Nevertheless, his analysis is appropriate as 
long as care is taken to remember these discrepancies. 

One idea of how to learn an inverse model is to try to 
le3:rn it directly, by training a network on input/output 
pairs of the form (a, b)/m. In Jordan's framework, the 
robot could generate these training samples by actu­
ally performing an action in the world and observ­
ing what states result. The initial and final state are 
used as the input, the action that led from one to the 
other is the desired output. But, as pointed out be­
fore, in the case of spatial mapping the state vector 
corresponding to a particular location is not directly 
observable, so the best a robot could do would be to 
generate the training samples by inputting a state a 
and a move m to the forward topological mapping (T), 
to produce (a, T(a, m))/m as a training sample. 

Jordan provided three reasons for rejecting this 
method: 

• One-to-many. Since there is more than one way 
to move from one state to another, the training 
data for a direct inverse model is potentially one­
to-many. Back-propagation handles one-to-many 
training situations by averaging the desired out­
puts, which in general will not be a meaning­
ful solution. This might be able to be avoided 
by restricting the set of actions being considered 
in forming the inverse model. For example, one 
might want to restrict the possible state transi­
tions learned to be those that can be achieved by 
a simple action: motion in a straight line for some 
small distance, or rotation clockwise or counter­
clockwise through less than ir radians. This would 
make the states x actions ...-.. states mapping 
one-to-one, so its inverse, the states x states r-+ 

actions mapping, would be one-to-one as well. 

• Not goal-directed. Direct inverse modeling 
samples action space to generate its training sam­
ples, and, at least in the case of Jordan's ap­
plications, using this method does not guarantee 
that the network will learn the mapping for the 
"desired" inputs (state vectors) in which one is 
interested. (However, it is unclear whether the 
proper "goal" for the CNM inverse model is to 
learn about specific desired states or actions in 
general.) 

• No direct connection to the world. Jordan 
warns about using the network's forward model as 
a means of generating training data. It is much 
better to use the world itself when one can. The 
problem is that the world does not directly pro­
vide the state information that is needed to gener­
ate the training data, so the network must rely on 
its own predictions of what state will result (but 
see below). 

Jordan proposes instead a means of indirect inverse 



modeling, or forward modeling. The idea is to compose 
the inverse (T- 1 ) and forward (T) mappings, 16 and 
learn an identity mapping across this composition. A 
desired state vector b and current state vector a is 
input to r- 1 , which yields an action vector m. In the 
cases that Jordan is considering the error T(a, m) - b 
is ignored; rather, the action m is executed and the 
state vector b* is obtained directly from the world via 
the senses. The error b* - b is back-propagated though 
the To r- 1 composition, but only the weights in r- 1 

are modified. 

In this manner, two of the above limitations of the 
direct inverse approach have been addressed. By com­
posing the r- 1 and T mappings, the inverse model is 
forced to converge to a particular inverse solution, not 
plagued by the one-to-many problem. Also, forward 
modeling is goal-directed in Jordan's sense, since the 
input to the system is a desired state (but again, it 
is unclear whether this is an important constraint for 
the CNM inverse model). 

However, for the spatial map learning tasks relevant to 
the CNM, an unmodified forward modeling approach 
remains susceptible to the third criticism mentioned 
above: it is not directly connected to the world. There 
is no immediate way to observe what the actual world 
state is after making a move, so there is nob* available. 
Thus, the network is forced to use its own prediction, 
b, as a training output, a method which Jordan warns 
us against. Modifications need to be made if the CNM 
is to use forward modeling to learn its inverse model. 

One idea is to apply forward modeling to the compo­
sition D o T o r- 1 . That is, the error that is back­
propagated is D(T(a, m)) - 5(Pactual), with 5 being 
the sensory function from world states to sensations 
and Pactual being the current location, as defined be­
fore in section 3.1. This allows the error to be calcu­
lated, but not at the expense of having the network 
generate its own desired outputs: the world actually 
provides the error signal. 

Another way of addressing this problem is to use the 
orienting system described in section 3 to generate the 
training outputs for the composition To r- 1 . In this 
case, b, a world-dependent estimate of b* (as opposed 
to the completely model-dependent estimate, b) is in­
directly inferred from the current sensations by run­
ning the orienting process on the current sensations, 
S(Pactual). The pattern b is input to D as an initial 
guess for b. The error D( b) - S(Pactual) is calculated 
and back-propagated to the input in order to make 
changes to b that result in a better estimate of b*. 
This process will converge on a state vector that, ac­
cording to the predictive map, represents the closest 

16 Although in some sense the inverse mapping is not a 
formal inverse of the forward mapping T, it will be de­
noted by r- 1 here to emphasize the fact that To y-i is 
an identity mapping. 

place that matches the current sensory data. This es­
timate, b, is used as a training output (via the error 
term b - b) for To r- 1 with the input b. Thus, the 
network's model, Do T is involved in the generation 
of the training output, but so is the actual world, in 
the form of S(Pactua/). 

