STELLAR STRUCTURE

Section 5: The Physics of Stellar Interiors

We must now discuss in more detail the physics involved in the expressions for pressure, energy generation and opacity, both to discover when it is valid to use the simple expressions I have given so far and to see what to do when they are not valid.

Is it even correct to assume that P, ( and ( are functions only of (, T and composition? As I said earlier, this is strictly true only in complete thermodynamic equilibrium. However, in practice the assumption can still be made for quite large departures from thermodynamic equilibrium, provided that all the important interactions that would lead to thermodynamic equilibrium occur either very fast or very slowly compared to the timescale of the problem in which we are interested – in either case, we talk about “limited thermodynamic equilibrium”. For example, in complete thermodynamic equilibrium, we would expect nuclear reactions to have changed most matter into iron, which is the most strongly bound nucleus. In practice, on Earth, the nuclear reactions proceed so slowly that we can regard all nuclei as immutable, and set up situations of limited TE. 

In stars, although nuclear reactions are occurring, there is also limited TE if we are interested in timescales that are much shorter than the nuclear timescale. The other kinds of interactions of importance are ionisation and the other interactions that lead to equilibrium amongst atoms, ions, electrons and photons – these occur on atomic timescales, which are normally much shorter than the timescales we want to consider, so there is time for atomic equilibrium to be established. Thus we are allowed to say:


tnuclear >> tproblem >> tatomic   (   P, (, (  =  functions of ((, T, composition).

There are a few situations in which these inequalities are not both satisfied, and then we would need more general expressions for P, (  and (. For example, in a supernova explosion nuclear reactions can occur on the timescale of the explosion, creating heavy elements as part of the explosive process (so-called ‘explosive nucleosynthesis’), so that the first inequality becomes an approximate equality. We then need consider the rates of interactions explicitly, and the expressions we shall derive below become invalid – but that is a very extreme situation, and for the majority of a star’s life we can assume that limited TE applies.

5.1 Composition and molecular weight

The chemical composition of a star affects the pressure, opacity and energy generation, so we need first to look at the composition and how it determines the mean molecular weight.

The composition of a star is specified by the proportion of each element that is present as a function of mass fraction m. Because, as we shall see, stars go through a fully convective stage during the process of formation, which mixes the material thoroughly, we expect stars to reach the main sequence with approximately uniform composition. The formation process is rapid compared to a nuclear timescale, so we normally say that such a star, newly arrived on the main sequence, is of ‘zero age’. After that, nuclear reactions will gradually change the composition. The reaction rates are strongly dependent on temperature, needing temperatures in excess of 106 K, so they occur preferentially at the centre, and later in a shell around the centre. We need to know the rates in order to calculate (.

The mean molecular weight of stellar material depends not only on the proportion of each element present but also on whether it is in molecular, atomic or ionic form. In most cases we can determine that from the conditions for equilibrium. In the outer regions of a star, most elements are only partially ionised, and the mean molecular weight is a complicated function, depending on the exact degree of ionisation, particularly of H and He, the most abundant elements. We shall not discuss that case.

Fortunately, through the bulk of the mass of a star, and certainly in the deep interior, the material is essentially fully ionised, and we can use that fact to derive an approximate form for the mean molecular weight. We shall then use only that form for the rest of this course, but we need to remember that it is a rather poor approximation near the surface, and may lead to results for the surface regions that are incorrect in detail, although not normally qualitatively wrong.

We define:


X = fraction of material by mass in the form of hydrogen




(5.1)


Y = fraction of material by mass in the form of helium




(5.2)


Z = fraction of material by mass in the form of other elements.



(5.3)

Since the most abundant of these ‘other elements’ are the iron group elements, we normally refer to all other elements as “heavy elements” or even “metals”, even though a chemist would not recognise oxygen, for example, as a metal!  With these definitions:


X + Y + Z = 1.









(5.4)

We also need to know the number of particles of each species, per hydrogen atom mass, mH. We have:

(a) for ionised hydrogen: 

2  
(2 particles per mH: 1 proton, 1 electron)

(b) for fully ionised helium:

3/4 
(3 particles per 4 mH: 1 He nucleus, 2 electrons)

(c) for heavy elements:
           ~1/2
(Z+1 particles per A mH, if fully ionised).


The last figure is only approximate, and follows from the fact that the nuclei of many elements have the same number of protons as neutrons, so that the charge is about half the mass. The number is slightly more than ½ for light nuclei (e.g. 12C: 7/12) and slightly less for heavy nuclei (e.g. 235U: 93/235). The figure we want is some average value, weighted by the abundances of the various elements. Observed abundances in stellar atmospheres show that most of the “heavy elements” are in fact light nuclei: C, N, O, Mg, Si etc. Thus the average value is probably more than ½ for full ionisation. If we take it equal to ½, this makes some allowance for incomplete ionisation and for the heavy nuclei. In any case, the error in ( will be small, because the total mass of elements other than H or He is typically only a few per cent, so their contribution to the mean molecular weight is small.

We can then calculate:


N = total number of particles per unit volume.

