
The Use of Genetic Algorithms for the Developmentof Sensorimotor Control SystemsPhilip Husbands and Inman Harvey and Dave Cli� and Geo�rey MillerSchool of Cognitive and Computing SciencesUniversity of SussexBrighton BN1 9QH, EnglandE-mail: philh or inmanh or davec or geoffm @cogs.susx.ac.ukAbstractThis paper provides a high-level review of current and recent work in the use of geneticalgorithm based techniques to develop sensorimotor control systems for autonomous agents.It focuses on network-based controllers and genetic encoding issues associated with them. Thepaper closes with a discussion of the possibility of using arti�cial evolutionary techniques tohelp tackle more speci�cally scienti�c questions about natural sensorimotor systems.KeywordsGenetic Algorithms { Neural Networks { Sensorimotor Control Systems1 IntroductionAnimals that we often think of as rather simple (e.g. arthropods1) in fact display a range ofsophisticated adaptive behaviours, involving complex sensorimotor coordination [Young89].These behaviours are generated by remarkably few nerve cells which might suggest that theyare based on simple mechanisms. However, in general this does not appear to be the case[Ewert80]. Despite their size, the dynamics of arthropod nervous systems are intricate.Under present technological constraints, control systems for autonomous robots will neces-sarily involve relatively small numbers of `components', be they implemented in hardware orsoftware. This suggests an analogy with arthropods: it is very likely that it will be necessaryto develop complicated dynamical systems to control autonomous robots acting in uncertaincomplex environments.Forty years of autonomous robotics research has taught us that generating the degree ofsensorimotor coordination needed to sustain adaptive behaviour in the real world is no easymatter [Moravec83]. We believe this is because the control systems needed will be of thecomplex dynamical systems variety, and these are inherently extremely di�cult to design bytraditional means. Indeed, the situation is even worse than is often expected; suitable sensor andactuator properties (including morphologies) are inextricably bound to the `internal' dynamicsof the control system and vice versa. Imposing the simplifying constraint of cleanly dividingthe system's operation into a pipeline of sensing, internal processing, and acting, now appearsto be far too restrictive [Brooks91, Beer90].We, and a number of other authors, have suggested that the use of arti�cial evolution tofully, or partially, automate the design process may be a way forward [Cliff93, Beer92b]. Anumber of research projects are now actively exploring this possibility.1That class of invertebrates including insects.



The arti�cial evolution approach maintains a population of viable genotypes (chromosomes),coding for control architectures. The genotypes are inter-bred according to a selection pressure,much as in standard genetic algorithm work. This is controlled by a task-oriented evaluationfunction: the better the robot performs its task the more evolutionarily favoured is its controlarchitecture. Rather than attempting to hand-design a system to perform a particular taskor range of tasks well, the evolutionary approach allows their gradual emergence. There is noneed for any assumptions about means to achieve a particular kind of behaviour, as long as thisbehaviour is directly or implicitly included in the evaluation function.This paper starts with a high-level review of current work in the use of genetic algorithmbased techniques to develop sensorimotor control systems for autonomous agents. It goes on toargue that the most promising way of doing this involves the use of network-based controllers.This in turn means that issues to do with the genetic encoding of the networks become centralto the endeavour. We outline a set of desirable properties for such encodings. A number ofencoding schemes developed by other researchers are reviewed, and we present new methods ofour own. There follows a discussion of the possibility of using arti�cial evolutionary techniquesto help tackle more speci�cally scienti�c questions about natural sensorimotor systems.2 Evolutionary Development of Sensorimotor Control SystemsThis section provides a brief high-level review of research into the use of genetic algorithm basedtechniques for the development of sensorimotor control systems for autonomous agents.In a traditional autonomous robotics context, mention is made of a proposed evolutionaryapproach in [Barhen87]. A student of Brooks discussed some of the issues involved, withreference to subsumption architectures, in [Viola88]. De Garis [Garis92] proposed usingGAs for building behavioural modules for arti�cial nervous systems, or `arti�cial embryology'.However, it is only recently that more complete proposals have been made to use evolutionaryapproaches in robotics [Brooks92, Husbands92].Brooks [Brooks92] outlines an approach based on Koza's Genetic Programming techniques[Koza92]. He acknowledged