STELLAR STRUCTURE

Section 4: Structure of Stars

We shall first discuss the structure of model stars specified by the simple equations and boundary conditions we have so far considered, and then we shall ask how to modify this picture to obtain more realistic models.

The first thing we need to do is to write down specific expressions for the pressure, opacity energy generation and molecular weight. In the next section, we shall look at these in more detail, but for the moment we adopt some simple approximations.

Pressure:  as before we take an ideal gas, and initially neglect radiation pressure. This is, as we have seen, a good approximation in the interior of many stars, and in particular for main sequence stars of no more than a few solar masses.

Opacity and energy generation:  here we shall take simple power law expressions
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where (0 and (0 are both functions of chemical composition. The reason for the apparently odd choice of indices in the opacity will appear later – it merely simplifies some algebra. The exponent of density in (4.2) is appropriate to 2-body nuclear reactions:

number of reactions/m3 ( (2  =>  number/kg ( (.

This is the case for H-burning reactions, as we shall see. Of course, the full expressions for the opacity and energy generation are not power laws, but we shall see later that they can be approximated by power laws in some circumstances, where the indices vary only slowly with temperature.

Mean molecular weight: to a first approximation, this turns out to be independent of density and temperature, so we can write, as for (0 and (0,

( = ((composition).

With these approximations, the full set of equations of stellar structure becomes:
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All the state variables now appear explicitly, and the only implicit dependence is on composition, through (0, (0 and (.

This set of equations, together with the simple boundary conditions

r = L = 0   at   M = 0 



          (3.33)





( = T = 0   at   M = Ms ,



          (3.34)

possess what are known as homologous solutions, which we shall now explore.

Homologous solutions

This means that, given a set of stars of different mass but with composition the same function of fractional mass, the models for stars of different mass can all be derived from a model for one mass by simple scaling of variables. There are several ways of demonstrating this, and I shall give two alternatives, one formal mathematical approach based on the mass-dependent equations and one more phenomenological approach based on the radius-dependent equations; the latter is probably easier to use in practice (and could also be used with the mass-dependent equations), but the first method may make it clearer what is going on.  

If we write
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then our condition on the composition is, schematically,
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(which implies that (0 = (0(m), (0 = (0(m), ( = ((m), again the same for all stars). We then write:
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where the indices (, (, (, (, ( are constants (not to be confused with the earlier (, (, (!). If we substitute these expressions into the stellar structure equations, it is possible to eliminate the total mass Ms completely from the equations by a suitable choice of the indices ( to (. For example, equation (4.3) can be written
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from which Ms can be eliminated by choosing ( - 1 = 1 - 4(. Rearranging and following the same procedure for the other four equations leads to the following five relations for the indices:
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(4.11)

and to equations for the barred variables that are functions of m alone:
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The boundary conditions are also independent of Ms:
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However, the boundary conditions are only independent of the total mass because we have taken the density and temperature to be zero at the surface. If we took the boundary values of ( and T to be non-zero, the surface boundary conditions could only be made independent of Ms if ( and T scaled in the same way with Ms, i.e. if ( = (. In general, this would not be compatible with the conditions (4.11).

We can now in principle solve equations (4.12) and (4.13) for the barred variables as functions of m, and also solve equations (4.11) for the indices ( to (. We can then use the scaling relations (4.10) to produce a solution of the stellar structure equations for any choice of the mass Ms. That means that we only need to solve the structure equations once for all stars with the same chemical composition instead of having to solve them separately for every mass. Physically, this means that the shapes of the graphs of all the variables as functions of mass are the same for any total mass.

We shall return shortly to a different way of finding the scaling, but first we examine what the scaling can tell us in general about how the properties of stars vary with mass.

If we are to solve equations (4.11) completely for the indices ( to (, we need to know enough about the opacity and energy generation to be able to specify (, ( and (. We can now do this with a fair amount of confidence, but when the subject was first being developed in the 1920s no-one had any clear idea about the source of stellar energy and so ( was completely unknown. Fortunately, it was possible to obtain one very important result without knowing (. ( only occurs in one equation, so we can solve the remaining 4 equations for, say, (, (, (, ( as functions of (. For ( we find:
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Now consider equation (4.10) at the stellar surface (m = 1). The definitions involving ( and ( become:
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and we can use (4.14) to eliminate ( and (, giving:
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where c is a constant. The constant c depends on ( through the solution of equations (4.12), but the form of the relationship – the mass-luminosity relation – does not. 