If the density is (, then:


total number of H atom masses per unit volume = (/mH .

Of these,


number in form of H


= X (/mH , yielding 2 X (/mH particles


number in form of He


= Y (/mH , yielding ¾ Y (/mH particles


number in form of heavy elements
= Z (/mH , yielding ½ Z (/mH particles

and so the total number of particles per unit volume is:


        N 
= (2X + ¾ Y + ½ Z) (/mH 



= (6X + Y + 2) (/4mH , using Z = 1 – X – Y .




(5.5)

Note that for sufficiently small Z (<< X, Y), X + Y ( 1, and then 


       N
( (5X + 3) (/4mH .

Remembering that ( is defined as the average mass of a particle in hydrogen atom masses, we have:
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(5.6)

(or we can use one of the other two expressions above).

To specify the value of (, we need to know the values of X, Y and Z. We can only observe the abundances in the surface layers of stars, so we must assume that the relative abundances in the deep interior are the same as we see at the surface. These surface abundances are quite similar from star to star, at least for stars no older than the Sun, and are shown in Handout 4. The general decline towards higher atomic number is consistent with the generally accepted theory that all elements heavier than lithium were formed inside stars, being gradually built up by nuclear reactions at the centre and then returned to the interstellar medium by stellar mass loss, especially in supernova explosions. Thus successive generations of stars are expected to contain more and more heavy elements – and the very earliest generation should contain essentially nothing but hydrogen and helium, which were produced in the first few minutes of the Big Bang, along with deuterium and lithium. We have not seen these first generation stars yet, but certainly very old stars show considerably fewer heavy elements, such as iron.

If we take the seven most abundant elements in the Sun, listed in the table on the Handout, and assume that they represent the abundances inside the Sun as well as on the surface, we find:






( ( 0.62.

We shall adopt this figure for all future calculations. However, we need to bear in mind that the formula we have used is only valid in the interior. In stellar atmospheres, incomplete ionisation becomes important and we need to use the full set of ionisation equilibrium equations to determine a value for (. In practice, approximations are made there also, but we shall not discuss that rather complicated situation – the interior is quite complicated enough.

Having determined (, we now consider the other three quantities: pressure, energy generation and opacity.

5.2 Pressure

So far we have used the simple equation of state
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and we must ask how this may need to be modified.

(a) Radiation pressure.    


The form aT4 /3 follows if we assume that the intensity of radiation closely follows the Planck function:
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There are two potentially important deviations from this:

(i) Near the surface of a star, most of the radiation is flowing outwards and so the radiation field becomes very anisotropic. This means that the radiation pressure becomes a tensor, not a scalar. This complicates the detailed discussion of the radiation, but fortunately in most cases the radiation pressure is smaller than the gas pressure near the surface, so the modification is not very important as far as the equation of state is concerned:

Prad << Pgas near surface (  tensor effects normally unimportant.

The main exception occurs in stars that are very hot and very luminous, where radiation pressure is so strong that it drives significant mass loss from the star.

(ii) The interior of a star is a plasma. In a plasma, electromagnetic waves cannot propagate if their frequency is less than the natural oscillation frequency of the plasma – the so-called ‘plasma frequency’ – essentially because the waves cannot excite oscillations in the plasma and so they are simply absorbed:

no propagation if  
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(5.7)

This is the effect that causes long-wavelength radio waves to be reflected in the ionosphere and so made long-range radio communication possible before the use of communications satellites. It also prevents wavelengths longer than about 15 m from penetrating from space to the ground and so determines the upper limit to the ‘radio window’.

If the plasma frequency is comparable with or greater than the maximum of the Planck curve, there must be serious effects on the spectrum of the radiation field (sketch on blackboard):


important effects if   
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Fortunately, for a given ne, this will again be more likely to occur for low temperature, where the radiation pressure is less important and we again find that

Prad << Pgas near surface (  plasma effects normally unimportant.

We conclude that:





Prad = 1/3 a T4  is usually OK.

(b) Gas pressure.

Because stellar material is a plasma, there are electrostatic interactions between the ions and electrons. This leads to modifications in the ideal gas law that can be important in some circumstances – for example, at the very high densities within evolved stellar cores and white dwarf stars. However, the theory is extremely complicated, and the effects for most stars are small (< 2%), so we shall not discuss this particular modification. 

A far larger modification is needed to allow for:

(i) Relativistic effects

(ii) Quantum effects (Fermi-Dirac statistics).

These effects become important, and sometimes dominant, in highly evolved stars. 

Relativistic effects become important when the temperature becomes high enough that





kT ( m c2 , where m = particle rest mass.


(5.8)

Because the electron mass is some 2000 times less than the proton mass, relativistic effects become important first for 

electrons, at T ( 6(109 K

and only later for


protons,    at T ( 1013 K.

Such very extreme temperatures probably only occur in very exotic objects, such as neutron stars, if at all, and we shall restrict ourselves to discussing electrons.

