
Two Applications of Genetic Algorithms toComponent DesignPhil Husbands and Giles Jermy and Malcolm McIlhagga and Robert IvesSchool of Cognitive and Computing Sciences,University of Sussex, Brighton, BN1 9QH, UKAbstract. This paper describes work on two di�erent aspects of the ap-plication of genetic algorithms to component design. Namely structuraldesign optimisation and the evolution of free-form 3D shapes. On the�rst aspect, a thorough comparison of ten di�erent search techniquesapplied to a wing-box design optimisation problem is described. Thetechniques used vary from deterministic gradient descent to stochasticSimulated Annealing (SA) and Genetic Algorithms (GAs). The stochas-tic techniques produced as good solutions as the best found by the deter-ministic techniques. However, only the stochastic techniques consistentlyproduced very good solutions every run. Signi�cantly, only a distributedgenetic algorithm (DGA) and hybrid methods (SA with gradient descent,DGA with gradient descent) had a reliable fast decent to good regions ofsolution space. On the free-form 3D shape aspect, an interactive systemsfor exploring the evolution of 3D shapes is described. An important ele-ment of the systems is its use of a shape description language based onsuperquadric primitives and global deformations of these primitives.1 IntroductionThis paper reports on recent work on two di�erent aspects of the applicationof genetic algorithms to component design. Namely structural design optimisa-tion and the evolution of free-form 3D shapes. The �rst section describes anindustrially-based structural design optimisation problem and then outlines acomparative study of ten di�erent optimisation techniques used to tackle it.One of the main conclusions of this study was that a distributed genetic algo-rithm, and a distributed genetic algorithm hybridized with a gradient descenttechnique, had signi�cant advantages over the other techniques tried.Following that there is a description of work on the evolution of 3D shapesusing a superqudrics-based shape description language. The shape descriptionlanguage developed is capable of describing arbitrary combinations of globaldeformations, Boolean set operations and superquadric modelling primitives. Agenetic encoding was devised in which genomes could be translated in a non-direct manner to produce expressions in the shape description language. Thereasons for choosing such a description language, and for using a non-directgenetic encoding are explained. Examples of shape evolution are given.The �nal section of the paper draws conclusions from both aspects of thework.



2 A Comparative Study Using a Structural DesignOptimisation ProblemMany engineering design optimisation problems involve search spaces with ahighly complex structure. Stochastic techniques such as simulated annealing andgenetic algorithms have been successfully applied to a number of these [4, 12],and folklore states that these are among the sorts of problems to which thesetechniques are best suited, having advantages over other methods [7, 4]. However,with a few notable exceptions [9], there has been a tendency to neglect large-scalecomparative studies of many optimisation techniques applied to problems of thisnature. We believe that studies of this kind are necessary in order to gain greaterinsight into the relative merits and weaknesses of di�erent techniques, and toform an understanding of what kinds of problems they are most appropriatefor. This is particularly important for genetic algorithms, where the body ofempirical and theoretical work is still relatively small.As a contribution to knowledge in this area, we made a thorough (at least5� 107 objective function calls per technique) comparative study of ten optimi-sation techniques applied to an industrially-based structural design optimisationproblem. The search techniques used were: random search; brute force search;local gradient descent (moving in the �rst down hill direction encountered);gradient descent (moving in the best single move down hill direction); Powell'smethod [13]; simulated annealing [10]; a distributed genetic algorithm (DGA)[3]; the Alopex method [15]; hybridized simulated annealing and gradient de-scent (gradient descent to a local optima after every SA move); and hybridizedDGA and local gradient descent (local gradient descent on each new individualin the population { altering their genetic material).
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Wing Length (fixed)Fig. 1. Schematic view of wingThe wing box problem can be simply described as the task of �nding thenumber of panels needed in an aircraft wing topskin and the thickness of each ofthose panels while minimising the mass of the wing and ensuring that none of thepanels buckle under maximum operational stresses. Figure 1 shows a schematicplan view of the wing discussed in this section.It was assumed that the topskin panels can be modelled as 
at plates, and



