Stellar Structure - New Format Exam 2008 - Sample Paper

Section A You should attempt all questions; 5 marks per question.

A1. A binary star system consists of two stars, one of which has twice the luminosity of the other. If the apparent bolometric magnitude of the *system* is 7.5, what are the apparent bolometric magnitudes of the individual stars?

The more luminous star is slightly evolved and has a radius twice that of its main-sequence companion, whose effective temperature is 10^4 K. What is the effective temperature of the evolved star?

A2. The Lane-Emden equation for a polytrope of index n is

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left(\xi^2 \frac{d\theta}{d\xi} \right) = -\theta^n,$$

in the usual notation. Show that for a polytrope of uniform density (n=0) the solution of this equation that satisfies the boundary condition $\theta=1$ at $\xi=0$ is

$$\theta = 1 - \frac{\xi^2}{6}.$$

What is the value of ξ at the surface of this polytrope?

A3. A fully convective low-mass star may be approximated by a polytrope of index 1.5, so that $P \propto \rho^{5/3}$, where P, ρ are pressure and density. Use a simple scaling argument to find a mass-radius relationship for objects of this kind.

A4. Explain briefly how a star evolves after the exhaustion of hydrogen at its centre, distinguishing between the cases of a radiative core and a convective core. Show that in either case the central core is isothermal.

B1. Derive the three structure equations

$$\begin{split} \frac{dP}{dr} &= -\frac{GM\rho}{r^2} \\ \frac{dM}{dr} &= 4\pi r^2 \rho \\ \frac{dL}{dr} &= 4\pi r^2 \rho \epsilon \end{split}$$

for a spherical star, including appropriate sketches to illustrate your arguments and carefully defining all the symbols. [7]

Given that the fourth structure equation for a radiative star is

$$\frac{dT}{dr} = -\frac{3\kappa\rho L}{16\pi a c r^2 T^3},$$

where T is the temperature, κ is the opacity, a is the radiation density constant and c is the speed of light, write down four simple boundary conditions for these four differential equations. [2]

Under what circumstances is it necessary to improve the surface boundary conditions, and what form do the improved boundary conditions take? Your answer should include definitions of optical depth τ and effective temperature T_{eff} .

B2. Make appropriate use of the Heisenberg Uncertainty Principle to define a quantum state for free particles and hence show that the number of quantum states in a volume V and with magnitude of momentum between p and p + dp is $V4\pi p^2 dp/h^3$. [3]

How many electrons can occupy a quantum state? Define a completely degenerate electron gas and use the above result to show that the electron density in such a gas is given by

$$n_{
m e} = rac{8\pi p_0^3}{3h^3} \, ,$$

[5]

[4]

[3]

where p_0 is the Fermi momentum, which you should define.

The pressure of an electron gas is given by kinetic theory as

$$P=rac{1}{3}\int_0^\inftyrac{N(p)}{V}pv_{
m p}dp\,,$$

where N(p)dp is the number of electrons in a volume V with speed v_p and with magnitude of momentum between p and p + dp. Hence show that the relations between P and n_e for a completely degenerate electron gas in the two extreme cases of non-relativistic electrons and ultra-relativistic electrons are, respectively,

$$P = rac{1}{20} \left(rac{3}{\pi}
ight)^{2/3} rac{h^2}{m_{
m e}} n_{
m e}^{5/3}$$

$$P = rac{1}{8} \left(rac{3}{\pi}
ight)^{1/3} hcn_{
m e}^{4/3},$$

where $m_{\rm e}$ is the mass of the electron and c is the speed of light.

Sketch the general relationship between radius and mass for a set of stars of different total mass whose internal pressures are given by non-relativistic degenerate electrons; what observed stars follow a relationship of this kind? Show that when the electrons are non-relativistic the mean density of such a star is proportional to the square of its total mass.

B3. Why is radiation normally much more efficient at carrying energy through a star than conduction, and why is this at first sight surprising? Under what circumstances may conduction be important?

[4]

[6]

[4]

By considering two surfaces at distances r and $r + \delta r$ from the centre of a star, where δr is equal to the photon mean free path l, show that the energy flux carried by radiation, $F_{\rm rad}$, can be written as

$$F_{
m rad} = -rac{ac}{\kappa
ho}T^3rac{dT}{dr}\,,$$

where a is the radiation density constant, c is the speed of light, κ is the opacity of the stellar material of density $\rho(r)$ and temperature T(r).

Now consider a small element of stellar material that is displaced upwards with a speed much less than the speed of sound. Assuming that it moves adiabatically, show by comparing conditions inside and outside the element after it has risen by a small amount δz that it will continue to move upwards if

$$\frac{\rho}{\gamma P}\frac{dP}{dz} < \frac{d\rho}{dz}\,,$$

where P is the pressure and γ is the ratio of specific heats.

Under what circumstances is this criterion likely to be satisfied, and whereabouts in a star are they likely to occur? [1]