STELLAR STRUCTURE

Section 6: Introduction to Stellar Evolution

So far we have only discussed main-sequence (MS) stars in any detail, and we have seen that their mass-luminosity relation and position in the HR diagram can be understood if MS stars are in a quasi-static state and have a homogeneous chemical composition. The fact that most stars are on the main sequence can be explained if this is the stage at which their energy is being supplied by slow, hydrogen-burning nuclear reactions. We now look at how this long-lasting phase fits into a more general picture of a star’s life, and ask what happens both before and after the H-burning stage.

We have already implicitly assumed that there are no significant nuclear reactions before H-burning starts: if there had been, we would not expect MS stars to have uniform chemical composition. We have assumed that stars are born with a homogeneous composition, and keep it until they reach the main sequence, but so far we have made no other assumptions about what happened before the MS stage. That has been possible because changes during the MS phase are so slow that time derivatives can normally be neglected and the structure of a MS star is essentially independent of its previous life history. A useful consequence of this is that pre- and post-main-sequence evolution can be studied separately. That has allowed our understanding of the post-MS stage to be developed to a very detailed level while we still have only a rather rough impression of what happens before a star reaches the main sequence; this is especially true of the star formation process from the initial gas cloud. 

For many years, there were very few observations of pre-MS objects, partly because the pre-MS phase is very short-lived and therefore few objects are in it at any one time but even more because much of the early evolution of a star takes place in very cool dust clouds, which radiate almost nothing in the optical part of the spectrum. It took the development of infrared astronomy from the 1960s onward, especially the IRAS space mission in the early 1980s, and the development of mm and sub-mm astronomy in the 1970s, all of which led to the discovery of many molecular species, to change that situation, and star formation studies are now very much led by observations instead of being solely the domain of the speculative theoretician. Nonetheless, the earliest phases of star formation, when the initial gas cloud is forming out of the interstellar medium, are still highly uncertain, and I shall here talk only about the final stages of a proto-star’s life, as it approaches the main sequence.

6.1. Pre-main-sequence evolution

When a cloud of gas first becomes opaque enough to be called a proto-star rather than just a collapsing gas cloud, it must still be very large and we expect its initial properties to be (qualitatively):




large radius




low surface temperature




low luminosity

so that it is low down in the far right-hand corner of the HR diagram. What happens next depends critically on how energy is transported through the star. In the earliest detailed calculations, by Henyey and his colleagues in the USA in the 1950s, it was assumed that the proto-star remained in radiative equilibrium throughout its contraction to the main sequence. In that case, the luminosity and surface temperature increase monotonically with time as the radius decreases, and Henyey’s calculations gave L ( Teff1.1. Henyey assumed that during this phase the luminosity was supplied by gravitational energy released by a relatively slow (quasi-static) contraction.

We can find a rough estimate for the ‘Henyey track’ by using homology arguments; in this case, we consider a constant mass and assume that all variables are functions only of the fractional radius, r/Rs. For this homologous contraction, through a series of quasi-static models, we find, assuming Kramers’ opacity (Handout 9), that:





L ( Teff4/5,




(6.1)

almost the same as Henyey’s detailed calculation gave. 

This gives the apparently reasonable result that a proto-star’s luminosity during its final contraction onto the main sequence was always less than its final MS luminosity. However, it would actually be rather surprising if that were so because the luminosity in this contraction phase is determined essentially entirely by the opacity of the star: the smaller the opacity, the easier it is for radiation to escape and so the higher the luminosity. The contraction rate is determined by the rate of gravitational energy release needed to balance the luminosity, and can be as fast as we like (up to the free fall rate) – a higher luminosity simply means a faster contraction. However, the MS luminosity is determined by the rate of nuclear reactions, which depends on quite different factors, and there is no reason to suppose that the contraction rate will adjust itself to keep the ‘gravitational’ luminosity always less than the final nuclear luminosity.

So – was Henyey right to assume that the contracting models were radiative throughout? It soon became apparent that the radiative models were not physically realistic, at least for the early stages of the contraction. There are two reasons for this:

1. As the temperature increases, the originally cool molecular gas undergoes first dissociation and then ionisation, and in the ionisation zones ( is low enough for convection to set in – so the proto-stars are not fully radiative. This on its own has little effect, except in detail. However, another serious fault in the models is:

2. The surface boundary condition, as was pointed out by the Japanese astronomer Chushiro Hayashi in 1961. As we discussed in Section 4, we expect the temperature to be equal to the effective temperature at an optical depth of around 1. What Hayashi found was that:
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(6.2)

       – two ways of saying the same thing, that radiation was escaping from a region where the  

       temperature was much higher than the effective temperature.

This was essentially a result of the form of the opacity in these cool stars, which is dominated by H( absorption and so is small at low temperatures, making it easy for radiation to escape. As we saw in Section 4, this situation requires the modified boundary conditions (equation 4.60):

T = Teff  and  P( = g  at M = Ms .


