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Evolving Visually Guided RobotsDave Cli� 1;2 and Philip Husbands1 and Inman Harvey11School of Cognitive and Computing Sciences2Neuroscience IRC, School of Biological SciencesUniversity of Sussex, Brighton BN1 9QH, U.K.davec or philh or inmanh, all @cogs.susx.ac.ukAbstractWe have developed a methodology grounded in two be-liefs: that autonomous agents need visual processing ca-pabilities, and that the approach of hand-designing con-trol architectures for autonomous agents is likely to besuperseded by methods involving the arti�cial evolutionof comparable architectures.In this paper we present results which demonstratethat neural-network control architectures can be evolvedfor an accurate simulation model of a visually guidedrobot. The simulation system involves detailed modelsof the physics of a real robot built at Sussex; and thesimulated vision involves ray-tracing computer graphics,using models of optical systems which could readily beconstructed from discrete components.The control-network architecture is entirely under ge-netic control, as are parameters governing the opti-cal system. Signi�cantly, we demonstrate that robustvisually-guided control systems evolve from evaluationfunctions which do not explicitly involve monitoring vi-sual input.The latter part of the paper discusses work now underdevelopment, which allows us to engage in long-term fun-damental experiments aimed at thoroughly exploring thepossibilities of concurrently evolving control networksand visual sensors for navigational tasks. This involvesthe construction of specialised visual-robotic equipmentwhich eliminates the need for simulated sensing.1 IntroductionDesigning control architectures for visually guided mo-bile autonomous robots that exhibit adaptive behaviouris likely to be a very di�cult task. So di�cult, in fact,that we advocate the abandonment of approaches to theproblem which involve solution by manual design.In place of design-by-hand, we propose using evolu-tionary techniques. Focus then shifts from specifyinghow the robot is to generate adaptive behaviours, tospecifying what adaptive behaviours are generated. By

creating an initial varied population of control architec-tures, and rating each according to whether desired be-haviours are exhibited, evolutionary pressure can be ex-erted on the population. Using a suitably extended formof genetic algorithm, viable architectures may result.In this paper we present results which validate ourproposals. We employed the Saga evolutionary prin-ciple [6] to develop neural-network control architecturesfor a simulation model of a real robot under constructionat Sussex. The simulation system incorporates accuratephysics, based on empirical observations of the real sys-tem, with added noise and uncertainty. The visual sensorcapabilities are simulated using a ray-tracing computergraphics system [2]. Parameters governing the robot'ssampling of its visual �eld are under genetic control, andthe resultant speci�cations could readily be constructedfrom discrete components.Our results demonstrate that it is possible to evolvecontrol architectures for visual guidance, using high-levelevaluation functions which make no explicit reference tovision.The results presented here are all for robots operatingin relatively simple environments, comparable to thoseused for testing some real visually guided robots (e.g.[4]); but not as visually complex as a typical clutteredo�ce environment. The computational costs of provid-ing appropriately accurate simulation data scales verypoorly as the complexity of the environment increases. Inorder to fully explore the possibilities of our methodologywith more challenging tasks in increasingly complex en-vironments, we have developed an approach which allowsus to eliminate much of the computationally expensivesimulation work. This involves using specially designedrobotic equipment which allows for the use of `real' (op-tical) vision, while facilitating exploration of issues inthe concurrent evolution of visual sensors and controlnetworks for navigation tasks. Section 6 describes thiswork, which we have only recently commenced.This paper deals largely with practical issues: ourmethodological position is expressed in more depth ina separate paper [7]. For the sake of completeness, it issummarised brie
y in the next section.1