that a panel undergoes uniform compressive stresses. It was also assumed thatthe spacing between ribs (rib pitch) is uniform and that the thickness of all ribs isthe same. Hence the aim is to �nd the rib pitch, dictated by the number of panels,and the thickness of the top panels, such that the structure has minimumweightand will not buckle under the compressive stresses produced by the bendingmoments of a 2g manoeuvre.2.1 The Objective FunctionThe objective function (to be minimised) used throughout is given in Equation 1:C = i=nXi=1 Mi(Pi + 1) + RM (1)Where n is the number of panels, Mi is the mass of the ith panel, Pi is thepenalty term described in Equation 2 and RM estimates total rib mass.Pi = � �i�it if �i > �it;0 otherwise: (2)Where �i is the compressive stress in the ith panel and �it is a thresholdstress that must not be exceeded in that panel. For full details of the stress andrib mass calculations see [11].2.2 Solution representation - the delta encodingA solution to the problem is represented by de�ning for each section, apart fromthe one nearest to the fuselage, a term by which the thickness of that sectionshould be increased/decreased from the previous one.Figure 2 illustrates the encoding. �n�th panel is the amount by which thethickness of the n-th panel is bigger or smaller than that of the (n-1)th panel.
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±∂ ±∂2nd Panel Nth Panel...Fig. 2. Delta Encoding used by all Search TechniquesMost of the search techniques used in this study could not handle variabledimensionality search spaces, so they were run on separate problems de�nedfor each possible number of panels in the range 45{65. However, the GA easilyhandled variable numbers of panels in a single run by having a �xed lengthencoding allowing a maximum of 65 panels, but specifying how many panels toconsider as one of the variables. The thickness of the initial panel was de�nedto be in the range 5-15 mm (discretized into multiples of 0.125 mm), and �n 2f�0:25;�0:125;0:0; 0:125; 0:25g. This gives a search space of size Pn=65n=45 100:125 �5n�1, where n is the number of panels.



2.3 ResultsThis section presents the data generated by the various search techniques. Eachtechnique was run for 5 � 107 evaluations to allow water-tight statistics. Notethat a test with this number of evaluations for a single technique comprisedmany runs of the method; each run was started from a new random position inthe search space. Table 1 summarises the results of the comparative study. Fordetails of the implementations of the various search techniques see [11].Search Legal Best Solution Mean SD SolutionsTechnique Solution ? (Kg) Solution (Kg) (Kg)Random search YES 13345.8 13663.8 336Brute Force Search NO 9:6� 108 2� 1011 6:6� 1011Local Gradient Descent YES 12761.9 1:9� 109 7:1� 1010Gradient Descent YES 12761.6 3� 109 9:8� 1010Powell YES 13015.8 13456 145.7SA YES 12763.2 12770 9.1DGA YES 12859.5 12921 26.6Alopex YES 13077.3 5313578.3 36588508Hybrid SA and Gradient Descent YES 12759.5 12764.4 5.3Hybrid DGA and Local Grad. Desc. YES 12815 12856 40.6Table 1. Comparison of all techniquesAll of the deterministic methods (with the exception of Brute Force search)found comparatively good solutions within the liberal time-constraints allowed.However, the very large standard deviations for most of these techniques indi-cates that although they can �nd good solutions, this is very unlikely and ingeneral these techniques have to be run many many times for very large num-bers of evaluations before a high quality solution is found. It should be notedthat the random search results are for one single run of 5 � 107 evaluations.The mean and standard deviation refer to the set of best-solution-so-far foundduring the course of the run, which necessarily monotonically decreases. Hencethese �gures should not be compared with those given for the other techniques.Results from the gradient descent methods give empirical credence to the beliefthat the search space is highly convoluted with many local minima.The GA and SA methods proved much better at avoiding the many localoptima around the 13000�14000 Kg region of the search space. Both the DGAand SA consistently found very good solutions, i.e. had very low standard de-viations of best solution. The DGA and SA methods were also able to handlevariable numbers of panels rather than assuming a �xed number as was the casewith the other techniques.The Alopex method did not fare well. This appears to have been becausethere are complex interactions between the large number of variables in theproblem. Always changing all variables at once is unlikely to retain the valuableparts of previous solutions.



The DGA descended into the region of very good solutions much faster thanSA; it typically reached solutions within 5% of the best found after only 100,000evaluations, whereas SA needed several million calls to the objective functionto proceed that far. Hybridized SA and Gradient Descent was as reliable as SAand found comparably good solutions. However, it produced them much faster.The performance of the hybridized DGA and Local Gradient Descent was verysimilar to that of the hybrid SA method in terms of reliability and quality ofsolution found. However, it was signi�cantly faster again at descending into verylow cost regions of the search space.Clearly the GA and SA based methods were head and shoulders above theother techniques tried, with the hybrids providing quality, reliability and speed.3 Evolution of 3D Objects Using a Superquadric-basedShape Description Language3.1 IntroductionThis section brie
y describes a preliminary exploration of an application of thegenetic search paradigm to three dimensional object design. A computer pro-gram has been developed to enable the interactive design of various interestingthree dimensional objects. The advantage o�ered by this program over otherdesign systems is that the user need have no familiarity with computer aideddesign techniques, no extended training and no knowledge of the underlying al-gorithms; potentially allowing the exploration of designs which would be verydi�cult, if not impossible to generate by traditional methods. The devised ge-netic representation of the three dimensional objects and the genetic operationsemployed, result in a program with which a novice user may explore the vastspace of three dimensional objects available by simply acting as critic to theprogram's e�orts. At any time a collection of objects are simultaneously dis-played and the user indicates preferences from amongst these. The programthen generates and displays a further collection of objects whose underlying de-scriptions are based on those chosen, through genetic operators such as mutationand crossover recombination. Di�erences between this work and previous work[5] include the type of three dimensional objects used. The objects generated bythis work are constructed from deformable superquadrics combined using con-structive solid geometry. This is the �rst use of superquadric primitives [1] orglobal deformations [2] employing a genetic design approach. Global deforma-tions were implemented in order to extend the range of shapes representable.The deformations taper, twist and stretch objects as if modelling with clay. Theparameters controlling the deformations alter the e�ects smoothly, again sug-gesting the parameters could successfully be put under genetic control. The fewparameters needed for a given deformation extends the range of shapes repre-sentable signi�cantly whilst retaining the compactness of representation.