that time constraints would probably necessitate the use of simu-lations. However, he stressed the dangers of using simulated worlds rather than real worlds. Heproposed that by evolving the control program incrementally the search space can be kept smallat any time. He noted that symmetries or repeated structures should be exploited so that onlya single module needs to be evolved, which is then repeatedly used. Brooks proposed a highlevel language, GEN, which could be evolved, and then compiled down into BL (BehaviourLanguage) and further on down onto the actual robot harware.Important work on an evolutionary approach to agent control using neural networks hasbeen done by Beer and Gallagher [Beer92b]. They explore the evolution of continuous-timerecurrent neural networks as a mechanism for adaptive agent control, using as example taskschemotaxis, and locomotion-control for a six-legged insect-like agent. The networks are basedon the continuous Hop�eld model [Hopfield82], but allow arbitrary recurrent connections.They used a standard genetic algorithm to determine neuron time constants and thresholds,and connection weights. A �xed number of network parameters are encoded in a straightforwardway on bitstring `genotypes'. They report success in their objectives; in the case of locomotioncontrol, controllers were evolved that in practice generated a tripod gait (front and back legson one side in phase with the middle leg on the opposite side). This was achieved both withand without the use of sensors which measured the angular position of each leg.Beer [Beer92a] develops a dynamical systems perspective on control systems for autonomous2



agents, inuenced by early work in Cybernetics [Ashby60]. In further developments of theirevolutionary approach, Yamauchi and Beer [Yamauchi94] evolve networks which can controlautonomous agents in tasks requiring sequential and learning behaviour.Colombetti and Dorigo [Colombetti92] use Classi�er Systems (CSs) for robot control. Inthis work the alecsys implementation is used to build a hierarchical architecture of CSs |one for each desired behaviour, plus a coordinating CS. Results are reported which have beengenerated in simulations, and then transferred to a real robot.Parisi, Nol� and Cecconi [Parisi92] investigated the relationship between learning andevolution in populations of back-propagation networks; these networks were the `brains' ofanimats that received sensory input from a simple cellular world in which the task was tocollect `food'. In this paper they concluded that learning abilities can accelerate the evolutionaryprocess, even when random learning tasks are used. A later analysis of this work [Williams93]demonstrated that this conclusion was not justi�ed, and an alternative simpler explanation wasgiven.Koza successfully used the technique of Genetic Programming to develop subsumption ar-chitectures [Brooks86] for simulated robots engaged in wall-following and box moving tasks[Koza92].Craig Reynolds [Reynolds94b] uses Genetic Programming to create control programswhich enable a simple simulated moving vehicle to avoid collisions. He comments that thesesolutions are brittle, vulnerable to any slight changes or to noise. In further work where the�tness-testing includes noise, he reports that the brittleness problem is overcome, and onlycompact robust solutions survive [Reynolds94a].Floreano and Mondada [Floreano94], were able to run a GA on a real robot in real time,rather than a simulation. The GA set the weights and thresholds in a simple recurrent networkwhere every sensory input was connected to both motor outputs. The task was to traverse acircular corridor while avoiding obstacles, and this work demonstrates that with well-designedequipment it is possible to avoid the problems associated with simulations.Cli�, Harvey and Husbands have developed an evolutionary methodology which they havesuccessfully applied to the development of control systems for both simulated agents and realrobots [Cliff93, Harvey94]. The incremental evolution of arbitrarily recurrent neural net-works is advocated, as is the concurrent evolution of the control network and aspects of theagent's morphology, particularly the positions and properties of sensors. In the simulation work,agents were evolved which, from any starting position and orientation, could reliably use visionto move to the centre of a circular room and stay there. This work involved the concurrentevolution of control networks and the position and properties of two visual sensors. The simplegenetic encoding used (essentially a direct representation of the network wiring) was di�erentfrom most others in that it was dynamic in length. This meant that arbitrary numbers ofneurons and inter-neuron connections could be encoded. In [Husbandsng] it is shown howthese evolved control systems can be analysed in some detail. However, it was concluded thatfurther use of simulation was highly problematic if more complex visual environments were tobe used. To overcome this, a specialised piece of visuo-robotic equipment was developed thatallows the evolution of control networks and visual morphologies without recourse to simulatingthe agent environment interactions. The equipment is fully described in [Harvey94] and hasbeen successfully used to evolve simple target approaching and following behaviours. It hasalso been used to develop agents which are able to distinguish between two di�erently shapedtargets. In both the simulation work and the experiments with real robots, each individualwas evaluated several times and the worst score obtained given as its �tness. This encouraged3