Electrons are fermions, obeying Fermi-Dirac statistics. This means that no more than two electrons (of opposite spin) can occupy a given state. What do we mean by a ‘state’? For bound electrons in atoms, the energy states are discrete and easy to identify. For free particles, whose distribution of position and momentum appear to form a continuum, the definition of a state is not so obvious. If we solve Schrödinger’s equation for fermions, we find that there is:





1 state/volume h3 in phase space,

where ‘phase space’ is the 6-dimensional space whose co-ordinates are the 3 position co-ordinates and the 3 momentum components of a particle. We can see where this result comes from, using a more physical argument, if we write Heisenberg’s uncertainty principle in the approximate form:






(px(x (  h
(rather than ( = h/2π). Physically, this says that we cannot define a smaller region of 2-dimensional position-momentum phase space than a rectangle of area h. It then makes sense to say that that area defines a state: it’s the smallest region of phase space to which a particle can be confined. Extending this to all three spatial dimensions, and all three momentum components, it is then clear that the smallest volume of 6-dimensional phase space to which a particle can be confined is h3, which is the result from the formal solution of Schrödinger’s equation.

If we then define p = magnitude of momentum and work in spherical polar coordinates in momentum space, we have:

number of states with momentum between p and p+dp in volume V = 
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(5.9)

and so, writing N(p)dp =  number of electrons with momenta whose magnitude is between p and p+dp, we have:
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(5.10)

In a system of low enough density, this is not a restriction and quantum effects are not important. They will become important when the classical expression for N(p) approaches this upper limit. The classical expression comes from non-relativistic Maxwell-Boltzmann statistics, and is:
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(5.11)

where now p = mv. This expression becomes comparable with the upper limit for fermions when:
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(5.12)

This occurs first at p = 0, and so we can say:



quantum effects are important if     ne  ( 
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(5.13)

The values of gas density ( and temperature T for which this is true will depend on the composition of the material, which affects the relation between electron density (electrons m-3) and total gas density (kg m-3). Again, it is clear (replacing the subscript e by p on both sides of equation (5.13)) that quantum effects are important for protons only under much more extreme conditions (number density up by a factor of about 105).

Situations where effects are beginning to become important are hard to treat, so we shall consider an extreme case, which may be approached but never actually reached:

Completely degenerate electron gas


This corresponds to the limit T ( 0, when there are no thermal effects at all. However, relativistic effects can still be important, because the Pauli exclusion principle requires some non-zero motions even at zero temperature. At zero temperature, all the momentum states in a volume V are filled up to some maximum magnitude of momentum, and all the higher states are empty: 

The maximum momentum, p0, is called the Fermi momentum.






We therefore have:
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(5.14)

and the total number density of electrons in the volume V is:
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(5.15)

The pressure of this degenerate gas can be calculated from the definition:

pressure = mean rate of transfer of (normal component of) momentum across a surface of unit area.


no. of electrons/unit     momentum           velocity                   element of

vol./unit solid angle,     perpendicular       perpendicular         solid  

between p, p+dp          to surface             to surface               angle
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and so
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(5.16)

It is easy to evaluate this integral in two limiting cases. For non-relativistic electrons, vp = p/me and 

P = 8πp05/15meh3; 

at the other limit of extremely relativistic particles, we may take vp = c and then 

P = 2πcp04/3h3. 

However, in general the electrons are likely to be partially relativistic, and we must use the full expression for vp. From the special theory of relativity, we have, for any particle of momentum p:
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(5.17)

where m is the rest mass of the particle, so the pressure is given in general by:
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(5.18)

This can be put in a neater form by making the substitutions y = p/mec and x = p0/mec. This gives
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(5.19)

The dimensionless integral can still be evaluated, but I will not give the derivation. The result (which you can verify by differentiation) gives:
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(5.20)

We can also find the total thermal energy of the system, which is given by the total kinetic energy of the particles:
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(5.21)

where E(p) = kinetic energy of particle = total relativistic energy – rest mass energy. Hence:
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(5.22)

This gives
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(5.23)

Note that the thermal energy is not zero, despite the temperature being zero. This is of course a result of the exclusion principle forcing electrons into higher energy states, producing non-zero kinetic energy. The non-zero kinetic energy and the non-zero pressure mean that a degenerate star may be able to support itself against gravity, even at zero temperature; a star made of ideal gas could not do that.

The functions f(x) and g(x) have simple asymptotic forms in the limits of small and large x:



f(x) ( 8x5/5 ;
g(x) ( 12x5/5 ;   as  x ( 0




(5.24)

f(x) ( 2x4 ;          g(x) ( 6x4 ;        as  x ( ( .




(5.25)

From the definition of x, it is clear that x ( 0 gives the classical limit, where relativistic effects are negligible, and x ( ( gives the extreme relativistic limit, where relativistic effects dominate. If we now write the electron density in terms of x, using (5.15), so that:


[image: image23.wmf]33

3

3

8

,

3

e

e

mc

nx

h

p

=








(5.26)

then the equation of state and the thermal energy in these limits are:
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as  x ( 0  (N.R. limit)


(5.27)
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as  x ( (  (E.R. limit).


(5.28)

In the simple case when the gas density is just proportional to the electron density, ( ( ne, the equation of state can be written:




P ( (5/3

(N.R., degenerate)




(5.29)

P ( (4/3

(E.R., degenerate).




