
Section 2: Dynamical Structure

Geological evidence that the Sun’s luminosity has hardly changed for billions of years suggests that its dynamical structure has also been unchanged and that the Sun (and presumably other stars) is in hydrostatic equilibrium. We shall assume this, and show later that it is an extremely good approximation.

Consider a small rectangular element of material at radius r from the centre, of thickness (r and surface area A. We shall write down the forces on this small volume, defining:

P(r) = pressure at radius r
((r) = density at radius r
M(r) = mass within radius r.

The horizontal pressure forces on the element cancel, and the radial forces are:

pressure force outwards = P(r) A
    pressure force inwards = P(r+(r) A .

In a spherically symmetric distribution of mass, the gravitational force at any point is the same as if the material outside that point were absent and the material inside were concentrated at the centre (a theorem proved by Newton). Hence, since the mass of the element is ((r)A(r,
gravitational force inwards =  
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If we assume hydrostatic equilibrium, there must be no net force on the element. Hence:
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Hence
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(2.1)

The partial derivative is used here to remind us that there is in fact always a dependence on time as well, even if it is small. From now on, I shall drop the explicit dependence on r, that is, M, P, ( will mean M(r), P(r), ((r) (and similarly for other variables).

A second equation relating M, ( and r follows immediately from the definition of M:

mass of spherical shell of radius r = M(r+(r) – M(r) = 4πr2 (r ((r).
Hence
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          (2.2)

We are now in a position to see what happens if the forces are not in balance, that is if the star is not in hydrostatic equilibrium. Then the net force on an element is not zero and there is an acceleration:
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(2.3)

where 
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 is the outward acceleration of the element and g is the acceleration due to gravity at radius r. If the departure from equilibrium is small, we can write

RHS = – ((g, where ( << 1

so that 
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            (2.4)

Now consider a small change in radius, so that we can take 

( ( constant, and g ( constant.

Then an element starting from rest at r will fall inwards a distance (r in a time t given by

(r = ½(gt2

If (r = r /10, then
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This is of course only roughly right, but it is of the right order of magnitude. For the Sun, it gives
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(2.6)

This has to be compared to the two timescales we had in Section 1, the timescale for gravitational contraction:
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and the timescale for nuclear burning:
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Even if 
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, equation (2.6) predicts a 10% change in the Sun’s radius in a couple of years. We know this has not happened, ancient eclipse records suggest such a change has not happened in the last few thousand years and we believe that little change has in fact happened over the last billion years. This means that, at least for the Sun, hydrostatic equilibrium holds to better than one part in 1018, which makes it an extremely good approximation.

This discussion has revealed that there is a fundamental dynamical timescale for a star, much shorter than the other two timescales. For any self-gravitating body, we have approximately:
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where 
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 is the mean density. This time is typically in the range minutes to days and, so long as things happen only on much longer timescales it is reasonable to assume that stars are in a quasi-static state. For most stars, this is true. There are some stars in which things happen on timescales of hours or days, or even less – e.g. pulsating variable stars, novae or supernovae. For those stars, the acceleration must be included in the dynamical equation. However, such stars are beyond the scope of this course.

So far we have only two equations, (2.1) and (2.2), connecting the three functions P, ( and M as functions of r, and so we need at least one more equation to close the system. One very important equation is the equation of state of the stellar material, which can be written as:

P = P((, T, chemical composition).

    
         (2.7)

This certainly relates two of the functions, P and (, but also introduces two new functions, the temperature T and the chemical composition. This means that we shall need to introduce some more equations, but we first ask what form equation (2.7) takes.

First: do we expect stellar material to be solid, liquid or gaseous? We know the mass and radius of the Sun, so we can calculate its mean density:
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Also for the Sun:
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These conditions would appear to eliminate gases and solids respectively, and in fact at one time stars were thought to be liquid. However, we now know that material can exist as a gas under these conditions, provided it is a highly ionised gas – a plasma. In that state, the atoms have all their electrons stripped off and are essentially all bare nuclei – so the typical particle size is a nuclear radius, which is about 1000 times smaller than an atomic radius. Particle separations at these mean densities are about an atomic radius, so the particles hardly ever collide and the material behaves essentially like a collision-less gas, even at the much higher densities in the centre of a star. This means that it is a good approximation (we shall check this later) to regard stellar material in most stars as an ideal gas. At high temperatures, the pressure of the radiation may also be important, so we have:
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(2.8)