The mass-luminosity relation can be compared with observation if we specify ( and (. Two approximate expressions for the opacity which are valid in certain ranges of temperature and density, and which were known in the 1920s, are:
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“Kramers’ law”:



( ( ( T -3.5 .



        (4.18)

The first of these is a reasonable approximation in the interior of massive stars, while the second is a better approximation for stars of about a solar mass; we shall see later in more detail what mechanisms are behind them. Using these approximations, we find:

Electron-scattering:


Ls ( Ms3



        (4.19)

Kramers’ law:



Ls ( Ms5.5Rs-0.5
.


        (4.20)

The first of these is a pure mass-luminosity relation, and the second one almost is, the dependence on R being much weaker than the dependence on M, while the ranges of values of stellar masses and radii are comparable. The mass exponents may then be compared with the values for the observed mass-luminosity relation, which we saw in Section 1 can be approximated near the Sun by:






Ls ( Ms4 .



        (4.21)

The agreement is remarkable, considering the approximations in the models, and was a great boost to the study of stellar structure when the theoretical prediction was first made, by Eddington, in the 1920s.

To make this prediction for the M-L relation, we have assumed (see equation (4.9)) that all main sequence stars have the same distribution of chemical composition with mass. We shall see later that giant stars have a rather different distribution of composition with mass from main sequence stars, because of nuclear evolution, so we would not expect giant and main sequence stars to have the same M-L relation. This is also borne out by observation.

If we are able to specify all three of (, ( and (, we can obtain a pure M-L relation for any opacity law, and can in fact obtain relations between any pair of physical quantities, since they all scale as powers of Ms. In particular, we can find the effective temperature of a star, using its definition in Section 1. This gives:
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         (4.22)

which demonstrates that the main sequence is the locus of stars of the same composition but varying mass. We shall find an equation for the L-Teff relation when we have described the other way of finding scaling relations.

We again have five equations to consider, but this time we go back to the equations in terms of r as independent variable:
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where again we include explicit expressions for ( and ( (equations (4.1) and (4.2)) and we neglect radiation pressure (note that including it would require ( to scale like T 3, which would be an additional and in general incompatible constraint). The exponents of ( and T in (4.23) are now simple, showing the reason for the choice of exponents in equation (4.1). This time we consider two main-sequence stars, A and A*, whose variables are related by the scaling relations:

  m = M*(r)/M(r), x = r*/r, l = L*(r)/L(r), p=P*(r)/P(r), z = (*(r)/((r) and t = T*(r)/T(r).           (4.25)

If we now write down the above 5 equations in the starred variables, i.e. for the star A*, and use the scaling relations to replace the variables for star A* by the variables for star A, we find:
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We can now divide these five equations for star A* by the corresponding five equations above without the scaling factors, which are the equations for star A, and this yields five relations between the six scaling factors:



p = mz/x, m = x3z, t = z(l/xt(, l = x3z2t(, p = zt.


     (4.27)

These five relations are the analogues of the five equations we had earlier for the five exponents ( to ( in the mass-dependent discussion. However, because there are six scaling factors, we treat the problem slightly differently: we must solve for five of them in terms of a particular one which we regard as known, but we can choose which factor we treat as the ‘known’ according to what scaling we are interested in. If we want to know how properties scale with the radius of a star, we treat x as the known, but if we want to know how they scale with the mass of a star we treat m as the known. From some of the scaling relations, we can quickly recover some of the results we had in Section 2. For example, we can easily eliminate p and z from the first and last relations to obtain t = m/x , which tells us that T ( M/R – which is effectively what Theorem IV told us. Similarly, eliminating z from the first two relations gives p = m2/x4, which tells us that P ( M2/R4, which is essentially what Theorem I says. Thus this procedure is rather more flexible than the more formal mass scaling we discussed earlier.