robustness.3 Why Evolve Networks?Much of the work described in the previous section used arti�cial neural networks of somevariety as the basic building blocks of the control systems being developed. We believe this isthe most appropriate choice. For reasons given in [Cliff93], network search spaces are generallysmoother than spaces of explicit control programs. Networks are naturally amenable to open-ended approaches, and allow the researcher to work with very low-level primitives, therebyavoiding incorporating too many preconceptions about suitable control system properties. Weadvocate unrestricted recurrent real-time dynamical networks as one of the most general classof behaviour generating systems. However, such systems are far too unconstrained, with a greatmany potential free parameters (such as neuron time constants and thresholds, and connectiondelays and weights) to admit hand design. Therefore, this class of intrinsically very powerfulsystems can only really be explored with the help of automated techniques, of which arti�cialevolution is the front runner.4 Genetic Encodings and Developmental SchemesOnce the decision to evolve network-based systems has been taken, the question of how toencode the networks on an arti�cial genotype becomes crucially important. Without a suitableencoding scheme little progress can be made. In the simplest schemes the genotype is a directdescription of the network wiring. Such encodings will necessarily be restrictive. Much morepowerful approaches, allowing complete open-endedness and modularity through the repeateduse of genotype sections, must involve a more complex interpretive process2. This can bethought of as being loosely analogous to the developmental processes that occur in nature toproduce a phenotype from a genotype. Since we regard encoding issues as being central toevolutionary development of control systems, this and the following section concentrate on thisarea.Gruau [Gruau92] de�nes 7 properties of a genetic encoding of neural networks that shouldbe considered. These include: Completeness: any NN architecture should be capable of beingencoded; Compactness: one encoding scheme is more compact than the second if for anyNN architecture the �rst genetic encoding is shorter than that given by the second; Closure:implies that any genotype encodes some architecture; Modularity: a genetic encoding wouldbe modular if parts of the genotype specify subnetworks of the complete network, and otherparts specify the connections between such subnetworks, this decomposition could be recursive.We endorse all these considerations, especially modularity which would seem necessary forsensorimotor systems employing vision. Additional points are: smooth interaction with geneticoperators: the encoding should allow relatively smooth movements around the search space; theencoding should not presuppose the dimensionality of the search space: incremental evolutionrequires an open-ended approach in which the dimensionality of the search space cannot bespeci�ed in advance, the encoding should allow variable numbers of neurons and connections;the encoding must allow speci�cation of sensory and motor properties as well as that of a controlnetwork.2In this context modularity refers to a developmental process analogous to the use of subroutines in programs.For instance, the left limbs and right limbs of animals will not be independently `coded for' in DNA, but rathergenerated by the same genetic information expressed more than once.4



Kitano [Kitano90] developed an early method for encoding networks which took into ac-count some of the issues raised above. Although his technique was not speci�cally developedfor sensorimotor systems, it can be applied to them. The genotype was used to encode a graphgeneration grammar. Kitano's system allows a linear genotype to operate on a square matrix ofcharacters, initially 1� 1. Each act of rewriting expands the matrix into 4 quadrants each thesame size as the previous matrix, with the contents of each quadrant speci�ed by the genotype.At the end of a succession of n such rewriting steps, a network connection matrix of size 2n�2nis produced. In this way scalability and modularity start to be implemented in a compactgenetic encoding of large regular networks.Gruau [Gruau92] discusses Kitano's work, and also acknowledges earlier work by Wilson[Wilson87]. Gruau's Cellular Encoding (CE) is a form of \neural network machine