With these boundary conditions, quasi-static models turned out to be largely convective or even, in some cases, fully convective, with most or all of the energy carried by convection and with luminosities far greater than the final MS value:






L >> LMS .

Hayashi showed in his 1961 paper (only 3 pages long!) that there was a region of the HR diagram in which no quasi-static models can exist (for a detailed account, see Hayashi, Annual Review of Astronomy and Astrophysics, vol. 4, pp. 171-192, 1966). The boundary of this region, usually called the Hayashi line, is almost vertical in the HR diagram, with the region towards lower effective temperature being called the “forbidden region”. Hayashi’s result implied that, if stars approach the main sequence through a series of quasi-static models, they must always stay to the left of the Hayashi line in the HR diagram and must have a fully convective, highly luminous phase, whose extent depends on the star’s mass. To a first approximation, the Hayashi line can be taken to be a line of constant effective temperature (Teff ( 4000 K), which means that as a star contracts down the Hayashi line (or parallel to it) its luminosity decreases (L ( R2). For masses more than about three-tenths of a solar mass, as the luminosity drops it becomes possible to transport the energy through the star by radiation, first of all in the centre, and a radiative core develops. Eventually, the star becomes fully radiative, and then it follows the Henyey track onto the main sequence. Lower mass stars remain fully convective all the way to the main sequence, and approach it vertically (Handout 10, top and middle).

Assuming homologous contraction, it is possible roughly to compare the timescales for a star to reach the point where the Hayashi and Henyey tracks meet by the two different routes: fully convective (roughly vertical) and fully radiative (roughly horizontal). Assuming Kramers’ opacity, so that the Henyey track is given by equation (6.1), it can be shown that a star on the Hayashi track reaches the joining point in less than half the time it would take on the Henyey track (assuming in both cases contraction from infinite radius, which is not very realistic). This is qualitatively understandable, because the star on the Hayashi track has a higher luminosity and therefore uses its gravitational energy resources faster.

Before a star reaches the Hayashi line, it comes through the ‘forbidden region’ on a dynamical timescale, and a model of what it may do is shown in Handout 10 (bottom figure). Before point A, which is where the proto-star first becomes opaque, the contracting gas cloud is optically thin and cool and is collapsing in free fall: the internal pressure gradient is far too low to counteract gravity, and it stays cool because radiation escapes freely. Once it becomes opaque, radiation becomes trapped, and it soon moves to an adiabatic collapse – a core forms first, then the outer layers fall onto the core, giving rise to a shock. The adiabatic collapse has already heated the interior of what is now a proto-star, and the shock leads to a much more rapid heating, to ionisation of the H and to the onset of convection – this all happens very fast, before the radius has time to change much, and the luminosity shoots up at nearly constant radius as the proto-star approaches the Hayashi line. The whole evolution from point A to point E lasts no more than about 20 years, of which the shock-induced transition from D to E is over in around 100 days – so we don’t expect to catch either phase happening. When the proto-star reaches point E, a quasi-static configuration is possible, and the proto-star begins a much slower, quasi-static contraction down the Hayashi track appropriate for its mass, essentially on a Kelvin-Helmholtz timescale.
Of course, this is a very sketchy account of what is certainly a much more complicated early evolution. For a single cloud, it is generally agreed that a core forms first, and that the evolution is very rapid, but in practice the initial gas cloud may fragment into several proto-stars, possibly forming a binary or multiple system, and the effects of rotation and magnetic fields must be taken into account as well as detailed heating and cooling processes. Numerical simulations look quite similar to the simulations of large-scale structure in the early universe, with filaments and knots forming, and material accreting onto the initial cores (the knots) along filaments rather than spherically symmetrically, as was assumed in early calculations. Observations tell us that discs and jets are also involved in the formation process – so our discussion here is very much confined to the final stages, when the proto-star is close to becoming a MS star and we ignore its surrounding cocoon of gas and dust.

6.2. Main-sequence stellar structure

We have already discussed main-sequence stars at some length, so I will mainly summarise what we have already said and concentrate on comparing the behaviour at different masses more systematically than we have done so far.

The luminosity of MS stars is powered by the conversion of H to He through either the pp chain or the CNO cycle, while the main sources of opacity in the interior are Thomson scattering and bound-free absorption. Roughly, we can say:


M > 1.5 M( :  CNO cycle and Thomson scattering dominate


M < 1.5 M( :  pp chain and bound-free absorption dominate.

Of course, both nuclear chains and both opacity sources are present to some extent in all stars, and the switchover occurs over a range of mass, especially for the opacity; also, the switchover occurs at slightly different masses for the energy generation and the opacity – but the above is a convenient summary.