To confirm that it gives the same results as the previous mass scaling, you should verify that if we omit the equation that includes (, and eliminate p, t and z from the other 4 equations, we find




l = m(+1-( x3(-(,





          (4.28)

which is equivalent to equation (4.16).  

The general solution for all the variables in terms of (for example) x is rather messy, so we usually only treat special cases. It can be shown (example for reader!) that in general




l = x [3(1+()+(+(2(+1)(]/[1+(+(-(] .



         (4.29)

For the two special cases we have considered so far:


electron scattering (( = constant): 
( = 1, ( = 3

(4.30)


Kramers’ law:



( = 2, ( = 6.5

and we can take ( = 13 for illustration. Equation (4.29) can then be evaluated for the two cases and yields exactly  l = x4 (e.s) and  approximately l = x8.5 (Kramers). These can also be written as L ( R4 and L ( R8.5, and then we can use these relations together with the fact that in general L ( R2 Teff4 to eliminate R and find the slope of the main sequence:




L ( Teff8  (electron scattering)

(4.31)

L ( Teff5.2 (Kramers) .

Because electron scattering opacity is more realistic for massive stars, and Kramers’ opacity is better for stars near the Sun, this tells us that the main sequence in the HR diagram gets steeper towards higher masses (hotter surface temperatures) – as is observed. If the composition is assumed uniform throughout the star, the actual slopes also agree reasonably well with the observed main sequence.

Further progress in the study of stellar structure requires numerical integration of the complete set of equations, which I shall not discuss here in any detail, except to say that the equations are rather intractable in general. In particular, because of the 2-point boundary conditions, it is not in general possible to start integrating at the centre and go on until the density becomes zero: the equations are numerically unstable, and the solutions diverge near the surface. If we try to get round that by starting at the surface, the solutions diverge near the centre. It is therefore necessary to integrate from both ends and match the solutions half-way. However, once a first model has been constructed in that way it is possible to construct a linear set of equations which represent the differences between such a first approximation and a final model. By writing these equations as difference equations instead of differential equations, we can set up a (large) set of algebraic equations that represent the structure of the whole star, split up into many zones, each representing a mass shell. The equations for the innermost and outermost mass shells represent the boundary conditions, so the full set of algebraic equations is consistent with all the boundary conditions. This set of equations can be represented as a single matrix equation, which is solved by inverting the matrix – and this process can be made numerically stable. By making small changes in the total mass, it is then possible to construct a set of models of different mass. By considering small enough time steps, it is also possible to take a star of fixed mass and follow its evolution. 

Of course, if we are to construct realistic stellar models, we must get the physics as nearly correct as possible, and much of the effort in modern stellar evolution goes into improving the description of the physics. We shall not be able in this course to go into the full details, but we must at least look at the equations we have used so far and consider how they need to be improved. In the rest of this section I will discuss two key points:




stability




surface boundary conditions

and then go on in the next section to a much fuller discussion of the expressions for P, (, ( and ( .

Stability

We now know in principle how to construct a static model for a star. However, it is also vital to know whether such a model is stable – if we perturb it slightly, will the star return to its original configuration or will it find a new one? and how long will any change take?

If a star is unstable, and changes occur on a dynamical timescale, we say it is dynamically unstable. As we saw earlier, the dynamical timescale tD is typically hours to days, so we could easily detect such changes if they were at all significant. Most stars turn out to be completely stable on a dynamical timescale, with no large-scale changes on anything like such a short timescale (this does not mean that very small-amplitude vibrations cannot occur on short timescales – they certainly do in the Sun, which we nonetheless regard as dynamically stable overall).

Some stars are definitely dynamically unstable, with the best-known examples being the regular variable stars, such as Cepheids; in these, the initial instability grows until it is limited by non-linear effects and settles down as a large-amplitude oscillation, usually radial (i.e. spherically symmetric, with motion only in the radial direction) but in some cases non-radial, so that there are regular shape changes as well.

Other stars, typically cool giants, eject mass sporadically on a short timescale, producing circumstellar shells of gas and dust, while others again – the novae and supernovae – suffer explosions which can, in the case of supernovae, be violent enough to tear the whole star apart. All these stars are very interesting, and provide vital clues to stellar evolution, but many of them are not fully understood, and they are well beyond the scope of this course.