language",which he claims has all the above desirable properties. This is a form of rewriting grammar,where the rewriting is considered as a form of developmental process involving \rewriting neu-rons" or \cells". Rewriting operators include PAR which divides a cell into two cells that inheritthe same input and output links as their parent; CLIP which can cut links; WAIT which delaysrewriting operations so as to change the order in which later operations are carried out. Furtheroperators SPLIT and CLONE allow for the desirable property of modularity to be achieved.In total 13 operators are used. Although it has not yet been done, he proposes using his methodfor the development of sensorimotor control systems.5 Developmental Schemes for Sensorimotor SystemsThis section outlines three schemes recently developed at Sussex for encoding network-basedsensorimotor control systems. They take into account the issues listed earlier, and are speci�callyaimed at encoding whole control systems. That is, control networks along with sensor and motormorphologies.5.1 A language and compiler schemeExperience with the primitive encoding we used in our early evolutionary robotics simulationstudies [Cliff93] lead us to develop a language-and-compiler type genetic encoding schemewhich is tailored to the demands of evolving sensory-motor coordination morphologies, and inparticular to encoding repeated structures as are commonly found necessary in dealing withvisual sensory processing. As with Genetic Programming, the genome is a program, which isexpressed as a 1D string { although at the conceptual level a higher-dimensional space o�ers amore appropriate descriptive framework. The encoding scheme is essentially a new programminglanguage, called `ncage' (from\Network Control Architecture Genetic Encoding"); ncage al-lows for specifying sensory-motor controller morphologies based on `neural network' paralleldistributed processing architectures. The arti�cial genomes are interpreted as ncage programswhich are `compiled' in a `morphogenesis' process to create controller structures. It is importantto note that we do not consider the DNA-encoded genomes of biological systems as programs,and neither do we consider biological morphogenesis as comparable to compiling or executinga computer program. The notions of `genome-as-program' and `morphogenesis-as-compilation'used here are nothing more than metaphors invoked in the exposition of what is at presentessentially an engineering endeavour.It is beyond the scope of this paper to fully describe this new encoding scheme: a brief de-scription of its key features is given below. For a more complete description, including accounts5



of its successful use in the evolution of autonomous agents for a variety of behavioral niches,see [Cliff94].The ncage language draws on elementary vector-graphics programming facilities found inmany graphics languages (and in platform-speci�c vector graphic extensions to general pro-gramming languages). It thus bears super�cial similarities to turtle-graphics languages suchas Logo. Essentially, the genome is interpreted as a sequence of subroutine speci�cations andsubroutine calls. Subroutines may call other subroutines including themselves. Subroutine callsare made from `positions' in a high-dimensional space (typically conceptualised as one of anumber of distinct but superpositioned Euclidian 2-spaces or 3-spaces). Calls may reposition a`cursor' (cf. turtle) or may place one or more `neurons' of di�ering types at a position speci�edrelative to the current cursor position.The encoding scheme is modular, has varying resolution of numeric values, is robust withrespect to crossover and mutation, allows for recursively repeatable structures (with system-atic variations where necessary), and has inbuilt symmetry and symmetry-breaking facilities.Structure speci�cations are largely independent of their position on the genome, and so a trans-position operator can be used to good e�ect. An inversion operator is also used, but becausethe genome is read left-to-right, inversion does not preserve structure speci�cations and is usedprimarily as an operator for achieving extremely high mutation rates within a localised sequenceon the genome, while preserving the statistical distribution of characters on the inverted portionof the genome.Because the encoding has to satisfy requirements imposed by the genetic operators, ncagedi�ers signi�cantly from traditional computer programming languages. The most marked di�er-ence is that portions of the genome may be interpreted `junk' or `silent' code: while many pro-gramming languages allow for the speci�cation of subroutines which are never called, most willgenerate terminal error conditions when the subroutines are partially complete or non-existent.The ncage interpreter does not generate an error when it encounters calls to unspeci�ed sub-routines (such calls are simply ignored), and sequences of instructions which cannot be parsedas generating useful structures are likewise ignored.The genomes