5 NAVIGATION 

The purpose of having an inverse model is that it can 
assist the robot in navigating its environment. As 
pointed out in the previous section, the inverse model 
can only be expected to generate actions for relatively 
close state transitions. In order to be of use, the in­
verse model must be given an appropriate sequence of 
states from some other system. This section looks at a 
few ways that such sequences could be generated and 
used. 

5.1 STATE-BASED NAVIGATION 

State-based navigation takes as input an ordered se­
quence of N state vectors s; and generates from them 
an ordered sequence of moves m; such that after exe­
cuting the nth m, the robot will be in the world state 
R( Sn) ( or at least guarantees that after the execution 
of all of the m;, the agent will be in s N). 

This type of navigation could be useful for following 
previously encountered routes. While defining a route, 
the robot can periodically store the current state vec­
tor, such that after reaching its destination, it will have 
stored a sequence of state vectors. Then, if it ever finds 
itself in one of those states later, and it wants to go to 

· another one of those states, it can input the current 
and neighboring state into the inverse model, which 
will output an action to take it to that next state, 
and the process can be iterated until the destination 
is reached. 

Of course, things don't always go as planned. The 
action performed, m, will not always bring the robot 
to the desired state, s;. There are three basic strategies 
for dealing with this: 

• The robot can plan the next step as normal, ig­
noring that it is not where it should be ( this might 
be satisfactory for small errors). 

• The robot can use the orienting system to find the 
current state and then plan to the next desired 
state, s;+1-

• Or the robot can be more conservative, and as­
sume that it must reach s; before it can reach 
s;+i- Therefore, it uses the orienting system to 
find the current state, but plans to the same de­
sired state as before, s;. 



5.2 CONTENT ADDRESSABLE 
PLANNING: DESIRED SENSATIONS 

The CNM can also be provided with a means of gen­
erating actions based on desired sensations, to result 
in what is effectively a limited sensation-based inverse 
model: when given the current state and desired sen­
sation, an action is output that will lead to a (nearby) 
world state that has those sensory properties. This 
is done by using a (state-based) inverse model and 
the orienting system again. The input to the D map­
ping network is initialized to some guess b (obtained 
by calculating T(a, m)), and back-propagating the er­
ror D( b )- d, where dis a sensation vector representing 
the desired sensations, through the network to change 
b until it is a state vector that indicates the nearest 
place that has the desired sensory properties. At this 
point, r- 1 (a, b) should indicate a move that could be 
made to reach a place with the sensory signature d. 

Another way to achieve a similar result is to use the 
orienting system in a novel way. Instead of finding the 
current location, given the current sensory data and 
the initial guess b, the orienting procedure can be used 
to find a route in state space from the current location 
to a place that meets a sensory description. Given 
some desired sensations d, the state vector represent­
ing the current location, a0 , is input to the descriptive 
mapping D, and the error D(a)-d is used to change a0 

in a gradient descent fashion to a new vector, a 1 . The 
two state vectors, a0 and a 1 are then input into the 
inverse model to produce an action to effect the tran­
sition. The process is then repeated, with a1 as the 
next input to D. If the scale factor ( conventionally 
denoted by TJ) used in the back-propagation is small 
enough, r- 1(a;, a;+i) will in general be meaningful 
(i.e., it will denote a performable and correct move). 

This process can be illustrated by re-interpreting fig­
ure 3. The sensations at A are desired. The current 
location is B, and the current state vector denotes B. 
The orienting process generates a sequence of states 
( the trail of states shown in the diagram), which can 
be input to the inverse model in a pair-wise manner to 
generate a sequence of actions that will reach location 
C. Again, things will not always go as planned, so 
the robot might want to periodically use the orienting 
system in its proper capacity to ensure that its current 
state vector continues to be an accurate representation 
of its location. 

As it stands, this procedure is unacceptable, since 
there is no guarantee that the orienting system will not 
produce a trajectory that runs through a wall or other 
permanent obstacle. This can be addressed by adding 
terms to the error function that will penalize state vec­
tors that represent world states close to walls, even if 
they are very similar to the desired perception. For ex­
ample, in the cases being considered here, where the 
components of the sensation vectors indicate the dis-

tance from walls at various angles, the error for the ith 
output node could be defined as (D(a); - d;) + ~• 
since the reciprocal of D(a); is an indication of how 
close one would be to a wall if one were in the location 
denoted by a. The constant a is used to scale the im­
portance of the obstacle avoidance term: the higher a 
is, the further the robot will stay away from walls. 