However, there is one instability which is vital to our understanding of stellar structure and which we must therefore discuss carefully. This is the

Convective instability

This is a very localised instability that leads to the setting up of convection currents in stars and the transport of energy by convection. It can be described as follows.

Suppose that a small element of material in a star is displaced upwards. So long as it is moving much more slowly than the speed of sound, as will usually be the case, the element will probably be able to adjust itself continuously to be in pressure balance with its surroundings – this is because pressure adjustment occurs in the time taken for a sound wave to cross the element, which will be short compared to the time the element takes to travel its own length, so long as v << vs. However, thermal adjustment takes much longer, and the element will not in general have the same temperature and density as its surroundings – if it did, the region would be in neutral equilibrium.

If (el > (surr, there will be a restoring force and the motion will die out.

If (el < (surr, there will be a buoyancy force, tending to push the element further up, and we have instability.

We now try to express this more precisely and to derive a criterion for convective instability. There are many ways to do that, and we shall just consider a simple argument.

The instability is a local one, so we can use plane geometry – the size of the unstable element is much smaller than the radius of curvature at that point. Also we take:





(    = constant

· = constant

Prad << Pgas .

The most general form of the criterion depends on the rate at which a rising element exchanges heat with its surroundings, by radiation or conduction. A rising element hotter than its surroundings will merge faster with its surroundings if it can radiate heat to them, and so will be more stable. We will therefore overestimate the instability if we make the simplest assumption, that there is no heat exchange, i.e. the element rises adiabatically. Mathematically, this means that:
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where d/dt is the time rate of change at a fixed element of mass, rather than at a fixed point in space (we call this the Lagrangian derivative – the one at a fixed point is called the Eulerian derivative). The equivalence of the two expressions in (4.32) can be seen by looking at the derivation of (3.41) and (3.42). 

We now have the following picture:

    (* = ( + ((
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The rising element will be less dense than its surroundings and so will continue to rise if:
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and so we have instability if
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We now use the fact that we are considering a star, in hydrostatic equilibrium. Since rising is a movement against gravity, the hydrostatic equation tells us that dP/dz < 0, so the left-hand side is negative. This shows that, at least in the simple case we are considering, instability will certainly occur if the density ever increases outwards: d(/dz > 0. However, that situation rarely occurs, and the more interesting case is when the density also decreases outwards, i.e. if d(/dz < 0. Then we can divide by the negative pressure gradient, which reverses the inequality, and rewrite the condition as:




instability if  
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         (4.34)

This can be expressed very simply in terms of the variable polytropic index that we defined in equation (2.28):




instability if

[image: image43.wmf]1

1

n

g

<

-

      (= 3/2 for a monatomic gas).       (4.35)

These criteria in terms of the density gradient are independent of the nature of the pressure. For an ideal gas with constant (, it is convenient instead to write it in terms of the temperature gradient, using the identity
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Since the medium we are testing for stability is by definition carrying all its energy by radiation, we may write the condition as



instability if 
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        (4.36)

which means that instability occurs if the temperature gradient needed to carry the energy by radiation is steeper than the temperature gradient in the case where P ( ((. Under these circumstances, convection carries energy more efficiently than radiation, so convection takes over as the main energy transport mechanism.

Note that, perhaps unexpectedly, the gravitational acceleration g does not occur in the criterion, although it plays an essential role in the instability and governs its growth rate.

If radiation pressure is included, the criterion becomes more complicated, but can be expressed in the same general format:



instability if
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where 
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I shall not attempt to prove this (a proof can be found in Chandrasekhar’s book (see Theorem V for details), pp. 222-224). Remembering that ( = 0 corresponds to radiation pressure dominating, note that:
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The criterion we have derived overestimates the chance of instability, because we have assumed that the rising element moves adiabatically, which is not quite true. However, it turns out that under stellar conditions the heat losses from a rising blob are small and the adiabatic approximation is a good one. The true criterion of the onset of convection will then be very close to the one we have derived, and we shall assume from now on that:



convection starts if
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It is clear from this criterion that there are two sorts of situation in which convection may start:

(i) 
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 large – i.e. a large enough radiative temperature gradient for equation (4.36)’ to be satisfied for ordinary values of ( (e.g., if ( = 5/3, ((–1)/( = 0.4).