where n = particle number density, k = Boltzmann’s constant, a = radiation density constant, mH = mass of H atom, ( = ‘mean molecular weight’ = average mass of a particle, in units of mH and 
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 (= k/mH) is usually called the gas constant
. As a useful shorthand, it is usual to define
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We now have an explicit equation of state, but we are still short of equations: we have 3 equations for the 5 unknowns M, P, (, T and (. However, we can obtain some general results about stars without any more equations, and we shall now do that before discussing what further equations we need to introduce.

First of all, we need to think about boundary conditions, and we shall start with very simple ones:

P = ( = 0 at the surface. 

   
        (2.10)

These will need refining later, because they imply that T = 0 at the surface also, which is clearly not true for real stars.

With these boundary conditions, we can now derive a number of limits on the conditions inside a star of a given mass and radius. We shall use subscripts s and c to denote values at the surface and centre respectively.

Theorem I:
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[Proof on blackboard – to be provided in a separate document on the website later]

This can be written as
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so that for the Sun 

Pc > 4.5(108 atmospheres.

Clearly conditions inside stars are very different from those we experience on the surface of the Earth.

A major part of the total energy of a star is gravitational potential energy – the work done to bring matter from infinity to its present state. The work done in adding a mass dM to a mass M already present is:
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and so the total energy is
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(2.12)

Note that this is negative – i.e. work must be done to prevent the infall of material in a gravitational field. This negative energy is related to the internal pressure by:

Theorem II:
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          (2.13)

[Proof on blackboard – to be provided in a separate document on the website later]

An estimate for the total gravitational potential energy is given by:

Theorem III:
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since  
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This is an underestimate of the amount of energy released in forming a star from a state of infinite dispersion. If the star is not too centrally condensed, it is not a bad estimate of the actual energy released. We can write it as:
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so the gravitational energy released in forming the Sun was at least 1041 joules.

Note that so far we have not needed to say anything about the equation of state of the matter – these theorems hold whatever the source of the pressure. We now assume an equation of state and find a lower limit for the mean internal temperature of a star:

Theorem IV:    If radiation pressure is negligible, and ( is constant, then
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where 
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 is the mass-weighted mean value of the temperature. 

[Proof on blackboard – to be provided in a separate document on the website later]
This result can also be written in solar units:
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We shall see later that ( ~ 1 in stars, so typical internal temperatures are of the order of a few million degrees.

This result has assumed that stellar material behaves like an ideal gas, and that radiation pressure is negligible. We can now check these assumptions, at least for the Sun:
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 ~ 4(106 K ( highly ionised plasma ( particle dimensions ~ 10-14 m (nuclear radius)
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 ~ 103 kg m-3 ( interparticle distances ~ 10-10 m >> particle dimensions

so the material should behave like an ideal gas. Also, under these conditions (taking ( = 1),



Pgas ~ 3(1013 N m-2,   Prad ~ 5(1010 N m-2
so radiation pressure is negligible at a typical point in the Sun.

In general, radiation pressure is more important near the centre of a star than elsewhere, so we can get some idea of whether radiation pressure is important from the following theorem, which gives an upper limit for the radiation pressure at the centre of a star. I shall not prove this rather complicated result, but a proof can be found on p.73 of the book An Introduction to the Study of Stellar Structure by S. Chandrasekhar (Dover 1957; originally published 1939).

Theorem V:  If 
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 does not increase outwards
 then, in a wholly gaseous configuration, the central value of the ratio of radiation pressure to total pressure satisfies the inequality
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where (* satisfies the quartic equation:
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(2.17)

and (c is the mean molecular weight at the centre of the star. 

The quantity 1-(*, which is a measure of the maximum importance of radiation pressure, takes the values in Table 1 below as a function of the star’s mass, showing that radiation pressure can be neglected in low-mass stars like the Sun, but becomes steadily more important for more massive stars. (We shall see later that (c2 ~ 0.37, so radiation pressure only becomes more than 10% of the total pressure for masses greater than about 5.7 M(.) 