This procedure can be (loosely) called "content­
addressable planning" since it generates a plan based 
upon a qualitative specification of a place, rather than 
a conventional address, a coordinate, of the place. As 
in state-based navigation, content-addressable plan­
ning can be used in conjunction with stored routes. 
The robot, while determining a route, can store vari­
ous "scenes" or sensations along the way. At a later 
time, this route can be followed by inputting these 
stored sensations to the content-addressable planner, 
which will move the robot along the route. Depending 
on the nature of the robot's environment, this method 
might be more robust than state-based route following. 
The absolute state vector values stored might change 
their meaning between storage and use, due to a vari­
able topology's compensation for a systematic change 
in the world, such as tread wear on the robot's wheels. 
Since the CNM assumes that a given location's sensory 
input to the robot is more or less constant, it might 
be best to remember a route based on these actual 
sensations, rather than coordinates in a varying topo­
logical code. Of course, even with a sensation-based 
route, errors will still creep in, but measures directly 
analogous to the three mentioned at the end of section 
5.1 can be taken to help ensure that the destination is 
reached. 

6 THEORETICAL MOTIVATION 17 

The primary theoretical motivation for constructing 
the CNM system is to understand how a robot can 
make the the transition from pre-conceptual to con­
ceptual representations of space. The underlying hy­
pothesis is that map construction and use is a paradig­
matic case of concept formation, that the computa­
tional means underlying spatial concept mastery will 
be of a type similar to the means used for concept 
mastery in other domains. The preceding discussion 
and simulations were a start at an answer to the ques­
tion: how might we use PDP to understand cognitive 
map construction and use? Now it is time to address 
the question: what could understanding cognitive map 
construction and use tell us about representation and 
the mind in general? 

A complete account of cognition, natural or artificial, 
will have to be based on a theory of representation. 

17 Those readers of a. less philosophical nature might want 
to skip this section a.nd proceed directly to the conclusions 
in section 7. 



Our theories will have to explicitly characterize the 
representations that play a role in cognitive systems as 
well as the content, or information, that is carried by 
these representations. Traditional ( conceptual) ways 
of specifying content (such as in the ascription "The 
content of Leslie's belief is that this is a brown build­
ing") do so in such a way that requires that the agent 
to which the ascription is being made (Leslie) have 
the concepts used in the specification (e.g., brown 
and building). This means is inappropriate, then, 
for ascribing contents to simple systems that do not 
possess (many) concepts, and for many of our repre­
sentational contents (such as perceptual and indexical 
ones) that are not conceptually mediated. We need 
a means ( a non-conceptual means) of specifying con­
tents that does not imply that the agent in question 
possesses the concepts used in the ascription. We also 
need a related account of the conditions under which it 
is appropriate to ascribe a particular content, so non­
conceptually specified, to a particular physical system. 

Consider the domain of spatial navigation, the ability 
to find one's way in the world. A plausible idea is that 
the first need, the need for a non-conceptual specifi­
cation of the contents involved in navigation, can be 
answered by specifying contents in terms of an organ­
ism's abilities. For example, one might characterize 
the content of a particular computational state of a 
rat's brain in terms of the abilities it engenders, such 
as the ability to keep the end of the corridor in the cen­
ter of its visual array. This would be a non-conceptual 
specification since, e.g., a rat doesn't need the con­
cepts corridor or visual array in order to possess 
this ability or the contents which are specified in terms 
of it; and it would be a specification of content, since 
the rat certainly represents the world when it navi­
gates: if the rat were exercising this ability in front 
of a life-size painting of a corridor, as opposed to an 
actual corridor, it would in some sense be wrong about 
the way it is taking the world to be, and being wrong 
about something is a good indication of the presence 
of representation. 

Given this, one might think that the second need, 
the need for content ascription conditions, could be 
provided by any computational architecture that ex­
plained why a system possessed the abilities used in 
the content specifications. If, as in some cases seems 
likely, rats do not navigate by employing some concept 
of absolute location, but rather merely memorize the 
sequence of turns necessary to get from one place to 
another, then an account of how those abilities can be 
provided by a particular computational system might 
also provide the ascription conditions for the contents 
involved in rat navigation. But rats aren't the only an­
imals that represent the world; we do, and oftentimes 
we do so conceptually, in terms of objective contents 
such as that carried by the concept location. Thus, 
there is a further requirement on our account of con­
tent, the requirement for an explanation of concept 

possession and acquisition: the transition from non­
objective to objective ways of representing the world. 
This requirement imposes a constraint that restricts 
the class of explanatory computational architectures, 
a constraint that suggests that a clear member of the 
class would be a type of PDP network. 