are expressed in a three-character alphabet, although in principle a binaryalphabet could be employed at the cost of proportionately longer strings. Under the three-character scheme, two characters are used as bits for data, and the third is a `stop' controlcharacter used for terminating speci�cations at varying levels in the genome interpretationprocess. Theoretically, any su�ciently long random string over the chosen alphabet will beinterpretable as a speci�cation of a controller architecture. However, practical considerationsentail that some structure (i.e. high-order correlations) are introduced in the generation ofinitial random genomes, to reduce their length. Experience with the encoding indicates thatthe inclusion of junk code on the genome increases the robustness of the encodings with respectto the genetic operators employed: for further details, see [Cliff94].5.2 A force �eld development schemeA second, contrasting, scheme makes use of a highly implicit dynamical process governed by asystem of ordinary di�erential equations, the parameters of which are encoded on the genotype.This process describes the growth of a network-based sensorimotor control system. Again, in noway is this scheme intended to be a model of any biological process. It was developed simply as6



a method having the properties we believe are desirable for arti�cial evolution3. Full details ofthis method can be found in [Husbands94], which describes a class of developmental schemes.A representative member of this class is presented here.In this force �eld scheme, `neurons' are positioned across a 2D plane where they exertattractive forces on the free ends of `dendrites' growing out from themselves and other neurons.The ends of the dendrites move under the inuence of the force �eld created by the distributionof neurons. If a dendrite end moves to be within a small distance, �, from a neuron it stopsgrowing and connects to that neuron (which may be its parent). Dendrites do not a�ect eachother and may cross in arbitrary ways. The equations of motion of the dendrite ends are givenby ordinary di�erential equations of the form shown in Equation 1.d2 ~Rijdt2 = NXk=0 ~Fijk � Kd~Rijdt + Gijl3ij ���d~Rijdt ��� d~Rijdt (1)Where ~Rij is the position vector of the end of the jth dendrite of the ith neuron (henceforthreferred to as endij). The �rst term on the RHS of Equation 1 represents the vector sum ofthe attractive forces exerted on endij by all neurons. These forces are of the form given inEquation 2. ~Fijk = GSiASk~rijkj~rijkj3 (2)Where ~rijk is the vector from endij to the centre of neuron k. GSi and ASk are geneticallydetermined constants. The second term in Equation 1 is a `viscous' resistive force to preventdendrites sailing o� into outer-space. The third term provides a force in the direction of motionof the dendrite end and is inversely proportional to the cube of lij, the current length of thedendrite. This force drops o� very rapidly but encourages dendrites to, at least initially, escapefrom the inuence of their parent neuron. Gij is a genetically encoded constant. In the compu-tational implementation of the scheme, the di�erential equations were approximately integratedusing the Euler method with an adaptive time step. One feature of this method is that thelengths of the resulting dendrite paths can be translated into time-delays or weights for use inthe operation of the network.A genotype to be used with this scheme must encode the parameters of the equations,along with the positions of the neurons and the initial directions of growth of the dendrites. Inprinciple, a large number of di�erent encodings would su�ce. However, as already discussed,it is preferable to use an encoding exhibiting the desirable properties outlined in Section 5.A particular encoding meeting these requirements, and specially developed for the force �eldmethod, is briey outlined below. Further details can be found in [Husbands94].In this method a bit string is used as a neutral encoding medium. That is, any bit stringcan be interpreted as a control system (although it may be an empty one). The core of theinterpreting algorithm is as follows. The string is scanned from left to right until a particulartype of marker (short bit pattern) is found. If the marker bounds the start of a valid stringsection, sequences of bits are read and turned into `neuron' parameter values for use with theforce �eld development scheme. As with the previously described language and compiler model,each of these read operations counts the number of 1s in a sequence and uses that number tomap to the parameter value. The algorithm rewinds back to the start-section marker and thensearches forward to the next occurrence of a second type of marker. This signals a new `mode'3Recently [Fleischer94] has independently done related work, although their research is much more focusedon biological modelling of cellular development and has not yet been incorporated into an evolutionary framework.7



