
Section 3: Energy Balance

Force balance is not enough for a star to be in equilibrium over long timescales – there must be an energy balance as well. In other words, the energy radiated from the surface must be balanced by some energy source within the star. We have already seen that this energy source is nuclear fusion, and we shall discuss the reactions in more detail later. 

The structure of a star is affected by energy balance largely because the energy must somehow be transported from its source, usually at or near the centre, to the surface, so we look first at the mechanism of energy transport.

There are three ways in which energy is transported through stars:

	Radiation
	Similar - energy carried by particles:
	photons

	Conduction
	
	electrons (mainly)

	
	
	

	Convection
	Energy carried by large-scale gas motions
	


In this section, we shall assume that convection is absent. That is true for large regions of most stars, but there are also important regions of most stars where convection dominates, so we shall return to it later.

Because both radiation and conduction involve energy carried by particles, they can be treated in a mathematically similar way. For normal thermal conductivity in solids, we usually write
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where 
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 is the heat flux vector (J m-2 s-1) and (cond is the coefficient of thermal conductivity. The minus sign shows that heat flows down the temperature gradient. In the case of spherical symmetry, the flow of energy is entirely in the radial direction and its magnitude is
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The total flow of energy across a spherical surface of radius r is then
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We can define a radiative conductivity, (rad, in a similar way, so that
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What is the relative size of the two conduction coefficients? In other words, which of radiation or conduction do we expect to be the more efficient at carrying energy? This depends on two factors:

(i) the relative energies of photons and electrons

(ii) the relative mean free paths of photons and electrons between collisions.

In a star, we have seen that generally Pgas > Prad, which means that:
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This shows that the gas particles typically have more energy than the photons, which suggests that conduction is the main energy transport mechanism. However, ug and ur are comparable in size, whereas it turns out that the mean free paths of photons and electrons are vastly different; typically
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and the much greater mean free path of photons much more than compensates for their slightly smaller energies. In general, therefore radiation is far more important than conduction.

There are some circumstances where this is not true – for example in stars of very high density, such as white dwarf stars. Under these conditions, the ratio of particle energy to photon energy is much larger, because the particle energy depends on the density, and also the electron mean free path is much longer, because the Pauli exclusion principle makes it difficult for an electron to give up energy – there may be no lower energy state unfilled. The combination of these effects can make electron conduction more important than radiation.

However, we shall assume for the moment that radiation is the dominant energy transport process and ignore conduction. Thus we have to find an expression for the radiative conductivity, (rad. In stars, we normally work instead in terms of a quantity called the opacity, (, which is proportional to 1/(rad. The opacity is a measure of the resistance of the material to the flow of radiation, or a measure of the absorbing power of the material. We shall give a precise definition shortly.

To calculate the opacity, we shall need to consider the microscopic processes of absorption, scattering and emission of radiation. This is quite complicated, and we shall postpone the discussion until Section 5. However, in one way the discussion is easier than for conduction, because we only need to consider collisions between photons and particles and not photon-photon interactions. Thus the problem is linear, whereas the essence of thermal conduction is the non-linear particle-particle interaction.

We shall now show how we can derive an equation of the form (3.4). The full argument is long and involved, and will be given on a separate handout that I shall give out in the next seminar (see also Appendix 2 of Tayler’s book). Here I shall give an alternative, much simpler approximate argument that gives a qualitatively correct result.
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Consider two surfaces at distances r and r+(r from the centre of a star, and suppose that they are separated by the mean free path of a photon:

(r = 
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 = photon mean free path.

Define the opacity ( by:

(( = cross-sectional area for absorption (per unit volume).

Since 
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 is the mean free path between absorptions, we have:

((
[image: image12.wmf]l

 = 1.

Now suppose the two surfaces, at temperatures T and T+(T, are radiating like black bodies. The net outward flux is then
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where ( (= ac/4) is the Stefan-Boltzmann constant. But
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  (Taylor series)
so that
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which yields
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Our more precise argument (see Handout on Radiative Transfer – in seminar) will show that in fact:
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Hence (equation numbering consistent with Handout), from equation (3.4):
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(3.20)

This yields a differential equation for the temperature:
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It is easy to derive a further equation for L(r). Consider a spherical shell between radii r and r+(r. The energy flowing outwards across the inner radius is L(r) and the energy flowing outwards across the outer radius is L(r+(r). If L(r) ( L(r+(r), this must be because energy is used up or generated in the region between the inner and outer radii. If we define:

((r) = energy release/unit mass/second

then



L(r+(r) – L(r) = 4πr2 (r (( .

Hence
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         (3.24)

We have now introduced the four key differential equations of stellar structure, which hold under the following conditions: (i) a true steady state (no time dependence), (ii) all the energy carried by radiation (and conduction, by a slight redefinition of the opacity). The equations are:
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However, there are 7 variables: P, (, T, M, L, ( and (. To close the set of equations we must appeal to the physics of stellar interiors to give us 3 relations involving these variables. If the system were in complete thermodynamic equilibrium, all of its state variables could be expressed in terms of any 2 state variables and the chemical composition. If we choose ( and T as the two fundamental variables, we could write:

P = P((, T, composition)



                      (3.25)

( = (((, T, composition)
  



         (3.26)

( = (((, T, composition).
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(Note that the temperature also completely determines the particle velocity distribution in thermodynamic equilibrium.)  In this case, the finding of explicit expressions for P, ( and ( is a matter of pure physics, and we shall return to that problem in Section 5.

