

No Role for Perceptual Fluency in the Implicit Learning of Artificial Grammars

Ryan Scott & Zoltán Dienes

www.sussex.ac.uk/Users/rbs20

Artificial Grammar Learning (AGL)

University of Sussex

Perceptual Processing Fluency

- The ease with which a stimulus is initially perceived
- Fluency or surprising fluency a potential source of familiarity (Jacoby & Dallas, 1981; Whittlesea & Williams, 2000)
- Assessed and manipulated using a perceptual clarification task

Assessing Natural Fluency Differences

XXRVM

Manipulating Fluency – Slow vs. Fast clarification rates

Why should we care?

• Feelings of familiarity predict judgments in AGL (Scott & Dienes, 2008)

- Fluency could influence responding either via familiarity or directly
- In short, fluency could be the source of implicit knowledge

BUT

- Fluency as a source of feelings of familiarity in AGL was untested
- Evidence for its relation to judgments in AGL has been contradictory

The Contradiction

University of Sussex

Evidence For

- Fluency measured using perceptual clarification differed for grammatical and ungrammatical strings (Buchner, 1994)
- Fluency manipulated using perceptual clarification influenced grammaticality judgments (Kinder et al., 2003)

Evidence Against

- Fluency measured using perceptual clarification found to affect recognition but <u>not</u> grammaticality judgments (Buchner, 1994)
- Varying surface features to manipulate fluency affected liking but <u>not</u> judgments (Newel & Bright, 2001; Zizak & Reber, 2004)
- Regions of differential brain activity are <u>not</u> those associated with perceptual fluency (Skosnik et al, 2002; Lieberman et al, 2004)

Alternative Explanations – Potential Confounds

University of Sussex

String Complexity Confounded with Grammaticality

Grammatical _____

Ungrammatical TVXTVV

Decision processes

Mean reaction time was 1.7 seconds longer when Grammaticality judgments subsequently required

Constraining other sources of judgment

Evidence that fluency is employed as a strategy of last resort (e.g. Kinoshita, 2002; Whittlesea & Leboe, 2003).

Testing the alternatives

• 4 experiments (2 x 2 design) using the perceptual clarification task

	Strings Present	Strings Absent
Fluency Natural	Exp 1	Exp 2
Fluency Manipulated	Exp 3	Exp 4

- Evaluate decision influences by including 2 experiments were strings are present for grammaticality judgments and 2 where they are absent
- Eliminate complexity confound with dual grammar design in all cases
- Subjective familiarity ratings to allow contrast with fluency measure

Predictions

University of Sussex

- Greater letter changes = slower reaction times
- Where strings absent for judgments (Exp 2 and 4)
 - Slower average RTs in clarification task
 - Faster RTs the more extreme familiarity (Based on decision bound theory, Ashby, Boynton, & Lee, 1994)

• With both confounds removed (Exp 1 and 3) no significant relationship between RT and Grammaticality.

Experiment 1 – <u>Natural</u> Fluency & Strings <u>Present</u> for Judgement

University of Sussex

- RT predicted by Pass, Length, & *letter changes* (All *p* < .05)
- RT unrelated to extremity of familiarity (abs z-fam), r = .02, CI .02, +.07
- Endorsement rate strongly related to Grammatical status
- Familiarity ratings strongly related to Grammatical status
- RT (perceptual fluency) not related to Grammatical status

Experiment 2 – <u>Natural</u> Fluency & Strings <u>Absent</u> for Judgement

- RT predicted by Length, & *letter changes* (All *p* < .05)
- RTs significantly longer than Experiment 1
- RT related to the extremity of familiarity, r = -.13, t(39) = 6.55, p < .001
- Extremity of Familiarity (abs z-fam) greater for grammatical strings, *Mean diff* = .11, *SE* = .02, *t*(39) = 5.28, *p* < .001, hence RTs shorter

Experiment 3 – <u>Manipulated</u> Fluency & US Strings <u>Present</u> for Judgement University of Sussex

- RT predicted by Rate, Pass, Length, & *letter changes* (All *p* < .05)
- RT unrelated to extremity of familiarity (abs z-fam), r = .01, CI .03, +.05
- RT (averaged across rates) not related to Grammaticality
- Endorsement predicted by Grammaticality but not Clarification Rate
- Familiarity predicted by Grammaticality but not Clarification Rate

Experiment 4 – <u>Manipulated</u> Fluency & US Strings <u>Absent</u> for Judgement University of Sussex

- RT predicted by Rate, Pass, Length, & *letter changes* (All p < .05)
- RTs longer than Experiment 3, Mean diff. = 1402 ms, p < .001
- RT related to the extremity of familiarity, r = -.06, t(39) = 2.77, p < .05
- Extremity of Familiarity (abs z-fam) greater for grammatical strings, *Mean diff* = .11, *SE* = .02, *t*(39) = 6.05, *p* < .001, hence RTs shorter
- Endorsement predicted by Grammaticality and Clarification Rate
- Familiarity predicted by Grammaticality and Clarification Rate

Summary

University of Sussex

Perceptual processing fluency

- Does not express implicit knowledge in artificial grammar learning
- It is a *dumb heuristic (*Higham, unpublished manuscript) that influences responding in the absence of genuine knowledge