The CNO cycle dominates for more massive stars because the central temperatures are higher and the reaction rate is much more temperature sensitive than that of the pp chain. This strong temperature dependence leads to a steep temperature gradient near the centre, which is unstable to convection. We therefore expect more massive stars to have convective cores and less massive stars, where the pp chain dominates, to have radiative cores. On the other hand, the less massive stars have lower surface temperatures and appreciable ionisation zones that are unstable to convection, so they have convective envelopes, while more massive stars (in which the surface regions are already ionised) have radiative envelopes. 

This situation is summarised in Handout 11. In the upper figure, each vertical slice represents the structure as a function of mass fraction m/M. The lowest mass stars are fully convective, and the switchover from convective envelopes to convective cores happens at around 1.1 M(. Note also the strong dependence on mass of the concentration of mass as a function of radius – at around a solar mass, about 95% of the mass is within 50% of the radius, but this drops to less than 50% at a mass of around 0.4 M(. The concentration of luminosity varies much less with mass, but the concentration towards the centre is generally greater for stars with convective cores, where the temperature gradient is steeper.

The Handout also shows (lower figure) the variation of central conditions with mass – note the dramatic drop in central temperature at almost constant central density between 1 and 0.3 solar masses. The diagram also shows the general increase of central temperature and decrease of central density with the mass of the star, and also the gradual increase in the importance of radiation pressure towards higher mass, and the gradual increase in the importance of degeneracy towards lower mass. (Note that the units of density are cgs, not mks. In these units, the mean density of the Sun is about 1 – so the ratio of central to mean density for the Sun and the lower main sequence is about 100.)

As suggested by these diagrams, the possible range of mass on the main sequence is in fact limited. At the lower end, stars below about 0.08 M( never get hot enough at the centre for H fusion reactions (although there is a little D-burning on the approach to the main sequence) and they simply cool slowly; they are observed as brown dwarf stars, and have degenerate cores similar to those in white dwarfs (which we shall discuss in the last lecture).

At the high mass end, the mass is thought to be self-limiting, although the maximum mass is still rather uncertain. We believe that stars form by material accreting onto an initial core, thus gradually increasing their mass. Once the core reaches around 50-100 M(, the energy being released by the accretion process is so large that the radiation pressure exerted by the luminosity of the accreting core inhibits the accretion process, and the accreting envelope may simply be blown off again rather than becoming part of the star. Massive stars with well-determined masses are sufficiently rare that we so far have no reliable observational constraints on the maximum mass, but what observations there are seem consistent with this picture, and a maximum mass in the region of 50-100 M(. (It also turns out that stars more massive than about 60 M( are unstable to large-scale vibrations, but it is not thought that anything very drastic happens to them as a result, so that is probably not a limit on their mass.)

The detailed structure of MS stars depends on their chemical composition, and also on the details of the opacity laws, nuclear reaction rates, how convection is treated, and even to some extent on the numerical code used. However, there is sufficient agreement between authors that we can summarise the basic picture as follows.

(i) For a chemical composition similar to that observed for the Sun and similar stars, models yield a luminosity-effective temperature relation that agrees satisfactorily with the observed main sequence. When making the comparison, we have to remember that the observed stars have a range of ages, and (as we shall see) stars slowly increase their luminosity during the H-burning stage – so we expect the observed main sequence to be a band of finite width, with the model Zero Age Main Sequence (ZAMS) as its lower boundary:

[sketch on blackboard]

(ii) Changes in the assumed composition of the models causes a shift of the ZAMS, with little change in shape: 

[sketch on blackboard]

This shows that red giants cannot be formed from MS stars if they remain well-mixed as they evolve – for evolution changes H to He and so increases Y, and a star with uniform composition will move to the left as Y increases, rather than into the red giant region on the far right. So we conclude that red giants are NOT of uniform composition.

(iii) The theoretical M-L relation is in reasonable agreement with the observed relation (see Handout 2), although the number of stars with well-determined masses, especially at the low-mass end, is still quite small.

(iv) The switchover from convective envelopes to radiative envelopes seems to occur at about the right effective temperature, although direct observational tests are not yet possible and we must rely on indirect arguments based on details of the spectrum.

6.3. Post-main-sequence evolution

This has been studied for much longer than pre-MS evolution and is generally better understood. Pioneering work was carried out in the 1950s and 1960s, principally by three groups: Icko Iben in the USA, Rudolf Kippenhahn and collaborators in Germany and Bohdan Paczynski and collaborators in Poland. Each developed their own evolution code, and the broad agreement between the different groups gave them confidence that they were on the right lines. Since then, many other groups, from Switzerland to Japan, have carried out such calculations, and the results differ only in detail, because of slightly different assumptions about the equation of state, the opacity, the nuclear reaction rates, or the treatment of convection.

There are two main reasons why we are much more confident about our understanding of post-MS evolution:

(i) There are many observational tests available for MS stars, and we feel that we understand them well; this gives a much firmer foundation for post-MS studies than our ideas about star formation give for pre-MS evolution. One reason for this is that the MS lifetime is so much longer than the timescale for star formation that  observational tests for MS stars have much more data available than for star formation, despite increasing observations of young and forming stars.