of interpretation in which dendrite properties are determined. This is repeated until yet anotherform of marker is encountered. The algorithm then moves back to the �rst marker and searchesforward to the next occurrence of a start-section marker. The whole process then repeats. This`looping back' behaviour means the algorithm can potentially reuse parts of the string manytimes. This results in the encoding of relatively large parts of the networks being localised onthe string. This produces a form of modularity, where repeated patterns are formed by there-expression of parts of the genotype. A more complex modular extension, involving severalplanes of neurons, is described in [Husbands94].The position of a neuron is described by genetically determined distance and direction fromthe last neuron to be layed down. The existence or otherwise of a particular marker determineswhether or not a neuron acts as a visual receptor. If it is a visual receptor, its position onthe plane is mapped onto a position within the robot's receptive �eld. In the scheme currentlybeing used, two special motor neurons are placed near the centre of the plane. The networkthen develops around them. This is convenient for a two motor system, but many other waysof handling motor neurons can be incorporated into the method.5.3 A cell-division methodIn this proposal [Harvey93], a naive model is used of the development of a multicellular organ-ism by cell-division from a single initial cell. Every cell contains the same DNA, the genotype,which acts as a constraint on an intra-cellular dynamics of transcription and translation of `en-zymes' which themselves initiate or repress the production of further `enzymes'. The genotypeand also the `enzymes' are bit-strings.Within one cell, any initial enzymes are template-matched against the genotype; wherevermatches occur, transcription from the genotype starts, and produces further enzymes. Theensuing intra-cellular dynamics can be inuenced by inter-cellular `signals' received from neigh-bouring cells. The production of particular enzymes initiates cell-splitting; other particularenzymes, when they are �rst produced, signal the completion of the developmental process.In this way, from an initial single cell with a genotype, development produces a numberof cells that can be considered as positioned in some space with neighbourhood relations. Al-though all containing the same DNA, the cells can be di�erentiated into di�erent classes bythe particular distinctive internal dynamics of their enzyme production process. Thus at thisstage the whole group of cells can be interpreted as a structure with organisation; for instance,as a neural network with di�erent cells being `neurons' with speci�c characteristics, and withconnections speci�ed between them.6 Evolutionary simulations as science: Tracing the origins ande�ects of sensorimotor systems in natureWhile much of the work mentioned so far is biologically informed and inspired, most of it has astrong engineering characteristic. In other words, the primary goal is to develop working controlsystems for autonomous mobile robots. However, this �eld can potentially o�er new tools andmethods for investigating more speci�cally scienti�c topics. That is the focus of this section.Very little is known about the evolutionary origins and e�ects of basic sensorimotor systemsin nature. Brains and behaviors do not fossilize well, so normal paleontological methods cannotgenerally be used to trace the evolution of sensorimotor systems. Behavioral ecologists canconstruct optimality or game-theoretic models of how behavioral strategies evolve, but these8



models are usually too abstract to explain the evolution of speci�c sensorimotor systems inspeci�c species. Even experimental studies in fast-breeding species cannot study sensorimotorevolution for more than a few dozen generations. Neuroethologists can derive phylogenies andprobable selective pressures by comparing sensorimotor adaptations across species, but cannottest evolutionary hypotheses very directly. Because of these methodological problems, evolution-ary computer simulations are our only real hope for understanding the long-term adaptation ofsensorimotor systems to habitats and econiches, and the long-term coevolution of sensorimotorsystems interacting within and between species.This gap in our scienti�c understanding of sensorimotor evolution is important because(1) sensorimotor control is the essence of `adaptive agency', and the evolution of sensorimo-tor control is fundamental to the success of all animal species, and (2) sensorimotor systems,once evolved, can in turn exert strong selection pressures on other organisms, resulting in theevolution of camouage, warning coloration, mimicry, lures, protean behavior, sexual displays,communication, and many other forms of adaptive display. This second phenomenon has re-ceived increasing attention in the last few years, and has been termed, among other things,`psychological selection' [Miller93a, Miller93b] and `sensory exploitation' [Ryan90]. Insuch cases of `sensory