(5.30)

These correspond to polytropes with n = 3/2 and n = 3 respectively – so polytropes are not just artificial models.

We have now discussed the cases where quantum effects alone are important, and where quantum and relativistic effects are both important. If relativistic effects alone are important, it turns out that the electron gas behaves like an ideal gas at all temperatures:




P = nekT
(non-degenerate).




(5.31)

However, the thermal energy does depend on the kinetic energy of the particles:


U = 3PV/2  (N.R., non-degenerate);      U = 3PV  (E.R., non-degenerate)


(5.32)

We shall not prove these results.

[Sketch on blackboard]
In any real situation, the electron gas will not be completely degenerate and the distribution will have a thermal tail, following Maxwell-Boltzmann statistics for large values of p. There will therefore be thermal corrections to the formula for the electron pressure, and for finite temperature we can write the total pressure schematically as:
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(5.33)

How important are the thermal terms? Even when the electrons are non-degenerate, Pe  (  Pi  for a fully ionised gas (because ne ( ni  - the equality holds for pure, fully ionised hydrogen; for partially ionised pure hydrogen Pe  <  Pi ). When the electrons become degenerate, the electron pressure is greater, for a given electron density, than is given by nekT, because the Pauli exclusion principle forces electrons into high momentum states. Thus:



Pauli principle ( Pe(degenerate) > nekT > nikT.

This suggests that we can ignore the ion pressure. At high densities, where degeneracy is important, radiation pressure is usually small compared to (ion) gas pressure, so we can ignore that term as well. The temperature corrections to the degeneracy pressure are quite small as well, so we can in fact say that, to a good accuracy,
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(5.34)

5.3 Stellar energy sources

We have seen that gravitational energy is insufficient to support the Sun’s luminosity for the timescale of around 5(109 years required by geological evidence, but that nuclear binding energy could in principle provide enough energy to last some 1011 years. We now need to ask how much of that energy is available in practice.

Under what circumstances can nuclear energy be released? If several particles combine to form a compound nucleus, energy is released if the mass of the compound nucleus is less than the sum of its components. This mass difference is usually expressed as an energy, called the binding energy of the nucleus:





Q(Z, N) = [Zmp + Nmn – m(Z, N)]c2



(5.35)

where Z = number of protons (mass mp), N = number of neutrons (mass mn) in a nucleus of mass m(Z,N). A more useful quantity is the binding energy per nucleon, or “packing fraction”, = Q(Z,N)/(Z+N). Schematically, this quantity has a very simple dependence on the atomic mass number A, although there is quite a scatter about the simple schematic curve, as shown in Handout 5.

The key features of both curves are that they rise steeply for small atomic masses, reach a broad maximum in the region of iron and then fall more gently towards higher masses. Thus the most strongly bound nuclei are in the region of iron, and energy can be released either by the fusion of light elements or by the fission of heavy elements – the latter being the source of energy in current nuclear power stations. Because of the very different slopes above and below the peak, it is clear that fusion is potentially a more powerful energy source than fission. The light elements are also much more abundant than the heavy elements, so we expect fusion to be the dominant source of stellar energy.

Although most elements lie not far from the schematic smooth curve (carbon and oxygen stand out as small local peaks), helium – or at any rate 4He – lies well above the mean curve, which means that the single most important fusion reaction is:





H ( He , releasing 7.1 MeV/nucleon.

If it were possible to go all the way from H to Fe in one step, 8.8 MeV/nucleon would be released, so this first step already releases most of the available fusion energy.

Charged particle reactions

Most of the important reactions in nuclear fusion, including H to He, involve charged particles, although there are phases in a star’s evolution where (-rays and neutrons also play an important role. The most important forces between charged nucleons are:




repulsive electromagnetic (Coulomb) force




attractive nuclear force (strong interaction).

Weak interactions are also important in reactions involving electrons or positrons, but gravitational forces are almost always completely negligible. Schematically, the two main forces interact as shown in Handout 6: the deep nuclear potential well takes over from the Coulomb potential very close to the nucleus, so any incident particle first meets a potential barrier dominated by the Coulomb repulsion.

Classically:


reaction only if E > E0 

(when E < E0, the particles pass one another in hyperbolic orbits, without reacting). Temperatures in stars correspond to particles with energies of only a few keV, and it was therefore originally thought that it was impossible for nuclear reactions to occur at any significant rate. However, there was no other sufficiently energetic source, and Eddington is said to have replied to the objection that the centres of stars weren’t hot enough for nuclear reactions by saying “well, go to a hotter place”…….

The problem was, of course, resolved by quantum mechanics, which allows barrier penetration: that is, there is a finite probability of a particle getting through the potential barrier into the nucleus even if E < E0. Once inside the nucleus, there is a certain reaction probability, depending on the detailed properties of the nucleus. Both of these factors depend on the relative energies of the colliding particles, so we can write the total cross-section, (, for thermonuclear reactions schematically as:
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(5.36)

where B(v) = barrier penetration factor, N(v) = reaction probability and M(v) dv = velocity distribution (normally roughly Maxwellian).