2 BackgroundIn another paper [7], we have presented arguments sup-porting the notion that an evolutionary approach to thedesign of robot control systems can be expected to su-persede design by hand. In that paper we also exploredissues arising from the adoption of an evolutionary ap-proach and gave results of preliminary simulation exper-iments in evolving control architectures for simple robotsequipped with a few touch-sensors: four `whiskers' andtwo `bumpers'. For reasons explained in [7], the controlarchitectures were based on a particular kind of `neural'network, and central to the evolutionary mechanisms isthe notion of a gradual incremental development, build-ing on already existing capabilities.The results of the experiments with purely tactile sen-sors are highly encouraging: for certain types of evalu-ation function, the robot population can evolve to thepoint where genuinely useful behaviours emerge. Nev-ertheless, the proximal nature (and low dimensionality)of the robot's sensors forever constrain it as unable togo beyond primitive `bumping and feeling' strategies innavigating around its environment. For more sophisti-cated navigation strategies, based on distal information,the addition of visual sensing capabilities is required.Brie
y, the rationale for adding vision is that it allowsfor much more sophisticated behaviour patterns (e.g. lo-cation recognition in navigation). The remainder of thispaper discusses our experiences in adding visual process-ing capabilities to the simulated robot.3 And Then There Was LightRather than imposing on the robot some visual sensorswith �xed properties, it seemed much more sensible, andin keeping with our incremental evolutionary approach,to investigate the concurrent evolution of visual sensorsand control networks. In essence we have started withsimple very low resolution devices coupled to small net-works, and will work towards higher resolution devicesmade useful by more complex networks generating moresophisticated behaviours. Major factors a�ecting howthis occurs are under evolutionary control.3.1 PreliminariesBecause the simulated robot is based on a physical robotunder development, it is necessary to su�ciently con-strain the visual processing capabilities available underevolutionary control, so that whatever designs evolvedare (at least in principle) capable of being built usingavailable hardware. In essence, this meant opting forvery low visual resolution. The total number of pix-els had to be at least two or three orders of magnitude

lower than that used in conventional computational vi-sion research.1A cursory survey of some biology literature indicatedthat, for creatures such as insects or other arthropodswhich have very few photoreceptor units, the photore-ceptors often have large angles of acceptance,2 and aredistributed around the body so as to sample a wide visual�eld. These simple photoreceptor units are perhaps bestnot thought of as pixels in an image (or `tiles' in a retinal`mosaic'): a more appropriate approach is to consider thephotoreceptors as simple local brightness detectors. Forexample, if the portion of the optic array directly abovean animal suddenly goes dark while the rest of the opticarray remains constant, it seems likely that somethingis about to drop on the animal from above, and rapidevasive action is probably a sensible adaptive behaviourin such situations. Of course, the animal doesn't have toconstruct any internal representations or reason aboutthe cause of the darkness; it just has to do somethinguseful.For this reason, our work to date on evolving visuallyguided robots has concentrated on ultra-low-resolutionvision, close in spirit to Braitenberg's Vehicles [1]. Thesimulated robot has been given a few photoreceptorunits, which could realistically be added to the physi-cal robot. This could be done using discrete components(e.g. photodiodes, phototransistors, or ldr's) with indi-vidual lenses, thereby creating an electronic compoundeye, cf. [4]; or by using conventional ccd cameras butimpairing their optics by mounting sand-blasted glassscreens in front of the lens so as to generate input im-ages with focus-independent blur, prior to some coarsesub-sampling scheme.The simulated robot was equipped with vision by em-bedding it within the SyCo vision simulator system de-scribed in [2]. The SyCo simulator was developed forstudying issues in visual processing for control of an air-borne insect, but only minor alterations were required:the `altitude' was clamped at a constant value, becausethe robot is a wheeled vehicle travelling on a 
at 
oor;and the visual sampling pattern, which is �xed in SyCohad to be placed under genetic control.The SyCo simulator synthesizes vision by means ofa computer graphics technique called ray-tracing (seee.g. [5]). This is a method which involves instantaneouspoint-sample estimates (`rays') of the relevant projec-tion integrals, and so aliasing is a common problem.Put most simply, aliasing is a problem where insu�cientsamples are taken to give an accurate impression of the1In `conventional' computer vision, image sizes of 512�512 (i.e.262144 pixels) are not considered large.2The acceptance angle of a photoreceptor can be de�ned astwice its maximum incidence angle, where the maximum incidenceangle is the largest angle, measured as eccentricity o� the 'recep-tor's visual axis (\direction of view"), at which an incoming ray oflight can still have a signi�cant e�ect.2