Table1: Upper limit for the ratio of radiation pressure to total pressure

	1-(*
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	0.025
	0.91
	0.2
	3.81
	0.5
	15.4

	0.05
	1.35
	0.3
	6.10
	0.6
	26.4

	0.1
	2.13
	0.4
	9.58
	0.7
	50.7


There is one more general result that we can deduce from the properties of an ideal gas. For a non-relativistic ideal gas we have, on average,

internal energy = ½ kT/degree of freedom/particle.

Also, the ratio of the specific heat at constant pressure to the specific heat at constant volume is related to the number of degrees of freedom of the particles in a gas by
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(2.18)

where nf is the number of degrees of freedom (or a weighted mean if the gas is a mixture). For a monatomic gas, nf = 3 and so ( = 5/3.

We now neglect radiation pressure, so that P = nkT. We also have that the internal energy per unit volume is ½ kT( nf(n, and so the total internal energy (in this case it is also the total thermal energy) of a star is
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If ( is constant throughout the star, it follows from Theorem II that
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This is known as the Virial Theorem.

In any gas, ( > 1, so the virial theorem shows that:



release of gravitational energy ( -( ( ( U (
In other words, as a star contracts, its mean temperature increases. This could also have been deduced from Theorem IV, which shows that the mean temperature scales inversely with the radius. The contraction of a star is often linked to the radiation of energy from its surface, so we have the paradoxical result that, as a star loses energy by radiation, it actually heats up. This depends crucially on the star behaving like an ideal gas – but is also dependent on the star being self-gravitating. Self-gravitating ideal gas spheres behave as though they have a negative specific heat.

In stellar interiors, the gas is, to a good approximation, fully ionised. This is equivalent to being monatomic, so ( = 5/3. In that case, the virial theorem can be written as
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      (2.21)

and so, as a star contracts, releasing gravitational energy, half of the energy goes to heating up the star and the other half is radiated away from the surface.

We can make no further progress in studying the structure of real stars without considering how energy is transported through the star and what is the source of the energy. We shall do that in the next section. First, I shall make a slight historical digression and discuss what are known as polytropic stellar models, or polytropes.

Polytropes

The two equations (2.1) and (2.2), that is:
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were derived long before anything was understood about the origin of a star’s energy or how  it was transported from the centre to the surface. As we saw earlier, we need at least one more equation to close the system, and it was suggested, fairly arbitrarily, that one possibility was a relation between pressure and density of the form
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where K = a constant and n = a constant, called the polytropic index. We then have a closed set of equations, although they will give us no information about the flow of radiation through the star or the total luminosity of the star. (Note that the case n = 0 corresponds to a constant density (( ( P0), or a liquid star – so we can think of polytropes as a generalisation of a liquid star.)

These equations can be reduced to a simple form by defining a new variable, (, by:
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(2.23)

and by putting
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(2.24)

Then the equations can be reduced (exercise for the reader) to a single second-order differential equation for (:
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(2.25)

This is called the Lane-Emden equation of index n.  This equation can be integrated from 

( = 0 (where ( = 1) to the point where ( = 0, which corresponds to the surface (( = 0 there). This can be done for 0 ( n < 5.  (For n ( 5, ( never goes to zero.) 

For polytropes, we can get explicit expressions for some quantities, rather than just lower bounds; for example:
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(2.26)
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As I noted already, the polytrope with n = 0 corresponds to a liquid star with uniform density, and the other polytropes form a sequence of increasing mass concentration:

	n
	0
	1
	1.5
	2
	3
	4
	5

	(c /
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	1
	3.3
	6.0
	11
	54
	622
	(


We do not now believe that real stars have polytropic equations of state. However, the theory of polytropes was of considerable importance in the development of ideas about stellar structure in the late 19th and early 20th centuries, and the polytrope of index 1.5 is still of interest, as we shall see later. Also, it is convenient to introduce, for real stars, a variable polytropic index n defined by
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Polytropes can still be used to give bounds to the structure of real stars, whose polytropic index varies continuously through the star.
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� This has units J K-1 kg-1, and is not quite the same as the chemist’s definition, with units J K-1 mol-1.


� This is roughly equivalent to the density being highest at the centre of the star.
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