
DEPARTMENT OF PHYSICS AND ASTRONOMY

STELLAR STRUCTURE

The Equation of Radiative Transport

The intensity of radiation Iν(x,k) at a point x in a star in equilibrium is defined by

dE = Iν(x,k) dS dω dν dt (3.5)

where dE is the energy crossing an area dS perpendicular to the vector k, in solid angle
dω about k, in frequency range dν, in time dt. This intensity function is almost isotropic
and almost equal to the Planck function Bν (equation (1.2)). We can therefore write

Iν(x,k) = Bν(x) + δν(x,k) (3.6)

where δν(¿ Bν) is the slight departure from isotropy that leads to a net flow of energy
through the star.

As the radiation moves a distance ds along k, Iν changes, for three reasons:

1. Radiation is absorbed.

We define a mass absorption coefficient κν(x) by

(dIν)abs = −κνρIν ds; (3.7)

κν is independent of k, so long as the absorbing atoms have a random distribution
of orientations.

2. Radiation is scattered, both into and out of direction k.

If we introduce a mass scattering coefficient σν(x), we can write

(dIν)scatt = −σνρIνds + σνρ
[∫

Iν(k
′)p (k, k′) dω′

]
ds (3.8)

where p (k, k′) is the probability that radiation scattered from direction k′ goes in
direction k and dω′ is an element of solid angle about k′.

3. Radiation is emitted.

We define jν(x, k) to be the energy emitted per unit mass per second per unit
frequency range per unit solid angle about k. Then

(dIν)em = jνρ ds . (3.9)

With this definition, jν is not isotropic. However, it has two parts:

(a) spontaneous emission, which is isotropic, and

(b) stimulated emission, which follows absorption and is in the same direction as
the absorbed radiation.
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In conditions close to thermodynamic equilibrium, we have (see appendix)

(jν)stim = κνIν exp(−hν/kT ) (3.10)

and so stimulated emission may be formally regarded as a negative absorption. It
is therefore convenient to introduce the isotropic emission coefficient

j′ν = jν − (jν)stim (3.11)

and to write
κ′ν = κν (1− exp(−hν/kT )) . (3.12)

The total change in Iν can then be written (using equations (3.7), (3.8) and (3.9)) as:

dIν = j′νρds− κ′νρIνds− σνρIνds + σνρ
[∫

Iν(k
′)p (k, k′) dω′

]
ds. (3.13)

In thermodynamic equilibrium, Iν = Bν and j′ν and κ′ν satisfy Kirchoff’s law j′ν = κ′νBν .
Since conditions in stellar interiors are close to equilibrium, we can write

j′ν = κ′νBν + δ ′ν(x) (3.14)

where δ ′ν ¿ κ′νBν .

We now substitute the expressions (3.14) and (3.6) for j′ν and Iν into equation (3.13)
and obtain approximately (after some cancellation)

dBν

ds
= δ ′νρ− κ′νρδν − σνρδν + σνρ

∫
δν(k

′)p (k, k′) dω′ (3.15)

where we have used the facts that Bν is isotropic and that
∫

p (k, k′) dω′ = 1, and have
neglected dδν/ds. (The latter approximation is justified by noting that, in equilibrium
(where δν ≡ 0 ≡ δ ′ν), dBν/ds = 0 (i.e. the temperature is the same everywhere). This
means that dBν/ds is of first order of smallness in the actual solution and so dδν/ds is of
higher order and can be neglected.)

If there is symmetry between forward and backward scattering (in other words,
p (k,k′) = p (k,−k′); but (dBν/ds′)k′ = −(dBν/ds′)−k′), it can be verified that

δν = − 1

(κ′ν + σν)ρ

dBν

ds
+

δ ′ν
κ′ν

(3.16)

is a solution of equation (3.15). (Given that δ ′ν , κ′ν and σν are isotropic, the only term
which does not obviously cancel or vanish is

− σν

(κ′ν + σν)

∫ (
dBν

ds′

)

k′
p (k, k′) dω′

and this vanishes if there is symmetry between forward and backward scattering, which
is true for the most important scattering process in stellar interiors, scattering by free
electrons.)
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Thus we have

Iν(x,k) = Bν(x)− 1

(κ′ν + σν)ρ

dBν

ds
+

δ ′ν(x)

κ′ν
. (3.17)

Only the second of these terms is not isotropic and contributes to the net flow of radiation.

In spherical symmetry

dBν

ds
= cos θ

dBν

dr
= cos θ

dBν

dT

dT

dr
.

where θ is the angle between the direction of k and the outward radial direction: dr =
ds cos θ where ds is an element of length along the direction k. Also the net flow of
radiation, at all frequencies, across a spherical surface of radius r is

L(r) =
∫ ∞

0
Lν(r) dν =

∫ ∞

0

[
4πr2

∫
Iν(r,k) cos θ dω

]
dν. (3.18)

Hence, using ∫
cos θ dω =

∫ 2π

0

∫ π

0
cos θ sin θ dθdφ = 0

∫
cos2 θ dω =

4π

3

and the expression for Iν , we have

L(r) = −16π2r2

3ρ

dT

dr

∫ ∞

0

dBν

dT

dν

(κ′ν + σν)
. (3.19)

Since ∫ ∞

0

dBν

dT
dν =

d

dT

∫ ∞

0
Bν dν

and ∫ ∞

0
Bν dν =

σT 4

π

where σ (= ac/4) is the Stefan-Boltzmann constant (a being the radiation density con-
stant), we can write this as

L(r) = −16πacr2T 3

3κρ

dT

dr
(3.20)

where the opacity κ is defined by

1

κ
=

∫ ∞

0

dBν

dT

dν

(κ′ν + σν)

/∫ ∞

0

dBν

dT
dν (3.21)

and is known as the Rosseland mean opacity, κR. It is essentially an average of the fre-
quency dependent conductivity, weighted with Bν (the number of photons with frequency
ν). The d/dT arises because energy is flowing down a temperature gradient. Energy
transport by conduction can be formally included in the expression (3.20) if we write

1

κ
=

1

κR

+
3ρλcond

4acT 3
. (3.22)
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The expression (3.20) is more usually written as a differential equation for the temperature
gradient:

dT

dr
= − 3κρL

16πacr2T 3
. (3.23)

Appendix: Expression for (jν)stim

In general
d(Iν)stim

d(Iν)abs

=
(jν)stimρds

κνIνρds
=

(jν)stim

κνIν

.

Close to thermodynamic equilibrium, we also have

d(Iν)stim

d(Iν)abs

=
N2B21

N1B12

where N1 and N2 are the populations of the lower and upper energy levels of the tran-
sition, and B12 and B21 are respectively the Einstein coefficients for absorption and for
stimulated emission (this equation assumes that the line shapes are the same for emission
and absorption; i.e. the transition probabilities have the same dependence on frequency).
If g1 and g2 are the statistical weights of the energy levels, and their energies are E1 and
E2, we have

B21

B12

=
g1

g2

and
N2

N1

=
g2

g1

exp(−(E2 − E1)/kT ) =
g2

g1

exp(−hν/kT )

where ν is the frequency of the transition. Hence equation (3.10).
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