(visual) signal being sampled.To limit the e�ects of aliasing, the SyCo code wascon�gured to determine each photoreceptor's activity byaveraging the readings from several rays per simulatedreceptor, distributed across that receptor's visual �eld.This provides more accurate estimates of image bright-ness in the receptor's �eld of view. However, it is impor-tant to keep the number of rays per receptor relativelylow. This is for two reasons: one pragmatic, the othertheoretical. First, ray-tracing is a computationally ex-pensive process, so using fewer rays per receptor savesprocessing time. Second, real vision is not an arbitrary-precision process. In vision, noise is inescapable, andnoise e�ectively reduces a continuum of brightness lev-els to a small number of discrete ranges (e.g. [9]). Bylimiting the number of rays per receptor, the precisionof the brightness-value estimate is correspondingly re-duced. The simulated robot must be able to cope withnoisy limited precision perception, because that is all thereal world has to o�er.3.2 Particulars3.2.1 VisionIn keeping with the minimal incremental approach advo-cated in [7], we have commenced our studies by exploringthe e�ects of adding just two photoreceptors to the sensorsuite (bumpers and whiskers) described above. Taking acue from biological vision, the sensors are situated in po-sitions which are bilaterally symmetric about the robot'slongitudinal midline.Having only two receptors introduces manifest limita-tions on the classes of behaviours that can be expectedto evolve in the robot. Assuming that the receptorssample largely distinct portions of the optic array, theonly information the robot can access concerning its vi-sual surroundings is likely to be limited to the raw data(the brightness levels recorded by the photoreceptors)and summary statistics such as the average brightness,or the di�erence between the two signals.Nevertheless, the acceptance angles of the photorecep-tors, and their positions relative to the longitudinal axis,can be varied under genetic control. The two receptorsare constrained to have the same angle of acceptance,which is coded as a binary number represented as a bit-vector �eld in the robot's genome. A second bit-vector�eld in the genome governs the eccentricity of the pho-toreceptors, measured o� the robot's longitudinal axis.Figure 1 illustrates these two angles.The details of the genetic coding of the acceptance an-gle � and the eccentricity � of the two photoreceptors isstraightforward. In principle, the angles are constrainedto the ranges � 2 (0; �] � R and � 2 [0; �=2] � R,but the use of a bit-vector genome forces a discretiza-tion of these ranges. Both angles are represented by four
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Ecc EccFigure 1: Angle of acceptance and eccentricity for the two-photoreceptor robot. A top-down view of the robot, and the rele-vant angles.
Figure 2: A cartoon of an appropriate robot: the angle of accep-tance can be altered using zoom lenses. The eccentricity can bealtered by rotating the cameras on their stalks.bits in the genome, giving a choice of 24 = 16 discretevalues for each angle, i.e. a total of 28 = 256 con�gu-rations of � and �. If the integer values represented bythe genome �elds for � and � are i� and i� respectively(i�; i� both 2 f0; 1; : : :; 15g �N), then � = (1+i�)�=16,and � = i��=15.The genome is currently being extended to allow thenumber of photoreceptors to be placed under genetic con-trol. In the current two-receptor model, each receptorhas a square cross-section to its receptive �eld. As ananti-aliasing measure, sixteen rays, arranged on a regu-lar 4� 4 grid, are traced for each pixel.All experiments to date have involved evolving archi-tectures which enable the robot to guide itself within aclosed cylindrical room. The curved walls of the roomare black, while the 
oor and ceiling are white. Figure 33



Figure 3: Illustration of the ray-tracing system. The left-hand�gure shows the robot's position and orientation within the cylin-der, which has black walls and white 
oor and ceiling. At upperright is a pair of relatively high-resolution images, traced from therobot's position inside the cylinder. The lower-right �gure showsthe two 4 � 4 images traced prior to averaging, with � = 1:571and � = 0:628. The �nal two photoreceptor brightness levels arederived by averaging the 4� 4 images.illustrates output from the ray-tracing system in this en-vironment; Figure 4 illustrates the e�ects of varying �and �.3.2.2 PhysicsThe simulation involves a realistic physics for determin-ing the e�ects of the robot moving across the 
oor andcolliding with the walls. As described in more detail in[7], the simulated robot is cylindrical in shape with twowheels towards the front and a single trailing rear castor.The wheels have independent drives allowing turning onthe spot and fairly unrestricted movement across a 
at
oor. Outputs from the robot's control networks feeddirect to the wheel drives. Depending on the strengthand sign of their signal, the wheels rotate at one of �verates: full speed forward; full speed backward; half speedforward; half speed backward; and stationary. The con-tinuous movement of the robot is simulated by pollingthe network outputs at an appropriate rate. At eachstep of the simulation the next position and orientationof the robot is calculated using the appropriate kinematicequations (with a suitable amount of noise added). Col-lisions are handled as accurately as possible, based onobservations of the physical system. Brie
y, if the robotcollides with a high velocity normal to the surface it un-dergoes a noisy re
ection with a rotation determined byits original direction of motion; if it collides at low speedits behaviour depends on the angle of incidence { it mayrotate until normal to the obstacle or it may skid arounduntil it is parallel.4 ExperimentsResults from earlier experiments discussed in [7] demon-strated that our methods could be used to evolve robotswhich could engage in primitive tactile-based navigationpatterns such as wall-following. The primary goal in the