The reasoning behind this claim is as follows. Tra­
ditional, conceptual specifications of content are an 
attempt to characterize contents that are objective, 
contents that correspond to ( could be specified in 
terms of) abilities that are perspective-independent, 
in that the abilities are appropriate in almost any 
context. An example of such an ability is using a 
conventional, paper-in-hand map: no matter where 
one is, or where one's destination, such a map indi­
cates, at least roughly, in what direction one should 
go. But as we have seen, there are many contents 
that aren't objective or context-independent. These 
could be characterized in terms of abilities that are 
perspective-dependent, such as the ability to use a 
route-based map. Such an ability will only be of use 
if one is on the route in question, so unlike a conven­
tional road map, its utility will depend on where one 
actually is. If we can provide a computational archi­
tecture that doesn't merely explain why a system has 
the abilities it does, but also explains why a system can 
move, via learning, from perspective-dependent abili­
ties (such as route-based navigation) to perspective­
independent abilities (such as full-blooded map-based 
navigation), then we can provide an explanation of 
how a non-conceptually characterized system can pos­
sess concepts. Analyzing a system non-conceptually 
allows us, unlike a purely conceptual analysis, to ex­
plain concept acquisition, since both the starting point 
( context-dependent contents) and ideal end ( objective 
contents) of that process, as well as the interesting area 
in between, can be so analyzed. 

We need, therefore, an architecture that renders ex­
plicit the non-conceptual contents in a system. PDP 
is a promising candidate for this because: 

• PDP representations are of varying context­
sensitivity and perspective-dependence, 18 thus 
making them more amenable to non-conceptual 
content specifications than are the representations 
in logical or symbolic architectures, which encour­
age a conceptualist, strictly objective interpreta­
tion. 

• Conversely, conceptual specifications of content 
seem inappropriate for PDP representations, since 
it is typically difficult (hidden-unit analyses not 
withstanding) to isolate an aspect of a PDP net­
work that corresponds to some objective feature 
of the task domain as registered by the theorist. 
In fact (to paraphrase Cussins), it may be that 

18 See, for example, Smolensky's "coffee" example in 
(Smolensky '88) and the discussion of it in (Cussins '90) 



PDP needs non-conceptual analysis more than 
non-conceptual analysis needs PDP (Cussins '90, 
p. 431). 

• PDP networks emphasize incremental learning, 
which is the kind of transformation on repre­
sentations that would appear to be useful for a 
system to make the transition from perspective­
dependence to perspective-independence, from 
context-sensitivity to objectivity, from mere rep­
resentation to conceptual thought. 

• Finally, the continuous mathematics and non­
linearity of PDP networks provide for a flexi­
bility in expressing relations and transitions be­
tween non-conceptual representations that would 
be lacking in a discrete, classical architecture that 
has been developed to express the relations be­
tween conceptual representations only. 

These philosophical motivations depend heavily on the 
discussion in ( Cussins '90). 

7 CONCLUSIONS 

It has been shown how a robot might, through inter­
action with its environment, acquire and maintain a 
map that allows it to predict what sensations it might 
have if it moved in a particular way.19 Preliminary 
simulations indicate that the generalization properties 
of standard feed-forward networks trained with back­
propagation are well suited to this spatial learning 
task, since a training set of only 200 points produced 
a network that could provide a reasonable estimate of 
the sensations to be found at an indefinite number of 
locations. 

Work that remains to be done includes further simula­
tions that vary orientation as well as location; simula­
tions involving the chaining of constraints algorithm; 
simulations that test the relative feasibility of variable 
a priori vs. empirical topologies; and applications of 
all of these ideas to the actual Hero 2000 robot. 

Acknowledgements 

Special thanks to David Gurr, who played a major 
role in the birth of many of the ideas in this paper, to 
Mike Jordan, for valuable suggestions and encourage­
ment, and to Dave Touretzky, for comments on a draft. 
Also thanks to Dave Chalmers, Adrian Cussins, Peter 
Dayan, Rainer Goebel, David Kirsh, John Wood fill, 

19 (Mozer and Bachrach '89) present an alternative way 
of achieving this kind of functionality. However, their ap­
proach differs notably from the CNM: the action space is 
small and discrete (there is a weight matrix for each ac­
tion); there is a prior, localist encoding of world states 
( one unit per state); and the back-propagation "unfold­
ing in time" learning procedure (Rumelhart, Hinton, and 
Williams '86) is used. 

and Ramin Zabih for discussion and suggestions. This 
work was made possible by support from the Center for 
the Study of Linguistics and Information at Stanford 
University, the Systems Sciences Laboratory at Xerox 
PARC, and by grants from the San Francisco branch 
of the English-Speaking Union, the Chancellors of the 
UK Universities, and the Oxford University Overseas 
Student Support Scheme. 