(ii) Similarly, the post-main-sequence timescale is the nuclear timescale, which is much longer than the Kelvin-Helmholtz timescale for the final approach to the main sequence, so again we expect more stars in the post-MS stage than in the pre-MS stage and we can get better observational constraints.

Cluster HR diagrams

The most important observational constraint is the comparison of models with the HR diagrams of star clusters: groups of stars that formed together and therefore presumably have essentially the same chemical composition and the same age. We can therefore take groups of model stars of the same composition and follow their evolution, comparing them at different stages with different clusters. We have already seen (Handout 3) that there are essentially two types of cluster HR diagram, corresponding to old stars in globular clusters and young to middle-aged stars in galactic clusters:
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As we have already discussed, the lower mass stars have not yet left the main sequence because they are using up their fuel supply more slowly. We know that:
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and the lower mass stars take considerably longer to exhaust their supply of H fuel. Because the stars in a cluster are all of approximately the same age, we need to construct model HR diagrams where the stellar models are also of the same age – but the stars will of course be at different stages in their evolution. So to compare theory with observation we need to compute the evolution of stars of a range of mass and then draw isochrones – lines of constant age – joining stars of different mass:
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The details of a star’s evolution depend on mass, and we shall consider, as examples, the evolution of stars of:

(i) 5 M( - which will be relevant to the HR diagrams of galactic clusters, and

(ii) 1 M( - which will be relevant to the HR diagrams of globular clusters.

Massive stars (> 10 M() behave a little differently from either of these, but there are not many of them around, so we shall not say very much about them, although they will appear in some of the diagrams on handouts.

There is one common feature of the evolution of all stars: they stay close to the main sequence until hydrogen is exhausted in the core: until Xc = 0. However, the amount of H that can be consumed before that happens depends on the mass of the star because the size of the convective core depends on mass.

The situation is simple for low mass stars, which have no convective core. If there are no other mixing processes (and we believe that they are negligible in the central regions), the composition changes resulting from H-burning are localised where they occur and composition gradient is simply related to the temperature gradient. The profiles of hydrogen content against mass then look like the top figure in Handout 12.

Clearly much more fuel could be burnt if H from outside the hot central regions could be mixed in to the centre. That is what happened for higher mass stars, which have convective cores. What happens in detail depends on whether the convective core gets larger or smaller with time. For stars with M < 10 M( , the convective core shrinks with time, and the situation is relatively simple. For more massive stars, it grows and the details of the evolution get more complicated, involving a phenomenon known as semi-convection (see Kippenhahn & Weigert pp. 284-5 if you want to follow this up). However, the general features of the evolution remain similar, so we shall not discuss that case here.

If the core shrinks, the composition of the convective core always remains homogeneous, but a radiative zone of variable composition develops between the core and the original radiative region. If the core is large enough that essentially all the energy generation occurs inside it, then the radiative zone undergoes no further chemical changes until much later in its evolution. We then get the picture shown in the middle figure in Handout 12. 

One complication that arises is to do with how the edge of the convective core is defined. The simple definition is that it is the point where the temperature gradient becomes sub-adiabatic, so that radiation can carry energy more efficiently than convection; that is, the boundary is at the point where (rad = (ad. However, that doesn’t take account of the fact that the rising convective elements don’t stop abruptly when they reach this boundary – they are still being accelerated until they reach the boundary, and take some time to stop once they cross into the radiative region where the buoyancy force decelerates them. This phenomenon is known as over-shooting, and creates considerable complications in detail, because there is still some mixing in regions that are stable against convection. Some form of mixing length theory is needed to describe what happens, even when we can take ( = (ad inside the convective core. A good discussion can be found in Kippenhahn & Weigert, pp. 281-4, which is well worth reading. The bottom diagram on Handout 12 shows the result of a simple model. A key effect of this over-shooting is that more fuel is mixed into the core (as much as 30% more, in the case on the handout) and so the lifetime for nuclear burning is longer (possibly 25% longer) than would be given by models that ignore over-shooting. However, all models are still rather crude, and it is not clear whether the effects are really as large as this.


For all stars in this mass range (about 0.5 to 10 M(), despite the differences in composition profile, we can approximate the structure of the star at the end of MS H-burning by an envelope of the initial composition surrounding a core of higher mean molecular weight:  [complete this sketch]

Early models of red giant stars showed that it was possible to produce large radius by having such a molecular weight distribution, so people already had a qualitative understanding of where red giants fitted into an evolutionary picture – they were post-MS – before any detailed evolutionary computations had been made.