Figure 4: Varying � and �. For all the �gures, the robot's posi-tion is the same as in Figure 3; the left-hand column shows the pairof 4� 4 images, while the right-hand column shows the respectivehigher-resolution images.experiments described below was to explore the possibil-ity of evolving robots which could use their visual percep-tion capabilities to avoid collisions with the walls priorto making physical contact with the wall via one of theirtactile sensors. Using intentional language, we can saythat the robot learns to predict, from visual data alone,that a collision is likely in the near future, and takesappropriate evasive action. We felt this was a suitablylow-level task for preliminary experiments. More com-plex behaviours are currently being evolved from thisone.So, the �rst task set for our robots was to roam aroundan empty cylindrical room without hitting the walls. Thetwo-photoreceptor robot has, in theory, su�cient sensorydata to avoid the dark walls. Examination of the visualdata shown in Figures 3 and 4 con�rms this. For exam-ple, a useful strategy would be: if the di�erence betweenthe brightness levels of the two receptors is greater thansome threshold, dependent on the values of � and �, thenthe robot should turn in the direction of the brighter re-ceptor.The evolutionary process requires an evaluation func-tion E by which the �tness of individuals in the pop-4



ulation can be rated. We have found three evaluationfunctions useful:E1 = X8t D(t)E2 =  X8t D(t)! � X8t B(t)!E3 =  X8t D(t)! � X8t G(t)!where:8t denotes all time, i.e. the lifetime of theindividual;D(t) denotes the distance travelled on timestep tB(t) denotes the average brightness ofthe two photoreceptors at time tG(t) denotes a Gaussian function of the robot'sdistance from the centre of the cylinder at time tThe reasons behind choosing these evaluation func-tions were straightforward. The function D, used in allthe evaluation functions, encourages the robots to move(otherwise the best way of avoiding bumping into wallsis simply to remain stationary).E1 only employs D, so the robots which travel furthestin their lifetimes are rated as the �ttest: nevertheless,the mechanics of the collision simulation still penalisesrobots which collide with the walls at all often.E2 is an extension of E1: the inclusion of the sum ofbrightness B introduces a selection pressure which is ex-plicitly vision-oriented. As a robot approaches a wall,the value of B drops because the wall will tend to oc-cupy more of the visual �eld of the two receptors. So,robots which over their lifetime have a high value ofPBare ones which have tended to avoid approaching walls,and are hence rated as �tter than those which spend alot of time moving close up to walls.E3 is a more subtle version of E2. Rather than explic-itly rate the �tness according to total brightness over alifetime, we rate the robots on the basis of how much oftheir time is spent near the centre of the cylinder's 
oordisk. This is done by measuring the robot's distance dfrom the 
oor-centre at time t, and then weighting thedistance by a Gaussian G of the form:G = exp(�d2=c)for some constant c, which ensures that G � 0 for d >�2r=3, where r is the cylinder's radius. So, while there isno explicit mention of vision in E3, it is hoped that therobots will evolve to the point where they use their visualinput to ensure they are always some distance away fromthe walls.Section 5 discusses the results from using these evalu-ation functions. Before that, we describe some details ofthe evolutionary mechanisms used.