Barrier penetration can be understood by thinking of the particle as a wave, which is transmitted with a certain attenuation. A wave may also be reflected, either at the outside of the Coulomb barrier, or at the edge of the potential well, where there is a very sharp discontinuity in potential. For low energy incident particles, there is a strong chance of reflection at the edge of the potential well, except for particular values of the energy that correspond to energy levels in the compound nucleus made up of the target nucleus plus the incident particle(s). For these energies, the interaction cross-section is much higher than normal, and we say there are resonances at these energies. For higher energy particles, the discontinuity in potential has less effect and the resonances disappear. We can summarise this as:


Wave picture (  barrier penetration possible for E < E0



E << E0:   
discontinuity in potential ( resonances




E ( E0:

no resonances.

Any more detailed discussion of the cross-section is outside the scope of this course, and the reaction probability is particularly complicated. However, I shall write down for interest the theoretical result for non-resonant reactions:

If N = number of reactions kg-1 s-1 involving 2 particles, masses A1mH and A2mH, charges Z1e and Z2e, and fractional concentrations x1 and x2, then:
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(5.37)

where 
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and S = specific nuclear factor. S can sometimes be calculated theoretically, but often only experimental results are available. Unfortunately, cross-sections often become too small to measure in the lab at the sort of energies of astrophysical interest: typical lab energies are about 10 times the energies of particles inside stars, so considerable extrapolation of experimental results is often needed. Fortunately, S is a fairly slowly varying function of energy, so this extrapolation is usually safe, unless there is an unsuspected resonance in the astrophysical energy range.

At low temperatures, the exponential factor in (5.37) dominates, and the reaction rate is negligible, essentially because the probability of barrier penetration is too small. As the temperature rises, the lowest Coulomb barriers are penetrated first and so reactions between light nuclei (low Z) occur at lower temperatures than those between heavy nuclei. The quantitative effect of the nuclear charge can be seen in the definition of (. At very high temperatures, the exponential term is roughly unity and the (2 term takes over, making the reaction rate drop again, essentially because the particles are shooting past each other too fast to interact.

Important reactions in stars

The reactions that produce most of the energy in stars are:






4 H1   (  He4
and




3 He4 (  C12.  

H(He

The first detailed proposal was made in 1938-39, independently by Hans Bethe and Carl-Friedrich von Weizsäcker. Surprisingly, they proposed a rather complicated process, the CNO cycle, in which carbon, nitrogen and oxygen act as catalysts. As shown on Handout 6, there is a main cycle and a number of less probable sub-cycles. Once the cycle is running in equilibrium, the relative abundances of the various isotopes of C, N and O remain fixed while the He/H ratio steadily increases. For example, the ratio C12/C13 tends to 4 (cf. ~90 on the Earth), so a low C12/C13 ratio in a star or gas cloud tells us that we are seeing material that has been through nuclear processing.

An apparently more obvious process is the direct interaction of protons. The probability of 4 protons coming together at once and forming a He nucleus is vanishingly small, so the process has to proceed by steps, where only two particles are involved at a time. However, even then the first step, p+p ( D, is very improbable because one of the protons has to decay into a neutron and a positron (plus a neutrino) during the very short time that the protons are close enough to one another to interact. This decay occurs because of the weak interaction, which has a rather long timescale compared to the time (~10-20 s!) during which the protons can interact, so only a tiny fraction of proton ‘collisions’ – about 1 in 1027 – result in the formation of a D nucleus. This acts a bottleneck to the overall process and explains why the CNO cycle, where much higher Coulomb barriers need to be overcome, is competitive. In fact, it was originally thought that the pp-chain (see Handout 6), suggested by Bethe at the same time as the CNO cycle, had too low a cross-section to be important. It was not until 1952 that Edwin Salpeter showed that the reaction rate could be large enough to be important in stars.

There are other (-decays in the pp-chain, but they all occur in side-chains. The CNO cycle also involves (-decays, but they are not so improbable because they occur after a nucleus has been formed; however, because the next reaction cannot occur until the decay has taken place, these (-decays slow the overall reaction rate compared to reactions that involve only the strong and electromagnetic forces.

The presence of (-decays also means that neutrinos are produced in both reaction chains. They interact extremely weakly with matter (at some energies, the mean free path in water would be several light years!), so they escape from the star with some of the released energy. They also enable us in principle to probe directly the conditions at the centres of stars, and the recent resolution of the ‘solar neutrino problem’ (which I may talk about in the final seminar) has confirmed that our models of the solar interior are remarkably accurate: the measured flux of neutrinos matches extremely well the predicted flux from models.