Evolution after central H exhaustion

After Xc = 0 at the centre, H can still burn in a shell around the centre, and gradually burns outwards, feeding He onto a growing inactive core. However, if the fuel is to burn fast enough to balance the luminosity, the star has to raise the temperature in the H-burning shell and so there is a very slow, almost homologous contraction of the core, on a nuclear timescale. Shell burning can start immediately after central exhaustion in low-mass stars – it’s really just a continuation of core burning, but with the very centre of the core omitted. However, in stars with convective cores H is exhausted simultaneously over a considerable range of mass: the whole convective region, in fact (compare the two profiles on Handout 12). This means that there is a pause in H-burning until the temperature at the outer edge of the convective core becomes high enough for burning to start in the shell, and in fact for these stars there is an overall contraction of the whole star, on a thermal timescale, between Xc = 0 and the onset of shell burning. So another difference between the masses emerges:

Slow core contraction ( H-burning in shell – straightaway for 1 M(  

    – after a delay for 5 M(  (overall contraction)



In both cases, there is left inside the shell a region with no energy source other than gravitational. This central core will rapidly become isothermal, because:
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(6.3)

Development of isothermal core

As the H shell burns outwards, the isothermal core gradually increases in mass. Schönberg and Chandrasekhar discovered that this growth cannot continue indefinitely: there is a maximum mass, beyond which the core is unable to support itself against the weight of the overlying envelope, and it collapses. This arises because of a peculiarity in the equation of state of an isothermal gas that is also self-gravitating. Because of the slow contraction of the core, the isothermal core grows in mass, but shrinks in radius. The outer layers are therefore sinking deeper into the potential well of the core and their weight is increasing. This can be expressed in terms of the pressure they exert: 

the external pressure on the core, Pext, increases. 

Initially, the core can cope with this, because its internal pressure steadily increases with compression, following Boyle’s law, PV = constant, or P ( 1/R3. However, as the core gets smaller the self-gravity becomes more important, and effectively provides a negative contribution to the pressure, which is ( 1/R4 and so increases faster than the Boyle’s law term. As a result, the internal pressure of the core increases to some maximum value and then begins to decrease as the compression continues. However, the external pressure from the overlying layers continues to increase, so the core can no longer support itself against this external pressure, and it rapidly collapses:

[sketch on blackboard]

The core mass for which this happens depends on the total mass of the star, and it can be shown
 that the instability occurs for:
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(6.4)

This is known as the Schönberg-Chandrasekhar limit, and is a limit on the fractional mass of the core, qc. [Do NOT confuse this with the Chandrasekhar limit for the total mass of a white dwarf, which we shall discuss in the final lecture – the physical mechanism is totally different.] 

The collapse of the core when it reaches this limit is initially catastrophic, because pressure balance has been lost and the core responds on a dynamical timescale. However, the release of gravitational energy rapidly changes the structure of the core from isothermal, internal temperature and pressure gradients build up and the collapse slows to a thermal timescale contraction of the core, which is what was happening before the limit was reached. How does the star respond?

The H-burning shell is very temperature sensitive and acts as a sort of thermostat: if the shell were to contract, the temperature would rise, the energy generation would rise, raising the temperature still further and the thermal pressure would rise sharply, causing the shell to expand again; if it were to expand too far, the energy generation rate and the temperature would drop, causing the shell to contract again. So in practice the temperature in the shell remains roughly constant, which means that the shell stays at the same radius within the star. This effect is driven by the need for the energy generation rate to be just the right amount to balance the luminosity from the surface.


However, the core is contracting underneath the shell – so the only way the star can keep the shell at the same radius is by expanding the envelope outside the shell. Thus the contraction of the core is balanced by an expansion of the outer layers of the star, turning the star into a giant. Because the luminosity is roughly constant for the higher-mass stars, the increase in radius is balanced by a decrease in effective temperature (L ( R2 Teff4), and the star becomes redder – it becomes a red giant.

[complete this sketch]

The Schönberg-Chandrasekhar (S-C) instability only operates in stars with masses between about 2 and 6 M( , so the 5 M( star is affected but not the 1 M( star. For these lower mass stars, the isothermal core becomes degenerate before the S-C limit is reached, so there is an extra source of support for the core and it does not collapse. However, the core is still contracting on a thermal timescale, so the thermostatic effect of the H-burning shell still causes the envelope to expand, but rather more slowly than for the higher-mass stars.

The star now evolves on the thermal timescale of the core, rapidly and at roughly constant luminosity for the higher-mass stars, until it reaches the Hayashi line. It cannot cross this, into the forbidden region, and we find again, just as for pre-MS stars, that care is needed with the surface boundary conditions and the stars develop deep convective envelopes.  However, at this stage of evolution nuclear sources are available (H-shell burning) and the star now moves up a Hayashi track: the red giant branch. Schematically, the evolution to this point can be represented on the HR diagram as in the top figure on Handout 13. Some detailed calculations are shown in the lower figures.

Evolution up the giant branch

The core continues to shrink as the star moves up the giant branch, until the central temperature is high enough for He to start to burn. What happens next depends very strongly on the mass.