exploitation,' where behavioral adaptations in one animal evolve to ex-ploit particular sensory biases in other animals, we clearly cannot understand the co-evolutionwithout simulating the relevant sensorimotor systems in some detail.Genetic algorithms o�er a general, open-ended method for simulating the evolutionary ori-gins and e�ects of sensorimotor systems, because such systems can be modelled at almost anysize and any level of description, from detailed neural network designs (as we have used in ourevolutionary robotics work), up to abstract parameters of behavioral strategies, and becausesuch systems can be left to evolve in any simulatable habitat or ecosystem. Since di�erent sci-enti�c problems require simulations at quite di�erent scales and levels of description, we mustbe explicit about our research goals and careful about �nding the right simulation methods forthose goals. For example, studying the phylogeny of visual circuits in a particular genus of bee-tle might require evolving quite detailed neural networks under particular ecological conditions,but the studying the general inuence of visual associative learning on the evolution of warningcoloration might require much more general models of vision in predators and coloration inprey. In general, engineering research needs more detailed, lower-level simulations of sensori-motor systems than almost any scienti�c research would require, because sensorimotor systemsfor autonomous robots must actually work, whereas sensorimotor models of animals need only�t the neuroethological data.Even if one's scienti�c goal is to understand neural development, learning, perception, or themechanisms of dynamic behavior, rather than evolution itself, there is still considerable bene�tto parameterizing one's model of the phenomenon in a way that allows alternative models toevolve through GAmethods. Simulated evolution can be used to test the plausibility, robustness,and evolutionary stability of models of development and behavior just as real evolution tested theactual mechanisms of development and behavior that are being modelled. Human imaginationis poor at envisioning alternatives to one's cherished model of some behavioral phenomenon;simulated evolution can act as a constructive critic that generates alternative hypotheses whichcan then be tested by observation and experimentation.In the future, we envision a more integrated science of sensorimotor evolution, that com-bines data and methods from cladistics, experimental psychology, neuroethology, behavioralecology, population genetics, and computer simulation. Evolutionary simulation is unusuallyexciting, colorful, and fast as an empirical research method, but ideally, it will be absorbed9



into the scienti�c mainstream as just one means among many for studying natural evolutionaryprocesses.7 ConclusionsThis paper has given a high-level review of current and recent work in the use of genetic al-gorithm based techniques for the development of sensorimotor control systems for autonomousagents. It has focused on genetic encoding issues as being particularly important, and has pre-sented work in this area. The paper closed with a discussion of the wider scienti�c applicabilityof arti�cial evolutionary techniques.References[Ashby60] W. Ross Ashby. Design for a Brain. Chapman, 1960.[Barhen87] J. Barhen, W.B. Dress, and C.C. Jorgensen. Applications of concurrentneuromorphic algorithms for autonomous robots. In R. Eckmiller and C.v.d.Malsburg, editors, Neural Computers, pages 321{333. Springer-Verlag, 1987.[Beer90] R. D. Beer. Intelligence as Adaptive Behaviour: An Experiment in Compu-tational Neuroethology. Academic Press, 1990.[Beer92a] R.D. Beer. A dynamical systems perspective on autonomous agents. Tech-nical Report CES-92-11, Case Western Reserve University, Cleveland, Ohio,1992.[Beer92b] R.D. Beer and J.C. Gallagher. Evolving dynamic neural networks for adap-tive behavior. Adaptive Behavior, 1(1):91{122, 1992.[Brooks86] R. A. Brooks. A robust layered control system for a mobile robot. IEEE J.Rob. Autom., 2:14{23, 1986.[Brooks91] R.A. Brooks. Intelligence without representation. Arti�cial Intelligence,47:139{159, 1991.[Brooks92] Rodney A. Brooks. Arti�cial life and real robots. In F. J. Varela andP. Bourgine, editors, Proceedings of the First European Conference on Arti-�cial Life, pages 3{10. MIT Press/Bradford Books, Cambridge, MA, 1992.[Cliff93] D. Cli�, I. Harvey, and P. Husbands. Explorations in evolutionary robotics.Adaptive Behavior, 2(1):73{110, 1993.[Cliff94] D. Cli�. Ncage: Network control architecture genetic encoding. TechnicalReport CSRP-325, School of Cognitive and Computing Sciences, Universityof Sussex, 1994.[Colombetti92] M. Colombetti and M. Dorigo. Learning to control an autonomouys robot bydistributed genetic algorithms. In J.-A. Meyer, H. Roitblat, and S. Wilson,editors, From Animals to Animats 2, Proc. of 2nd Intl. Conf. on Simulationof Adaptive Behavior, SAB'92, pages 305{312. MIT Press/Bradford Books,1992. 10