At low temperatures, the pp-chain occurs more easily than the CNO cycle, because of the lower Coulomb barriers, but the CNO cycle rapidly becomes more important at higher temperatures. The reaction rates can be approximated as power laws, and in typical stellar conditions (~1.5(107 K in the Sun) we find:
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He(C

At still higher temperatures (~108 K), once all the hydrogen has been turned into helium, the helium itself may be fused together to form carbon, using the triple-alpha process (Handout 6). This reaction is also unusual, although involving no weak interactions. The intermediate product, Be8, is highly unstable (lifetime ~3(10-16 s!) and prefers to decay straight back into two (-particles. In fact, the reaction that leads to it is actually slightly endothermic, i.e. it requires a small amount of energy to be supplied before it will occur. However, at T ~ 108 K, the mean time between collisions for (-particles is slightly shorter even than the lifetime of Be8, so (as realised by Salpeter in 1952) there is a small but finite chance of another (-particle interacting with the Be8 nucleus before it splits up again. This second reaction to form carbon is itself unusual because it is a resonant reaction, forming an excited state of C12 – the energy of the excited state being close to the combined energies of the beryllium and helium nuclei. (This energy level in C was actually predicted by Fred Hoyle in 1954 after he realised that a non-resonant reaction would be too slow to explain the observed relative abundances of carbon and oxygen – addition of another (-particle to the carbon nucleus can transform it to oxygen and that would destroy all the carbon again as soon as it formed unless the C-forming reaction were resonant and as a result formed C faster than it could be re-processed into O. Hoyle persuaded Willy Fowler at CalTech to look for this energy level in C12, and it was found soon afterwards, converting Fowler from a nuclear physicist into a nuclear astrophysicist!) The reaction forming Be8 is also resonant, and the whole reaction chain occurs so rapidly that it is essentially a 3-body interaction, so that its rate per unit volume would be ( (3; then the rate per unit mass ( (2 and we can write
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Because this reaction is so temperature sensitive, it occurs essentially only at the temperature at which it first becomes important, which is ~108 K.

Neutrino reactions

As we have seen, some of the nuclear reactions in stars produce neutrinos, which carry energy away without interacting significantly with the star. For H-burning reactions, the resulting energy loss is typically about 5%, and only affects stellar evolution slightly, by reducing the time for which H-burning can supply a star’s energy.

However, at later stages of evolution, when the densities and temperatures at the centres of stars are higher, there is the possibility of additional reactions that lead to a much greater loss of energy via neutrinos. One of the earliest mechanisms was proposed for supernova explosions by George Gamow, who called it the Urca process after the Casino da Urca in Rio de Janeiro, because “the energy disappears in the nucleus of the supernova as quickly as the money disappeared at that roulette table” (he is said to have invented it by writing formulae on a tablecloth in the casino). The process, which occurs at significant rates only at very high densities, involves a nucleus capturing an electron to form an unstable nucleus, which subsequently (-decays back to the original nucleus:
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(Z-1, N+1) ( (Z, N) + e- + 
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The net effect of this reaction is simply to produce a neutrino/anti-neutrino pair, which escape from the star, carrying away energy and reducing the thermal energy in the star. The reaction can be repeated indefinitely, so can be a significant source of energy loss – it may have been the source of the neutrinos observed in the explosion of Supernova 1987A. It can only occur between pairs of nuclei of very similar ground state energies, so it is probably not important in the general evolution of a star.

There are also reactions that involve interactions with the radiation field, analogous to reactions between electrons and photons. These are generally important only for very high temperatures, above about 109 K, or very high densities, or both. As in the case of the Urca process, all the neutrinos produced are electron neutrinos. 

Photo-neutrino process

This is a variant of Thomson or Compton scattering of photons by free electrons: instead of being scattered, the photon occasionally turns into a neutrino – anti-neutrino pair:
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   (very rarely)

Pair neutrino process

For very high temperatures, kT > 1 MeV, electron-positron pairs can be created out of the energy of the electromagnetic radiation field, because then many of the photons possess energy of more than twice the electron rest mass energy. In thermal equilibrium, pair production is almost exactly in balance with the inverse process of pair annihilation to form two photons. However there is a tiny chance (1 in 1019!) that an annihilation will instead produce a neutrino – anti-neutrino pair:
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Bremsstrahlung neutrinos

A variation of the last reaction is the occasional production of a neutrino – anti-neutrino pair by “bremsstrahlung photons”, emitted when an electron is decelerated by the Coulomb field of an ion or a nucleus.

Plasma neutrinos

A final process, of importance in very dense material, follows from the fact that the stellar material is an ionised plasma, in which the speed of light is slightly less than c. In this case, the existence of a plasma frequency, which affects the transmission of electromagnetic radiation through the plasma, gives the photon an effective mass, m = ((p/c 2 , where (p is the plasma frequency (see equation 5.7). This ‘heavy photon’, or ‘plasmon’ – which can also be thought of as a quantized plasma wave – can decay into a neutrino – anti-neutrino pair, effectively as a result of the interaction between the radiation field (the photon) and the electromagnetic field of the plasma.

In some late phases of stellar evolution, and in particular in supernova explosions, the neutrino luminosity produced by all these processes may dominate over the photon luminosity. However, neutrino emission is a small effect in main-sequence stars.