M > 2.3 M(  

The core is still an ideal gas when He burning starts and ignition occurs quietly, at the centre. H-burning continues, in a shell.

M < 2.3 M(  

In this case, the core becomes degenerate before He ignition, and burning occurs explosively!

Why?

Ideal gas: Tc ( ( (He ( ( Tc (  ( Pc (  ( expansion and Tc ( ( self-regulating

Degenerate gas: P independent of T (to first approximation) ( no expansion 



 ( Tc ( more – thermal runaway (timescale ~ 103 s!)

This is the helium flash; the temperature builds up until Pion ~ Pel, P (, the core expands and cools and settles down to steady burning. So: the star survives this explosive start, but it changes its structure dramatically and moves very rapidly to lower luminosity and higher temperature. Horizontal branch stars in globular clusters are post-He flash:

[sketch on blackboard]
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Whether He starts to burn explosively or quietly, there is a period of steady burning during which the star is roughly in equilibrium – on the horizontal branch for low mass stars and at higher luminosities for higher mass stars. However, this period is shorter by an order of magnitude than the MS phase, because the rate of He-burning is much higher than the MS rate of H-burning.

After He is exhausted at the centre (Yc = 0), all stars start climbing the giant branch again. Because they mostly start at somewhat higher temperatures than the Hayashi line, and move asymptotically towards that line, the giant branch in this phase is called the Asymptotic Giant Branch, or AGB. The detailed behaviour again depends on mass, as shown in Handout 14. 

As they ascend the AGB, stars continue to burn nuclear fuel in shells, and in fact burn both H and He, becoming double-shell source stars. Shell burning turns out to be thermally unstable, and towards the top of the AGB the burning alternates between the He and H shells, causing pulses of luminosity and mixing of the processed material to the surface as the deep convective envelope reaches in to the H-shell while the He-shell is burning; convection between the shells may also mix products of He-burning outwards. This processed material is identified in the observations in two main ways:

(i) Excess of C (a product of He-burning) – these are “carbon stars”, with C/O ~ 2-5; most main sequence stars have C/O ~ ½

(ii) Isotope anomalies, e.g. from H-burning:

	
	12C/13C

	CNO cycle
	~4 in equilibrium

	Solar system
	~90

	Red giants
	10-20


Evolution beyond He core and shell burning also depends on mass, with the division occurring at around 8 M( on the main sequence. The main uncertainty in this dividing mass is the amount of mass loss that occurs during the evolution. The key factor that affects the evolution is in fact the mass of the core of the star, and whether or not it can become a white dwarf.

Main sequence mass > 8 M(   (core too massive to form a white dwarf)

For these stars, nuclear processing continues, mainly by addition of He nuclei to C to form O, then Ne, Mg, Si etc, as far as Fe. All these reactions produce energy, in decreasing amounts per nucleon, but when the core is made entirely of iron no further nuclear reactions can occur spontaneously with release of energy. At this point, the core is partly supported by the pressure of degenerate electrons, and the pressure may be reduced by some of the highest energy electrons finding it energetically favourable to be captured by nuclei of Ne or Mg. The core can then no longer support itself against gravity, collapses catastrophically (on a timescale measured in 10s of milliseconds!) to nuclear densities and bounces. The bounce leads to an outward-travelling shock wave, accelerated further by the pressure of neutrinos produced in the explosive nucleosynthesis generated by the energy of the collapse. This leads to the ejection of the outer layers of the star (probably some 90% of the mass of the star), leaving behind at most the compact core, in the form of a neutron star or black hole, depending on its mass (we’ll discuss this later). This is thought to be the mechanism for Type II supernovae.

The reason that neutrinos are produced in the collapse is that at these very high densities it is energetically favourable for electrons to combine with protons to produce neutrons – a process known as neutronisation. (Normally, this reaction goes the other way, because the neutron is unstable to decay into a proton and an electron on a timescale of around 900s.) This means that a huge flux of neutrons is also available during the explosion, allowing rapid neutron addition to nuclei such as iron – it is these reactions that form the neutron-rich nuclei that we observe in nature. Because the n-addition occurs much faster than the (-decay timescale, this process is known as the r-process (r for rapid), and we talk of r-process elements; they are observed in supernova remnants. At earlier stages of evolution, such as in AGB evolution, the supply of neutrons is much less and they can be added only occasionally, on a timescale much longer than the (-decay timescale. Heavy elements produced in that way are known as s-process elements (s for slow) and are neutron-poor; they are observed in the atmospheres of red giants and supergiants. 