[Ewert80] J.-P. Ewert. Neuroethology. Springer-Verlag, 1980.[Fleischer94] K. Fleischer. A simulation testbed for the study of multicellular develop-ment: The multiple mechanisms of morphogenesis. In C. Langton, editor,Arti�cial Life III, pages 389{416. Santa Fe Institute Studies in the Sciencesof Complexity, Proceedings Vol. XVI, Addison-Wesley, Redwood City CA,1994.[Floreano94] D. Floreano and F. Mondada. Automatic creation of an autonomous agent:Genetic evolution of a neural-network driven robot. In D. Cli�, P. Hus-bands, J.-A. Meyer, and S. Wilson, editors, From Animals to Animats 3,Proc. of 3rd Intl. Conf. on Simulation of Adaptive Behavior, SAB'94. MITPress/Bradford Books, 1994.[Garis92] Hugo de Garis. The genetic programming of steerable behaviors in GenNets.In F. J. Varela and P. Bourgine, editors, Toward a Practice of AutonomousSystems: Proceedings of the First European Conference on Arti�cial Life,pages 272{281. MIT Press/Bradford Books, Cambridge, MA, 1992.[Gruau92] F. Gruau. Cellular encoding of genetic neural networks. Technical Report 92-21, Laboratoire de l'Informatique du Parallelisme, Ecole Normale Superieurede Lyon, 1992.[Harvey93] I. Harvey. The Arti�cial Evolution of Adaptive Behaviour. PhD thesis, Uni-versity of Sussex, 1993.[Harvey94] I. Harvey, P. Husbands, and D. Cli�. Seeing the light: Arti�cial evolution,real vision. In D. Cli�, P. Husbands, J.-A. Meyer, and S. Wilson, editors,From Animals to Animats 3, Proc. of 3rd Intl. Conf. on Simulation of Adap-tive Behavior, SAB'94. MIT Press/Bradford Books, 1994.[Hopfield82] J. J. Hop�eld. Neural networks and physical systems with emergent collectivecomputational abilities. Proceedings of the National Academy of Sciences,79:2554{2558, 1982.[Husbands92] P. Husbands and I. Harvey. Evolution versus design: Controlling autonomousrobots. In Integrating Perception, Planning and Action, Proceedings of 3rdAnnual Conference on Arti�cial Intelligence, Simulation and Planning, pages139{146. IEEE Press, 1992.[Husbands94] P. Husbands. A force �eld development scheme for use with genetic encodingsof network-based sensorimotor control systems. Technical Report CSRP-326,School of Cognitive and Computing Sciences, University of Sussex, 1994.[Husbandsng] P. Husbands, I. Harvey, and D. Cli�. Circle in the round: state space attrac-tors for evolved sighted robots. Robotics and Autonomous Systems, Forth-coming.[Kitano90] H. Kitano. Designing neural networks using genetic algorithms with graphgeneration system. Complex Systems, 4:461{476, 1990.11



[Koza92] J. Koza. Genetic Programming: On the programming of computers by meansof natural selection. MIT Press, 1992.[Miller93a] G. F. Miller. Evolution of the human brain through runaway sexual selec-tion: The mind as a protean courtship device. PhD thesis, Department ofPsychology, Stanford University, 1993.[Miller93b] G. F. Miller and J. J. Freyd. Dynamic mental representations of animate mo-tion: The interplay among evolutionary, cognitive, and behavioral dynamics.Technical Report CSRP-290, School of Cognitive and Computing Sciences,University of Sussex, 1993.[Moravec83] H.P. Moravec. The Stanford Cart and the CMU Rover. In Proc. of IEEE,volume 71, pages 872{884, 1983.[Parisi92] D. Parisi, S. Nol�, and F. Cecconi. Learning, behavior, and evolution. InF. J. Varela and P. Bourgine, editors, Toward a Practice of AutonomousSystems: Proceedings of the First European Conference on Arti�cial Life,pages 207{216. MIT Press/Bradford Books, Cambridge, MA, 1992.[Reynolds94a] C.W. Reynolds. Evolution of corridor following behavior in a noisy world.In D. Cli�, P. Husbands, J.-A. Meyer, and S. Wilson, editors, From Animalsto Animats 3, Proc. of 3rd Intl. Conf. on Simulation of Adaptive Behavior,SAB'94. MIT Press/Bradford Books, 1994.[Reynolds94b] C.W. Reynolds. An evolved, vision-based model of obstacle avoidance be-havior. In C. Langton, editor, Arti�cial Life III. Santa Fe Institute Studies inthe Sciences of Complexity, Proceedings Vol. XVI, Addison-Wesley, RedwoodCity CA, 1994.[Ryan90] M. J. Ryan. Sexual selection, sensory systems, and sensory exploitation.Oxford Surveys of Evol. Biology, 7:156{195, 1990.[Viola88] P. Viola. Mobile robot evolution. Bachelors thesis, M.I.T., 1988.[Williams93] B.V. Williams and D.G. Bounds. Learning and evolution in populations ofbackprop networks. In Proceedings of the Second European Conference onArti�cial Life, pages 1139{1149. Preprints, 1993.[Wilson87] S. Wilson. The genetic algorithm and biological development. In J. J. Grefen-stette, editor, Genetic Algorithms snd their Applications: Proceedings of theSecond Intl. Conf. on Genetic Algorithms, pages 247{251, Hillsdale NJ, 1987.Lawrence Erlbaum Associates.[Yamauchi94] B. Yamauchi and R. Beer. Integrating reactive, sequential, and learningbehavior using dynamical neural networks. In D. Cli�, P. Husbands, J.-A.Meyer, and S. Wilson, editors, From Animals to Animats 3, Proc. of 3rd Intl.Conf. on Simulation of Adaptive Behavior, SAB'94. MIT Press/BradfordBooks, 1994.[Young89] D. Young. Nerve cells and animal behaviour. Cambridge, 1989.12