However, there is one final process that does occur within main-sequence stars. All the above processes are in accordance with the standard Weinberg-Salam model of the weak interaction, and are consistent with the neutrino being massless. Recent experiments, especially measurements at the SNO (Sudbury Neutrino Observatory) experiment in 2001 and 2002, have confirmed long-held suspicions that neutrinos actually possess a small mass (probably less than 1 eV, and maybe much less), and as a result can change their flavour from electron neutrinos to mu or tau neutrinos. These ‘oscillations’ between neutrino types are enhanced in the presence of matter, by the so-called MSW (Mikheyev-Smirnov-Wolfenstein) effect that is predicted by some Grand Unified Theories (GUTs) that go beyond the standard Weinberg-Salam theory and attempt to unify the electromagnetic, weak and strong interactions. As a result, the neutrinos emerging at the surface of the Sun are expected to be a mixture of all three types of neutrinos, which explains why the original solar neutrino experiment of Ray Davis (running since the 1960s), which was sensitive only to electron neutrinos, detected only one-third of the expected flux from the Sun. This was the ‘solar neutrino problem’, and was finally resolved by the SNO experiment, which is sensitive to all three types of neutrino, and can count the electron neutrino flux separately, confirming that it was about one-third of the total.

5.4 Opacity

The accurate calculation of stellar opacity is one of the most technically complex problems in astronomy, beset by many uncertainties. We can never be sure either that we have thought of all the possible absorption processes or that the absorption cross-sections are accurately known. There have been two major programmes of recalculation of opacities in recent years (the Opacity Project, or OP, based at UCL, and the OPAL opacity code, developed at the Lawrence Livermore National Laboratory in California), which have resolved a number of long-standing discrepancies between theory and observation, but no-one would be surprised if further changes became necessary. I shall not discuss the very detailed calculations that are used in modern models of stars, but simply outline the general physical principles that are involved.

There are essentially four types of process that contribute to the radiative opacity of stellar material:

(i) Scattering

A photon can in principle be scattered off either a particle              [sketch on blackboard]

or another photon. However, photon-photon scattering is 

very rare, and in practice scattering by electrons is the 

most important scattering process.

(ii) Bound-bound transitions

[sketches on blackboard]

An electron in a bound orbit in an atom can be excited to a higher energy bound orbit if the atom absorbs a photon of the right frequency. This is what gives rise to the absorption lines that we see in the spectra of stellar atmospheres: photons of particular frequencies are removed from the outward flux. However, it is not very important in stellar interiors, for three reasons:

(a) atoms are highly ionised, so there are not very many bound electrons

(b) typically, the photon energy is greater than the ionisation energy, so ionisation is more likely than excitation

(c) absorption occurs only at a set of discrete frequencies (although in the case of molecular absorption there may be so many frequencies that this is not a serious restriction on the opacity).

(iii) Bound-free transitions

[sketches on blackboard]

Any photon of sufficient energy can ionise an atom, and this gives rise to continuous absorption for all frequencies satisfying:  ( > Vion/h.

(iv) Free-free transitions

[sketches on blackboard]

An electron moving in a hyperbolic orbit in the field of an atom may be excited into a different hyperbolic orbit by absorption of a photon; like scattering, this can absorb energy at any frequency.

All the processes that involve atoms can also take place in ions in stellar interiors and in molecules in the atmospheres of cool stars. Under extreme conditions, other processes such as pair production may also cause absorption, but we shall not discuss these.

When we discussed the transport of radiation (see the handout on the equation of radiative transfer), we defined the Rosseland mean opacity ( by (equation 3.21): 
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This defines the opacity as a harmonic mean of the various processes, i.e. a mean of the inverses. This means that we cannot just calculate the mean opacities for single processes separately and add them together – the whole calculation must be done together, and repeated from scratch if we either add a new process or change the chemical composition. Worse, the opacity will be formally zero if both ((’ and (( are zero in any frequency range, so we cannot just put the opacity to zero if we aren’t sure of its value. This is a result of the assumptions made in deriving the transfer equation and does not really mean that the star would be completely transparent under these conditions; if there were genuinely no scattering or absorption in some frequency range, the energy distribution would no longer be approximately Planckian and the derivation of the energy equation would be invalid. In practice, there will always be some scattering and absorption at all frequencies. Our problem is that, in order to calculate the Rosseland mean, we must have at least an estimate of both ((’ and (( at all frequencies.

Main physical sources of opacity

Scattering
The two main processes are:


scattering by free electrons – important in stellar interiors;


Rayleigh scattering by atoms or molecules – usually important only in stellar atmospheres.

Photon-photon scattering may become significant at very high temperatures, but even then is likely to be dominated by electron scattering or pair production.

The general form of electron scattering is Compton scattering:

[sketches on blackboard]

that is, scattering with a change of frequency or photon energy (so-called non-coherent or incoherent scattering). In the frame in which the electron is initially at rest, momentum and energy conservation show that the change of frequency is given by:
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In stars, we are generally interested in the non-relativistic limit, h( << mec2 (except at very high temperatures). In that case, when the energy of the photon is much less than the rest mass energy of the electron, we can neglect the change in frequency. This is called Thomson scattering (or coherent scattering) and the scattering cross-section per particle can be shown to be:
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(5.44)

where r0 is the ‘classical electron radius’. Because this depends inversely on the square of the particle mass, it is clear that the cross-section for scattering by nuclei will be much smaller (by at least 4(106) and we need only consider scattering by electrons.