4.1 Evolutionary MechanismsPopulations of robot genotypes underwent evolutionguided by selective pressures based on the evaluationfunctions given above. The genotype of each robot con-sists of two chromosomes: one codes for the neural archi-tecture and the other for properties of its visual sensors.As was described in Section 3.2.1, the visual sensor chro-mosome is a simple �xed length bit string which decodesinto a set of parameters giving angle of acceptance andeccentricity of the robot's two photoreceptors. The neu-ral architecture chromosome is more complex, needing afairly involved process of decoding. The coding and itsinterpretation are described brie
y below, but furtherdetails can be found in [7].The robots `neural-style' control networks have a �xednumber of input units: one for each sensor. In this casethere are eight: front and back bumper, two whiskerstoward the front and two whiskers toward the back, andthe two photoreceptors, or `eyes' (cf. Figure 1).The networks also have a �xed number of outputs; twofor each of the motor drives. As all of the units are noisylinear threshold devices (as described in [7]) with outputsin the range [0:0; 1:0]� R, two units are needed to givethe motors a signal in the range [�1:0; 1:0]� R, so thatforwards and backwards motion is possible. If the outputsignals from these four output units are labelled So1 toSo4, then the left motor signal is the di�erence betweenSo1 and So2, while the right motor signal is the di�erencebetween So3 and So4.As well as these units these network chromosome codesfor a number of `hidden' units. The number is not pre-speci�ed { the chromosomes are of variable length. Thebulk of the chromosome codes for the connections be-tween the units. These are unrestricted; complex recur-rent nets are quite possible, as will be seen below.The networks are real-valued and continuous { think ofthem as analogue circuits with real-valued signals contin-uously propagating { which gives them many desirabledynamical adaptive properties. A link may be one oftwo types: normal or veto; this property is under geneticcontrol. A normal connection joins the output from oneunit to the input of another, with unity weight. A vetoconnection is a special in�nitely inhibitory connectionbetween two units. If there is a veto connection betweenunits a and b, and a's output exceeds its veto thresholdthen all normal connection outputs from b are switchedto zero. The veto threshold is always signi�cantly higherthan the lower threshold for a neuron's sigmoid transferfunction.The genetic algorithm used is in accordance withthe Saga principles [6]: crossover allows only gradualchanges in genotype length. Although we only presentresults here from simple preliminary experiments, we arecurrently evolving more complex nets from those devel-oped here, still in keeping with the incremental Saga5



approach.Within this framework, the aims of our �rst set ofsimulation experiments was to try and evolve couplednetworks and visual sensors capable of generating inter-esting behaviours.5 ResultsAll of the following results were achieved with populationsize 40, a crossover probability of 1 and a mutation rateof the order of one bit per genotype. The visual sensorand network chromosomes are crossed and mutated sep-arately, but both contribute to the resultant phenotype:the sighted robot. Rank based selection was used withthe �ttest individual being twice as likely to breed asthe median individual. So far the experiments have onlybeen run for a relatively small number of generations,given the expense of the ray tracing and the fact thateach individual is evaluated multiple times, as describedbelow.Each individual in each generation was run four timesfrom random starting positions and orientations. Eachrun was for a �xed number of time steps. The �tness ofthe individual was taken as the worst score from theirfour runs. This strategy is used to encourage robust-ness, remembering that there is noise at all levels in thesystem. A �ne-time-slice simulation was used as a closeapproximation to a continuous system. At each timestep the sensor readings are fed into the neural network.The continuous nature of the networks was simulated byrunning them (synchronously updating all unit inputsand outputs) for a number of iterations (about 100, butwith a variance to counter distorting periodic e�ects) andthen converting the outputs to motor signals. The newposition of the robot is then calculated, using the modelphysics described in Section 3.2.2.By using suitably �ne time-slices, this mode of simu-lation is more than adequate; although we are workingon more subtle techniques to allow fully asynchronousevent-based simulations.The �rst set of experiments used evaluation functionE1, a simple integration of distance moved. Comparisonswere made between sighted and blind robots (which usedonly the six touch sensors). Both did well although theevolved behaviours were quite di�erent in the two cases.The blind robots evolved to make looping elliptical move-ments like that shown in Figure 5.The strategy seems sensible as it tends to keep therobot away from the walls. The networks quickly evolvedto the state where sensory inputs triggered changes indirections which sped the robot away from the wall. SeeFigure 10, later, for an example of such behaviour.The sighted robots did better, tending to keep movingby staying away from the walls using visually guided be-haviours like those shown in Figure 8, described in more