Main sequence mass < 8 M( (final product a white dwarf) 

For these stars, neutrino losses keep the central temperature too low for C ignition. Depending on the initial mass, the degenerate core is either pure helium (for low initial mass) or a mixture of C, O and He (for higher initial mass). As the star evolves up the AGB, it loses mass, first by stellar winds and then, possibly as the result of the thermal pulses or possibly as a result of a so-called “superwind” (seen in very luminous AGB stars but not fully understood), by the ejection of the entire outer envelope as a coherent shell that drifts outwards. The loss of the shell reveals the very hot interior, so the star evolves rapidly to the left in the HR diagram, at roughly constant luminosity. The revealed hot star ionizes the shell, making it visible as a planetary nebula. The star then cools and evolves slowly to low luminosity, becoming a white dwarf star (Handout 15 summarises this).

6.4. Final stages of evolution: compact remnants

Once all the nuclear fuels in a star have been used up, there is nothing to prevent it from becoming a compact remnant of some kind. This follows immediately from energy balance and the virial theorem. So long as a star remains hot (Teff ( 0), it will continue to radiate and the only source of energy left to it is gravitational – so it contracts to maintain energy balance. But:
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(6.5)

As the star contracts:
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(6.6)
Thus the star cannot cool down, and it must go on contracting to supply energy for the radiation. Nothing can stop this process so long as the star remains an ideal gas, so the contraction will continue until the density is high enough for the Pauli exclusion principle to become important. The ideal gas law then fails and the main source of pressure arises from degenerate electrons (Section 5):




P ( (5/3  (non-relativistic)











(6.7)
P ( (4/3  (relativistic).

When the centre of the star first becomes degenerate, the electrons are non-relativistic. As contraction continues, the higher density forces electrons into higher and higher momentum states and relativistic effects become important. In either case, we have:
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(6.8)

so there is no longer a constraint on the mean temperature and the star can now cool and “die quietly”.

We also have, for non-relativistic degeneracy:
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(6.9)

Thus for a star of a given mass, the degeneracy pressure force increases during contraction faster than the gravitational force, and a new pressure balance becomes possible. We therefore expect to find at least some stars in this state: hydrostatic equilibrium, degenerate equation of state and slowly cooling. The obvious candidates are the white dwarf stars:



    log L






LWD ~ 10(4 L(  







RWD ~ 10(2 R(  







MWD ~ M(   







   log Teff
With these parameters:
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(6.10)
– at these densities, the electrons are certainly degenerate (unless T is very high, which is unlikely, because L is small), and we can identify white dwarfs as cooling, degenerate stars. We neglect the temperature, and discuss the structure of a:

Zero temperature black dwarf

Writing x = p0/mec, where p0 is the Fermi momentum, we know from Section 5 that:
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The last two can be combined to give:
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(6.11)

where (e = 2/(1+X) = average number of H atom masses per electron, and is a measure of the composition. Equations (5.20) and (6.11) together define the equation of state, and the remaining structure equations are the usual ones:
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(6.13)
These equations can be solved, independently of the energy equation, given the composition (i.e. a value for (e) and boundary conditions. Since the composition of white dwarfs is still poorly known, it is convenient to scale the variables so that (e does not appear explicitly. Define the homology transformation:




P* = P,   x* = x,   r* = r,   (* = (/(e,   M* = (e2M.

(6.14)

Then the equations become:
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and one integration will give us the structure for all compositions. Unlike the general equations of stellar structure, these equations are numerically stable, and it is possible to take


(* = (*c , M* = 0  at  r* = 0  (where (*c is arbitrary)

(6.16)

and integrate outwards until the density goes to zero (assuming that it does – for some choices of (*c it may not). That is defined as the surface:



R*s = r*((*=0)






(6.17)
and then M*s = M*(R*s) is the total mass of the star. Varying (*c gives a one-parameter family of models and a corresponding mass-radius relation. When this was first done by Chandrasekhar in the late 1920s, he found two curious results:

(i) As M*s increases, R*s decreases [sketch on blackboard]
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(ii) For a finite M*s, R*s tends to zero [sketch on blackboard]
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Thus there is a critical mass
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(6.18)
above which no solution can be obtained. This is called the Chandrasekhar limiting mass. If there is no hydrogen in the star (X = 0), then (e = 2 and





MChandra = 1.44 M( .  



(6.19)

Although it is hard to measure the masses and radii of white dwarfs, the available observations (Handout 16) confirm that typical white dwarfs, with radii about one hundredth of the Sun’s radius, do lie close to the model relationship. Also, no white dwarfs have ever been found that are definitely above the Chandrasekhar mass. Despite early doubts, mainly from Sir Arthur Eddington, Chandrasekhar’s model for white dwarfs, with the existence of a maximum mass, is now fully accepted.
One reason for this is that it is easy to use the virial theorem to estimate the mass-radius relation for low-mass white dwarfs and to show that a maximum mass should be expected. Stars with low central density will be non-relativistic, and we have P ( (5/3. Hence
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If these virial theorem terms are to balance, we must have
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(6.20)

This matches the models for low mass white dwarfs. As the central density increases, so does the mass of the star. For:
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(6.21)

So higher-mass white dwarfs will have higher central densities and we expect relativistic effects to become important. In the limit, we would then have P ( (4/3 and we have
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In this case, the radius cancels, and we can only have balance for a definite, unique mass: this is the Chandrasekhar mass.