The mass scattering coefficient, (, is just the cross-section per kg, and is given by:
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where ne/( is the number of electrons per kg. If there is complete ionisation, and there are no positron-electron pairs (which must be the case, because we are using the non-relativistic approximation), the electron and gas densities are related by:
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(5.46)

using X+Y+Z = 1. Hence, in a fully ionised gas:
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(5.47)

This justifies the statement we made much earlier, that electron-scattering opacity is independent of density and temperature – but it does depend on composition. Thus in very hot stars, where electron-scattering opacity is the dominant form of opacity, we can write:





( = constant = 0.02(1+X) m2 kg-1.
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Bound-free absorption

Bound-bound absorption is important only in the outer layers of a star, so we only consider bound-free absorption. In stellar interiors, H and He are essentially fully ionised, with no bound electrons, so only elements heavier than H or He make a significant contribution to bound-free absorption. For ions with bound electrons, there is a critical frequency, corresponding to the ionisation potential, above which absorption is continuous, and an approximate form for the cross-section can be shown to be: 
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where ( = the ionisation potential of the bound level (not necessarily the ground state). This expression gives the qualitative behaviour of ( with frequency for normal stellar densities. At very high densities, the electrons may be degenerate and then no unbound state may be available to an electron with the minimum ionising energy. Under these conditions, the frequency dependence is considerably modified.

Most ions will have a large number of discrete bound levels, and there will be a different critical frequency for each level. The absorption from each level will depend on the level population, which will be given by the Boltzmann factor in thermal equilibrium. We therefore expect the total cross-section for a hydrogen-like ion, with one electron in the outermost shell, to look something like the sketch on Handout 7 (top), with a series of absorption edges corresponding to ionisation from different energy levels (labelled according to the notation for hydrogen: thus the “Lyman limit” corresponds to absorption from the ground state of the ion).

Free-free absorption

This has a similar frequency dependence to that for bound-free absorption, but there is no critical frequency, and so there are no absorption edges:
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Continuous opacity in cool stars (3000 K < Teff < 7000 K)

None of these processes on its own can explain the strong continuous absorption observed in the atmospheres of the Sun and other cool stars, especially as the opacity seems to be essentially independent of frequency in the far red part of the spectrum. This was a major puzzle in the 1930s, when the theory of stellar atmospheres was being developed, until it was realised by Rupert Wildt that negative ions of hydrogen could be important. There are enough free electrons around from the ionisation of metals that the H( ion can form, with two known bound states:

[sketch on blackboard]

The binding energy of 0.75 eV is enough to make the H( ion relatively stable in the Sun and cooler stars (the excited level, with a binding energy of only 0.29 eV, is harder to populate and plays no role in the Sun). The continuous absorption is dominated by bound-free H( absorption in the visual, and the decline into the infrared, with a cut-off at 1.655 (m (the absorption edge), is compensated for by the rising free-free absorption from the same ion (i.e. electron scattering in the field of a neutral H atom). Thus the far-red opacity is relatively constant (see Handout 7, bottom sketch). These processes have to compete with neutral H absorption, which mainly arises from the Balmer, Paschen and Brackett continua (n = 2, 3 and 4) at optical and near infrared wavelengths. The number of electrons available to form H( is quite small, but enough are available from metals of low ionisation potential to ensure that N(H() >> N(H)n=2-4 and it is certain that H( is the main source of opacity in the atmosphere of the Sun and other cool stars. 

Approximate formulae for opacity

It is clear that the detailed calculation of opacity is complicated and time-consuming. For realistic stellar models, tables of opacity as a function of density and temperature are computed and at each point in a star, when the density and temperature have been calculated, the opacity for that point is obtained from the tables by interpolation. However, the general form of the tabulated results are as shown in the top figure (43) on Handout 8. It can be seen that, for a given density, the curves as a function of temperature have three branches, which are very approximately straight lines in a log-log plot (fig. 44). It is then possible to represent the tabular results by three approximate formulae, which correspond roughly to three different mechanisms:


electron scattering:

( = (1 = 0.02(1+X)




(5.51)


bound-free, free-free:

( = (2 ( T -3.5





(5.52)

(this formula was derived analytically by Kramers in the 1920s, using approximate arguments, so is usually called Kramers’ opacity)


H( absorption:


( = (3 (1/2 T4 .
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We can use the values in figure 43 to estimate the mean free path of a photon in the interior of a star. For the Sun, (( ( 104 m-1 throughout the interior (in SI units: at the centre: ( ( 105, ( ( 0.1; typical values are ( ( 103, ( ( 10), and so 
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Since the average temperature gradient is
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the difference in temperature between the points of emission and absorption is






Tem – Tabs ( 2(10-6 K.




(5.55)

It is because this difference is so small that thermal equilibrium is such a good approximation in the interior of a star. 
We now, in the final section, go on to talk about how the properties of a star evolve with time.
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