3.2 SuperquadricsThe primitive shape chosen for this work was the superquadric. All other shapesdepicted are combinations and deformations of superquadrics. Superquadricswere chosen for the range of shapes they encompass simply by altering their twoshape parameters. Superquadrics are an extension of the superellipse, a curvediscovered by D. Gardiner in 1965 [6]. The implicit equation of the superellipseis given in equation 3. ���xa ��� 2e + ���yb ��� 2e = 1 (3)For e = 1 this is an ellipse ( circle at a = b ), for 0 < e < 1 the shape becomesnearer a square and for e > 1 the shape becomes progressively more pinched.Barr introduced the superquadrics, a 3D extension of the superellipse, for use incomputer graphics [1]. In fact superquadrics embrace the superellipsoids, super-toroids, and superhyperboloids of one and two sheets. Superellipsoids only wereconsidered in this project. The implicit equation of a superellipsoid is given inequation 4. F (r) =  ���� xa1 ���� 2e2 + ���� ya2 ���� 2e2 ! e2e1 + ���� za3 ���� 2e2 � 1 = 0 (4)The standard parameterisation as a spherical product of two superellipses isgiven in equation 5. r(�; !) = 24a1:cose1�:cose2!a2:cose1�:sine2!a3:sine1� 35 (5)The parameters ��2 � � � �2 , �� � ! � � correspond to deformed lat-itude and longitude as the surface of the superellipsoid is traced out; a1, a2and a3 are scale parameters controlling how stretched the shape is in the x, y,and z directions; e1 and e2 are the shape parameters controlling how round,square or pinched the superellipsoid is. By varying e1 and e2, spheres, cuboidand cylindroids can be produced [1]. To overcome di�culties encountered withsurface sampling of superquadrics, a new reparameterisation of the superquadricmodelling primitive was devised and is presented in [8]. This reparameterisationsamples the surface of superquadrics more evenly than the standard parameter-ization [1].Inside / outside function A modi�ed form of the superellipsoid inside /outside function is used - (see equation 6).F (r) = 0@ � xa1� 2e2 +� ya2� 2e2! e2e1 + � za3� 2e21A e12 � 1 (6)



Where, F (r)8<:< 0) r is inside superellipsoid;= 0) r is on surface of superellipsoid;> 0) r is outside superellipsoid: (7)This modi�ed function does not change the position of the surface, but doesresult in a better behaved function, being closer to the standard Euclidean met-ric.3.3 Global DeformationsAdaptations of the global deformations described in [2] were implemented, namelya smooth tapering deformation and a smooth twisting deformation. Also newbending and cavity deformations were added to the set of possible global defor-mations. The following transformations are currently implemented: translation,rotation, scaling, re
ection, tapering and twisting. All transformations are func-tions taking a point in 3D space as input and outputting a point in 3D space.Figure 3 shows a smooth tapering, o�set from the z axis, of a cylindroid su-perquadric primitive.
Fig. 3. Smooth tapering, o�set from z axis, of a cylinder3.4 Shape Description LanguageA description language was developed capable of describing arbitrary combina-tions of global deformations. This is achieved through Boolean set operationsof superquadric modelling primitives and meta-constructs, allowed through arecursively de�ned description language. The shape description language is an