This has all been for black dwarfs. For a realistic comparison with observation, we must consider thermal effects. The outer layers are low density, and are therefore non-degenerate, so we can construct a simple model with a fully degenerate core, an ideal gas envelope and a sharp boundary between them: [complete sketch]

Observed effective temperatures ( radiative envelopes

Observed mean density ( bound-free opacity dominates, so take Kramers’ law:




    ( = (0 ( T (3.5 .

(6.22)
Neglect radiation pressure in the envelope, and take surface values for mass, luminosity and mean molecular weight.

Then we have in the envelope:
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(6.23)

With P = T = 0 at the surface, this gives:
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We can now estimate the transition temperature, Ttrans, at the point where degeneracy sets in by equating the pressures given by this envelope solution and by the (non-relativistic) degenerate equation of state:
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(6.25)

This yields (exercise for the reader):
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(6.26)

Because thermal conduction is very efficient in the degenerate core, it is very nearly isothermal, so this is also approximately the temperature of the core. Through its dependence on A, Ttrans is a function of the surface luminosity and mass and turns out to be a few million K for typical white dwarfs. If there were any hydrogen present, it would burn at these temperatures, and the star would have a normal luminosity. We therefore expect:




XWD ( 0.




(6.27)

Of course, there may still be some hydrogen left in the outer, non-degenerate layers that are too cool for nuclear reactions, and indeed hydrogen is observed in the spectra of most real white dwarfs. However, the luminosity of white dwarfs results mainly from the cooling of the originally very hot core.

The final fate of more massive remnants

What happens to stars that are initially more massive than the maximum mass for a white dwarf?
1. They may lose sufficient mass by stellar winds and superwinds to produce a white dwarf and a planetary nebula. Stars below about 8 M( on the ZAMS can do this.

2. More massive stars develop a core that is above the white dwarf mass, and generally end up undergoing a core collapse in a Type II supernova explosion. The core implodes, and is driven to extremely high densities, far higher than in a white dwarf. It is then energetically favourable for the free electrons to combine with protons to form neutrons, because there are lower energy states for the electrons inside the neutron than are available in the filled Fermi sea of degenerate electrons outside the neutron. This process of neutronisation (mentioned earlier) produces a degenerate neutron gas, analogous to the degenerate electron gas that supports white dwarfs, but at a much higher density. The pressure of the degenerate neutrons is able to support the core against gravity, and we have a neutron star. 
Neutron stars also have masses comparable to a solar mass, but are much smaller than white dwarfs: typically RNS ~ 10 km. However, neutrons are also Fermi particles, so the equation of state is similar, except that the effects of both special and general relativity must now be taken into account. We therefore expect that neutron stars will also have a maximum mass, and that is confirmed by models. Adding relativistic effects alone gives a unique mass of about 0.72 M( (the Oppenheimer-Volkoff mass). However, we also need to consider particle-particle interactions at these densities, and our understanding of the details of the interactions of fundamental particles (and even what particles are present) at densities in excess of nuclear densities is still poor. As a result, there is for realistic equations of state no single number corresponding to the Chandrasekhar mass; all we can say is that the likely maximum mass is between 2 and 3 M(. The mass-radius relationship for one model is shown in Handout 17, which also shows the range of behaviour for plausible equations of state.
3. Some stellar cores are above even this mass. In that case, nothing can prevent self-gravitation eventually winning: the compact remnant will collapse to a singularity. It is likely that quantum effects may intervene to prevent the density actually reaching an infinite value, but we can never observe that, because the remnant will vanish through its event horizon once the escape speed from the surface exceeds the speed of light:
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(6.28)

This critical radius is known as the Schwarzschild radius, and once the star collapses inside the Schwarzschild radius it has become a black hole: not even light can emerge.

Numerically:







RSch ~ 3 km (M/M().




(6.29)

Are these extreme remnants observed?

Neutron stars – certainly exist, both in pulsars and in low-mass X-ray binaries. It is not clear whether they have been directly observed, although thermal X-ray emission from some X-ray binaries may originate from the hot surface of the neutron star. Masses from X-ray binary measurements are all around or just above the Chandrasekhar mass, suggesting formation by accretion onto an original white dwarf that went over the limit.
Black holes – by their very nature cannot be observed directly. However, there are more than a dozen
 high-mass X-ray binaries now known in which there is a compact remnant whose mass is certainly higher than the maximum mass for a neutron star – so most people believe that stellar-mass black holes have been detected. 
[The End]
� A simple approach can be found in Kippenhahn & Weigert, pp. 285-288.


� The first one was Cygnus X-1, in the 1970s; the best to date is V404 Cygni, found in the 1990s.
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