If we assume that conditions inside stars are in fact very close to thermodynamic equilibrium (this is a good approximation except near the surface), then we can use these expressions for P, ( and ( to give close approximations to the real values. I have already given one expression for the pressure:
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When this is valid, we have one more function to find from pure physics:

( = (((, T, composition).
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In principle, then, we now have a complete set of equations for the structure of a static star. However, before we can solve them we need boundary conditions. Since we have 4 1st order ordinary differential equations, we expect to need 4 boundary conditions, presumably at the centre and the surface.

Because we shall usually want to consider a star of a given mass, whose radius is not known until the equations have been solved, the surface is most conveniently defined by M = Ms. It is then clearly more useful to use the mass as the independent variable, and to re-cast the equations in the appropriate form, obtained by dividing the above equations by the mass equation (and inverting that equation). We find:


[image: image28.wmf]4

4

dPGM

dMr

p

=-


(3.29)



[image: image29.wmf]2

1

4

dr

dMr

pr

=


(3.30)



[image: image30.wmf]243

3

64

dTL

dMacrT

k

p

=-


(3.31)



[image: image31.wmf]dL

dM

e

=

 .
(3.32)

Two of the boundary conditions are now clearly

r = L = 0   at   M = 0 .



          (3.33)

The surface boundary conditions are not so obvious. Since the surface density and temperature are much smaller than the central values, a first approximation is to take (as we did earlier)




( = T = 0   at   M = Ms .




(3.34)

Of course, Ts ( 0 – and in fact the surface temperature is one of the things we would like to find. However, we can find the effective temperature from

Ls ( 4( Rs2 (Teff4 ,

since Ls, Rs will come out of the solution. Presumably Ts ( Teff and so we can at least estimate the surface temperature. This makes it possible to use the simple boundary conditions (3.34), and for many stellar models they are perfectly satisfactory. There are circumstances when they are not adequate, and we shall see later how they can be modified to be more realistic.
For many stars, the above boundary conditions determine the structure completely. For quite a long time this was believed to be a perfectly general result, which you will find in some books referred to as the Vogt-Russell “theorem”. This says that, given the above equations and boundary conditions, the total mass Ms and the chemical composition as a function of M lead to a unique solution.

Although this theorem appears to be satisfied under many circumstances, and in particular for most main sequence stars, it is in fact nothing more than a statement that a fourth order system of differential equations usually requires four boundary conditions. This does not necessarily imply a unique solution, especially for non-linear equations with 2-point boundary conditions. In fact, there are now many examples of two or more solutions. In these cases, which is the relevant solution usually depends on the past history of the star or on the stability of the solutions. In either case, we need to take account of time dependence and introduce time derivatives into the equations. 
We shall not have time in this course to talk very much about time-dependent solutions. However, clearly time-dependence must be involved at some point if we are to study stellar evolution rather than just stellar structure. One very simple procedure is to build a series of static model, differing only in composition:
(i) build an initial model, with composition a known function of mass (skipping the problem of how that is determined)

(ii) assume all energy release comes from nuclear reactions, which gradually change the chemical composition. These changes will be governed by a set of equations which can be written symbolically as
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(3.35)
(iii) build a series of static models, whose composition as a function of mass is determined by integrating (3.35) for some time-step (t, starting from the composition of the previous model.
If this procedure is to be valid, we must be able to ignore all the time derivatives in the differential equations (3.29) to (3.32). We do not expect any explicit time dependence in the mass conservation equation (3.30) or, except in very special circumstances, in the radiative transfer equation (3.31). We have already seen that, in the hydrostatic equation (3.29), time derivatives are only important if the star is changing on the very short dynamical timescale tD. The most likely place for time derivatives to be important is in the energy production equation (3.32). We will expect to have to include time derivatives if the star changes significantly in the time taken for energy to escape from where it is produced. This time is essentially the time taken for a photon to get from the centre to the surface by a random walk process, and can be shown (we shall prove this in a seminar) to be of the order of the Kelvin-Helmholtz timescale (K-H – this is also known as the thermal timescale, because the photons reach the surface by a process of thermal diffusion. The thermal and gravitational (or Kelvin-Helmholtz) timescales are comparable essentially because, from the virial theorem, the thermal and gravitational energies are comparable:

U = –(/2  =>  Eth ( Egrav.
It turns out that at some stages of a star’s evolution, the gravitational energy release can become comparable to, or even greater than, the nuclear energy release (for example, between major nuclear burning stages), so that the star is changing significantly on a thermal timescale. That is certainly true when there are no nuclear energy sources active, as is the case in pre-main-sequence contraction, which happens on a thermal timescale, or faster.

To deal with these thermal evolution phases, we need to generalise the energy equation (3.32). We can do this by considering the thermodynamics of a small element of mass in the star. Let S = entropy/unit mass. Then the change in entropy of an element is given by:
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where (Q = heat supplied to unit mass in time (t. If we go back to the derivation of the energy equation, we can see that:
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This is zero if there is energy balance, as we assumed previously, but we now write more generally
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(3.37)

so that
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(3.38)

Note that the total derivative on the left-hand side is the time derivative for a fixed mass element rather than at a fixed point in space.

This equation can be written in a more useful form by using the first law of thermodynamics:
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where u = thermal energy per unit mass and v = volume per unit mass (= 1/(). We then combine these last two equations to get
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(3.40)

For an ideal gas, u = P/((-1)(, and so (3.40) can be written
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(3.41)

This means that the original equation (3.32) is true either if there is no variation with time or if 
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(3.42)
that is, if the changes are adiabatic.
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