(ii) (–1 << (  –  i.e. ( gets so close to one locally that (4.36)’ is satisfied for a normal value of the temperature gradient (e.g. 
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These conditions are likely to be satisfied under different circumstances:

(i) is likely to happen when there is a large local release of energy, so that a steep temperature gradient is needed to carry the energy away quickly. This is most likely to occur with nuclear energy release, near the centre of a star.

(ii) We had earlier (equation (2.18)) that  (–1 = 2/nf, where nf is the number of degrees of freedom, so (–1 will be small if the gas has a large number of degrees of freedom, nf >> 1. This is effectively true when there is a phase change, and most of the energy needed to raise the temperature of an element of matter is used up in supplying the latent heat for the change of state – then cP ( cV and (–1 is small. In stars, the most likely phase change is ionisation (and sometimes molecular dissociation), particularly of H and He, the two most abundant elements. This will occur near the surface of a star, at temperatures around 104 to 105 K. In the hottest stars, H and He are largely ionised even at the surface, and convection is not very important. However, in cooler stars, such as the Sun, the ionisation zone of H and He is below the surface and these stars have important convection zones not far below the surface. In the Sun, these sub-surface convective motions are visible, giving the photosphere a characteristic mottled appearance called solar granulation, from which we can deduce directly some properties of the solar convection zone.

Thus we have a fairly good idea of the criterion for convection and of where it is likely to occur. However, there is much less certainty about the structure of large-scale convection and the amount of energy it carries. In recent years, there have been major developments in numerical simulations of convection, and it is clear that convective motions are highly turbulent and (at least in the Sun) often strongly influenced by the presence of magnetic fields. However, it is very difficult to make these calculations under the actual conditions inside stars and there is still great uncertainty about how much energy is carried by convection. This is not too surprising, given that there is still no adequate theory even for the transport of energy by fully developed convection in liquids in the laboratory, where detailed experiments can be used to test the theory.

The detail of what happens in convective energy transport remains one of the major uncertainties in stellar structure, but there are some things we can say and I shall now give a simplified discussion.

Energy carried by convection

Firstly, and most importantly, if convection is present we must replace equation (3.31) by
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(where radiation tacitly includes conduction) and add the additional equations:





L = Lrad + Lconv




(4.40)





Lconv = ?




(4.41)

Here we cannot write Lconv = Lconv((, T, composition), because the amount of energy carried by convection may well be defined by integrals over the path of a convective element and not purely by local conditions. 

Despite our lack of detailed understanding of convective motions, various theories have been developed which attempt to calculate the transport of energy by convection. One of the oldest, and still most used, is:

Mixing length theory

This involves a number of assumptions and approximations. For example:

(i) we can define a mean temperature profile 
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(iii) we introduce a mixing length 
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blob stopped by collisions, gives up excess heat
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free adiabatic motion of blob with mean temperature excess 
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and mean speed v
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In this simplified theory, elements (blobs) rise (or fall) through a distance 
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 and are then stopped by collisions with their surroundings, giving up their excess heat to their surroundings (or absorbing any deficiency). If we assume that the elements move freely and adiabatically between collisions, it is possible to calculate:

(i) v, the mean speed of a convective element

(ii) 
[image: image61.wmf]T
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, the mean temperature excess of a convective element
both as a function of 
[image: image62.wmf]l

. With one more assumption, about the proportion of material in rising and falling elements, we can find





Lconv = Lconv(
[image: image63.wmf]l

).

Of course, Lconv also depends on things like (, g, ( and the mean temperature profile. If there is time I may derive a more detailed (non-examinable) expression in a seminar; if you are interested, there is a good discussion in Schwarzschild’s book, pp. 47-49.