References 

Carpenter, G. A., and Grossberg, S. (1987) A mas­
sively parallel architecture for a self-organizing neu­
ral pattern recognition machine. In Computer Vision, 
Graphics, Image Processing 37, pp. 54-116. 

Chalmers, D. (1990) Syntactic transformations on dis­
tributed representations. To appear in Connection 
Science. 

Chen, J. R., Belew, R. K., and Salomon, G. B. (1990) 
A connectionist network for color selection. In The 
Proceedings of the International Joint Conference on 
Neural Networks, January 1990, pp. 467-470. San 
Diego: IEEE. 

Cussins, A. ( 1990) The connectionist construction of 
concepts. In M. Boden (editor), The Philosophy of 
Artificial Intelligence, pp. 368-440. Oxford: Oxford 
University Press. 

Elman, J. (1989) Finding structure in time. Center for 
Research in Language technical report 880 l. La Jolla: 
UCSD. 

Fahlman, S. E. (1988) Faster-learning variations on 
back-propagation: an empirical study. In D. Touret­
zky, G. Hinton, and T. Sejnowski (editors) The Pro­
ceedings of the 1988 Connectionist Models Summer 
School, pp. 11-20. San Mateo: Morgan Kaufmann. 

Hancock, P. J.B. (1988) Data representation in neural 
nets: an empirical study. In D. Touretzky, G. Hinton, 
and T. Sejnowski (editors) The Proceedings of the 1988 
Connectionist Models Summer School, pp. 11-20. San 
Mateo: Morgan Kaufmann. 

Jordan, M. (1986) Serial order: a parallel distributed 
processing approach. Institute for Cognitive Science 
report 8604. La Jolla: UCSD. 

Jordan, M. and Rumelhart, D. (1990) Forward mod­
els: supervised learning with a distal teacher. Sub­
mitted to Cognitive Science. Hillsdale, NJ: Lawrence 
Erlbaum. 

Kindermann, J ., and Linden, A. (1990) Inversion of 
neural networks by gradient descent. To appear in 
Parallel Computing. 

Linden, A., and Kindermann, J. (1989) Inversion of 
multilayer nets. In The Proceedings of the First Inter­
national Joint Conference on Neural Networks. San 



Diego: IEEE. 

Mozer, M. C., and Bachrach, J. (1990) Discovering the 
structure of a reactive environment by exploration. In 
D. Touretzky (editor) Advances in Neural Information 
Processing Systems 2, pp. 439-446. San Mateo: Mor­
gan Kaufmann. 

Mikkulainen, R., and Dyer, M.G. (1988) Encoding in­
put/ output representations in connectionist cognitive 
systems. In D. Touretzky, G. Hinton, and T. Sejnowski 
(editors) The Proceedings of the 1988 Connectionist 
Models Summer School, pp. 347-356. San Mateo: 
Morgan Kaufmann. 

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 
(1986) Learning internal representations by error prop­
agation. In D. E. Rumelhart and J. L. McClelland 
(editors) Parallel Distributed Processing: Explorations 
in the Microstructure of Cognition, Volume 1: Foun­
dations, pp. 318-362. Cambridge: MIT Press. 

Servan-Schreiber, D., Cleeremans, A., and McClel­
land, J. (1989) Learning sequential structure in simple 
recurrent networks. In D. Touretzky (editor) Advances 
in Neural Information Processing Systems I, pp. 643-
652. San Mateo: Morgan Kaufmann. 

Smolensky, P. (1988) On the proper treatment of con­
nectionism. In Behavioral and Brain Sciences 11, pp. 
1-74. 

Thrun, S. B., Moller, K., and Linden, A. (1990) Plan­
ning with an adaptive world model. Internal report. 
German National Research Center for Computer Sci­
ence, D-5205 St. Augustin, Postfach 1240, F.R.G. 

Williams, R. (1986) Inverting a connectionist network 
mapping by back-propagation of error. In The Pro­
ceedings of the 8th Annual Conference of the Cognitive 
Science Society, pp. 859-865. Hillsdale, NJ: Lawrence 
Erlbaum. 