adaptation of standard constructive solid geometry representation of objects[14]. The adaption permits global space transformations and deformations to beinserted in the expression or tree that represents an object.De�nition of a Valid Shape Description Expression A legal expressionin the language is de�ned recursively as -{ EITHER A primitive - This currently must be a superquadric primitive,SPQD( e1,e2 ) , where e1 and e2 are numbers giving the two shape param-eters of the superquadric. Note, as previously mentioned spheres, cuboidsand cylindroids are all realisable as superquadrics. ( The NULL( ) primitiveis also valid describing an empty shape. ){ OR A transformation acting on a legal expression -transformation(param1,param2,..)legal expression. Where transformation isone of the provided transformations and param1,.. is the required parameterlist for that transformation. The transformations currently implemented areSCALE, ROTX, ROTY, ROTZ, REFX, REFY, REFZ, TRANS, TAPERZ,TWISTZ, BENDY. See [8] for a full description of the transformations.{ OR A Boolean set operation of two legal expressions - Boolean operation( le-gal expression1,legal expression2). Where Boolean operation is one of UNION,INTERSECT and DIFF, for set union, intersection and di�erence of the twoshapes described by legal expression1 and legal expression2.For example, with this recursive de�nition the following expressions are allvalid legal expressions:1. SPQD( 1,1) - De�nes a single sphere.2. ROTX(1.57)SCALE(1,1,2)SPQD(0.1,1) - De�nes a cylinder like shape thathas been scaled by two in the z direction and then rotated by 1.57 radiansaround the x-axis. Note transformations are applied right to left.3. UNION( SPQD( 1,1), ROTX(1.57)SCALE(1,1,2)SPQD(0.1,1) ) - Is the unionof (1) and (2).4. REFX( ) DIFF( ROTX(1.57)SCALE(1,1,2)SPQD(0.1,1), SPQD( 1,1) ) -Demonstrates that any valid expression can have a transformation applied.Internally such expressions are held as a linked tree for traversal and inter-rogation by the polygonisation process. Each node in the tree contains a pointerto its parent node, and one or two pointers to its children node(s). Transforma-tions always have one child, Boolean operations always have two. Transformationnodes and primitive nodes also contain the necessary parameters and also con-tain pointers to their relevant functions for interrogation of the shape descriptiontree.3.5 Genetic EncodingA genetic encoding was devised in which genomes could be translated in a non-direct manner to produce expressions in the shape description language. The



translation from genome to phenome involves a recursive process to encourageinteresting repeated shapes to emerge. Both the structure of expressions and pa-rameter values within the expressions are determined by the genome. The geneticalgorithm implemented uses mutation or crossover on the selected genome(s) re-spectively. Any genome produced by the genetic algorithm is translated into avalid expression in the shape description language. A genome is a string of nodes,each node stores several items of information. Principally pointers to one or twonodes in the string: this has an interpretation as a directed network. The networkmay contain cyclic elements including nodes pointing at themselves. Figure 4indicates how a string of three nodes represents a directed network.
Fig. 4. Nodes in genome represent a directed networkThe network is traversed recursively, starting from the �rst node in thestring to produce a shape description expression. Each time the process de-scends through a node its recursive count is incremented by one. If the recursivecount of a node becomes greater its recursive limit then that node does not getinterpreted as an atom of primary node type, instead the node gets interpretedas a primitive of type default primitive type, with parameters default parame-ters. In this way the recursive traversal of the network will stop at the end of abranch.Genetic Operators The genetic algorithm applies mutation or crossover ateach breeding cycle as selected by the user. All genetic operations act on thestring of bits that code for the genomes. If mutation is selected a new populationis produces by producing imperfect copies of the bit string of the selected parent.Mutation rate is per bit and typically 0.005 is used. Mutation can a�ect one ormore parameter values within a shape description expression, or can mutate thestructure of the expression itself. If crossover is selected a new population isproduced by applying two point crossover on the two parent's bit strings. The



crossover points are uniformly distributed along the bit strings. No mutation isused on a crossover breeding. Crossover will result in a genomic network havingsome nodes from each of the two parents while also perhaps including nodes thatare 'new' as a result of crossover points occurring in the middle of a node's bitstring. The one parent selected for mutation and two for crossover, are preservedintact into the next generation.3.6 ExampleFigures 5 { 10 show the evolution of a shape over a number of generations. The'�tness function' was the eye of the beholder.
Fig. 5. Generation 0 Fig. 6. Generation 1 Fig. 7. Generation 2
Fig. 8. Generation 3 Fig. 9. Generation 4 Fig. 10. Generation 54 Conclusions and DiscussionAs far as we are aware, the wing-box study is one of the most extensive com-parative studies of di�erent optimisation methods applied to a problem of thisnature. However, because there are so many parameters associated with thevarious techniques that could be altered, it is inevitably far from exhaustive.



Nevertheless, it does suggest strongly that hybridized stochastic search is thecorrect route for problems such as the simpli�ed wingbox design task. One ob-vious direction for future work, then, is a more thorough investigation of hybridalgorithms.Past work with three dimensional shape design using genetic algorithms hasbeen restricted to a small �xed set of primitives such as spheres and cylindersand only linear transformations. The use of superquadrics with global defor-mations was chosen as a powerful method of representing three dimensionalshapes. Previous work with these tools has demonstrated some of the generalityof this representation but has been restricted to hand-design of shapes. Thisresearch has combined these two methods of exploration and representation asthe working system brie
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