Mixing length theory does provide an expression for Lconv = Lconv(local conditions, 
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), but it does not provide an estimate for 
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. This means that we have a free parameter at our disposal, and this is one of the weak points about mixing length theory. Rough arguments suggest that a blob will move some significant fraction of the so-called pressure scale height, HP, defined by 
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- this is the distance in which P changes significantly (by a factor ( e). It is therefore common to write
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(4.42)

where ( = O(1), i.e. is a numerical factor of order unity. The basis for this expression is simply that (a) it seems very unlikely that an element could retain its identity for long enough to have  ( >> 1, and (b) if ( were << 1 the mean free path of an element would be too small for convection to carry much energy. In practice, ( is taken to be in the range 0.5 to 2, and several values are tried, to see how sensitive the structure of a stellar model is to the choice of (.

The fact that we have a free parameter, and no good way of fixing it, may make it look as though we cannot make much progress in studying stellar structure and evolution. Fortunately, that is not true. It turns out that the exact amount of energy carried by convection is only important when convection and radiation carry comparable amounts of energy. In many circumstances in stellar interiors, convection completely dominates the energy transport and then we can make a very useful approximation. 

When convection is occurring, we can define three temperature gradients:
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                                      and
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(rad is the gradient that would be needed if all the energy were to be carried by radiation, i.e. 
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If the actual temperature gradient is shallower than this, radiation will not be able to carry all the energy, and so we expect that when convection is occurring ( < (rad. From the condition for the onset of convection, we know that (ad < (rad, and it is clear from a similar argument that the adiabatic gradient must be less than the actual gradient if convection is to be maintained. Thus:



[image: image72.wmf]adrad

Ñ<Ñ<Ñ


(4.46)

if convection is occurring.

If convection can transport energy efficiently enough, it may be possible for it to carry all the energy with ( only very slightly larger than (ad. This is likely to be true in the deep interiors of stars, as we can see from a rough estimate. An approximate expression for the energy carried by convection is:
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to within some factor of order unity, where (T and v are the mean temperature excess and speed of a convective element, as defined earlier. The quantity cP((T is the average excess of thermal energy per unit volume and this is being transported with a mean speed v through a spherical shell of radius r. Because cP = specific heat at constant pressure = 
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 (monatomic gas), we have
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Now ( ( 8(103 J K-1 kg-1  and ( ( ½  (for fully ionised H, as we shall see later), and near the centre of a star like the Sun r ( 108 m, ( ( 5(104 kg m-3; hence:





Lconv ( 2.5(1026 (T v  W.
This means that we can have Lconv ( L( = 4(1026  W  for quite small values of (T and v, say:





v ( 40 m s-1 (( 10-4 vs)





(T ( 0.04 K.

(The ratio v/(T can be determined from the details of mixing length theory – see Schwarzschild’s book – and gives individual values of this order.)

We can use this value of (T to estimate (-(ad in the interior of a star. We have:
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(4.48)

Near the centre of the Sun, T ( 107 K, which gives 
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For a monatomic gas, (ad = 0.4, so we have finally
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In this case, it is therefore an extremely good approximation to replace the equation for the temperature gradient in terms of the radiative flux, dT/dM ( Lrad, and the associated equations for the total and convective fluxes (equations (4.39) – (4.41)), by the single equation ( = (ad, which gives the temperature gradient independent of the exact flux carried by convection. In this case, the structure of the convective region is determined by just four equations:
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P = P((, T,  composition).


          (3.25)

If radiation pressure is negligible (so that ( = (), we have a polytropic model with n = 1/((-1) = 3/2 for a fully ionised gas (because it is essentially monatomic, with ( = 5/3).

The fifth equation is no longer needed to find the structure, so it can actually be used to calculate the energy carried by convection. We use equation (4.40) in the form:





Lconv = L - Lrad




         (4.51)

and then we calculate the two terms on the right-hand side from:
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and equation (4.39) in the form:
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However, this useful procedure cannot be applied universally, as we can immediately see if we calculate Lconv near the surface of the Sun, where r ( 7(108 m, ( ( 10-3 kg m-3, T ( 104 K.

Then:





Lconv ( 2.5(1020 (T v  W.

This is a million times smaller than near the centre, so in order to carry a solar luminosity we now need:





(T ( 100 K (about T/50)

even for


v  ( vs ( 1.5(104 m s-1
which, as we saw, is the largest speed compatible with a convective element remaining in pressure balance with its surroundings. In practice, the convective speeds are less than this and so (T would need to be even larger and convection may well be incapable of carrying all the energy. This is essentially because of the low density near the surface, which means that the convective elements have a low thermal content. 

In these outer regions, then, ( is nearer to (rad than to (ad and convection can only be treated by using the full mixing length theory, with all its uncertainties:





(ad < ( ( (rad ( mixing length theory.

A more detailed discussion of convective envelopes of stars is beyond the scope of this course.

This is a striking example of a fairly general result, that the deep interiors of stars are easier to treat than the surface regions. In fact, if a star has a convective core, it is still possible to find homologous solutions, provided that the opacity and energy generation can be represented by power laws.

Another example of the difficulty of treating the surface, which we have already mentioned briefly, is the choice of boundary conditions, and we shall conclude this section by looking at that issue more carefully.

Surface boundary conditions

The simple conditions ( = T = 0 are sufficient for many purposes, but they clearly do not represent what we actually see on the Sun, and in some circumstances they can be very misleading. How can we improve them?

One obvious improvement would be to write:





T = Teff at the surface.



        (4.53)

What about the other condition? Before we tackle that, we must decide just what we mean by “the surface”. Since it’s the surface at which T = Teff, it is the “visible surface”, which we can define as:


“visible surface” = surface from which radiation just escapes;

in the Sun we call this the “photosphere” (( “sphere of light”), and it corresponds to the surface in the Sun at which the average mean free path of a photon is essentially infinite: photons from this level in the Sun are free to escape to infinity (or at least to our detectors!).

To make this quantitative, we need to go back to our discussion of the intensity of radiation (see the handout on the equation of radiative transfer). The mean free path of a photon is usually taken to be the “e-folding distance” of the radiation. For monochromatic radiation, we had (for absorption):
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and so 




[image: image85.wmf]0

ds

IIe

n

kr

nn

-

ò

=

.

Defining the mean free path in terms of the e-folding distance then means that the monochromatic mean free path 
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 would be defined by
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For integrated radiation (integrated over frequency), we define a similar integral, called the optical depth, and if we take the integrated mean free path to be infinite we have:




optical depth 
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       (4.54)

the interpretation here is similar, so that:




photosphere or visible surface is equivalent to ( ( 1 .

In practice, since the surface temperatures and densities are very much less than the central or mean values, the radius of this visible surface, where T = Teff, is not very different from the radius at which T = 0. However, there are circumstances where the model with the simple T = ( = 0 boundary conditions has an optical depth at the point where T = Teff which is very different from 1. This can happen in one of two ways. Either the radiation escapes from well below the level at which T = Teff (i.e. ((Teff) << 1) or radiation cannot escape at all from the level at which T = Teff  (i.e. ((Teff) >> 1). In either case, it is necessary to modify the boundary conditions to make sure that radiation does indeed just escape from the level at which T = Teff. The new boundary conditions are:
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        (4.55)









at M = Ms .
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        (4.56)

[In practice, the value 2/3 instead of 1 is often used for (s so as to agree with the details of stellar atmosphere theory, but we shall just use 1 in this course.]

We can get an approximation to the integral for (s by noting that most of the contribution to the integral comes from just above the photosphere: a region where ( changes rapidly compared to T and (, and in which r, L, M and ( are essentially constant. If we assume:




T, (, r, L, M, (  are all constant

we can write:
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where h = height above the photosphere. If we then use 
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     (4.58)

Putting in values for the Sun, this means that the density falls off by a factor e in about 300 km, which is very small compared to the Sun’s radius of 700,000 km.

We can finally use this to evaluate (s approximately:
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so that the boundary condition (s = 1 becomes






Ps (s = gs     at M = Ms 


     (4.59)

where gs = GMs/Rs2 = surface acceleration due to gravity. Thus finally our improved boundary conditions are:





T = Teff  and  P( = g  at M = Ms .


     (4.60)

It will turn out to be critical to use these conditions when discussing both pre-main-sequence evolution and also evolution to the red giant region, because such stars have deep, cool convective envelopes in which the opacity is very different from what it is in normal main sequence stars. We shall return to this in Section 6. First, we shall leave the surface and look in more detail at the physics deep inside stars.
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