Figure 5: Typical path of blind robot under evaluation functionE1. The arrows show the orientation of the robot at each time step,and their length is equal to the diameter of the robot.Figure 6: Evolved behaviour of sighted robot under evaluationfunction E2.detail later.The second set of experiments use E2. This evalua-tion function makes explicit use of the visual signal, soa comparison with blind robots was not sensible. Thebehaviours which evolved were unexpectedly simple butmade perfect sense. A very �t and robust behaviourwhich rapidly dominated is shown in Figure 6.The robot evolved to have photoreceptors with highangle of acceptance and high eccentricity, and it turns ina tight circle by jamming one motor full on and one o�.Turning in a circle at full speed rapidly moves the robotaway from the wall if it collides, as shown in Figure 6. Sothis strategy tends to maximisePD(t), but it also givesa very high value forPB(t) given that this visual signalis high except if a photoreceptor is close to and pointingtowards a wall. The graphs of visual signals against timelook like those shown in Figure 7.The third set of experiments, using E3, producedthe most interesting behaviours. Remember the Gaus-sian function, G(t), drops o� sharply towards the walls.Early on, the circular motion behaviour predominated asshown in Figure 7. It can be seen that there is no corre-lation between visual signal and motor output; vision isnot yet being used.This behaviour is not very robust as it scores poorlyonPG(t) if the robot starts o� near a wall. But withina few generations the much more robust behaviour ofFigure 8 appeared. Here the robot is making clear useof vision to keep it away from the walls and so score well6



Figure 7: Fittest behaviour of sighted robot in very early gener-ations under evaluation function E3.
Figure 8: Later evolved behaviours under E3.on the Gaussian function.The graphs in Figure 8 show the visual signals and themotor signals (with noise removed for easier interpreta-tion) plotted against time. The basic strategy is to jamone motor on full speed and one on half speed (in thiscase it is moving backwards) 3 to move in an ellipse. Butwhen the visual signal drops, one of the motors is turnedo�, causing the tight turns shown in the �gure. The sen-sors evolved to have a fairly high angle of acceptance buta low eccentricity (both `eyes' clearly pointing forward)which makes sense in the context of this behaviour. Sohere we see a clear correlation between visual signal andmotor output; vision is being used to great e�ect.Examination of the evolved network, shown in Fig-ure 9, that generates the behaviour in Figure 8 revealsa complicated connectivity with many indirect feedbackloops and subtle uses of veto connections. The jammed-on right motor is achieved by the relevant output unitfeeding back into itself and having no other inputs. Onceinternal noise generates an input to the unit it will am-plify and then circulate forever (at the moment signalsdo not attenuate in time, although of course veto connec-tions can turn parts of the net on and o�). Visual signalsfeeding into the left motor outputs provide its visually3We, as experimenters, have designated a particular mode ofmovement as `forward' (motor signals positive), but clearly in thissimple environment there is a duality between forwards and back-wards movement. `Running towards light' and `runnning awayfrom dark' are equivalent behaviours.

Right

Motor

"Normal" Connection

Veto Connection

Connection from/to sensor/actuator

Left

Motor

FB

BB

FRW

BRW

BLW

FLW

Left Eye

Right Eye

FB=Front Bumper

RB=Rear Bumper

FRW=Front Right Whisker

BRW=Back Right Whisker

FLW=Front Left Whisker

BLW=Back Left Whisker
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exibility (e.g. variations intime delays and/or connection strengths).Blind robots did fairly well on the E3 evaluation func-tion too; directly evolving strategies to move well away7



Figure 10: Evolved behaviour of blind robot under E3.from the wall, such as reversing, as shown in Figure 10.The change in direction of the robot in the middle ofits path (this one is moving forwards) is a clear case ofreversing.In each of the experiments the networks were capa-ble of generating a wide range of behaviours. This wasdue to their dynamical properties and gave importantadvantages. Although Hebbian-style learning is on ouragenda, we can probably delay its use for a while giventhe power of these continuous dynamical nets.6 Discussion and Further WorkThe results show quite clearly that, in all three cases, therobot design evolved to satisfy the evaluation function.Furthermore, there was a clear behavioural di�erence be-tween those robots which used vision, and those whichwere unsighted. Interesting results have been achievedwith relatively small populations and after realtively fewgenerations. We think this is largely due to the particu-lar type of networks we have chosen to use. They haveproperties which appear to result in a search space highlysuited to evolutionary techniques. The SAGA principlesof gradual and incremental evolution should help to keepthe search space constrained so that small to mediumsized populations can be used throughout our work.Our work to date has involved evolving robots whichmove around an empty cylindrical room without hittingthe walls. Work is currently in progress on extendingthe robot's behaviour so it can move in cluttered envirn-ments without collisions. However, the computationalcosts of the ray-tracing system scales roughly in propor-tion with the number of objects in the robot's environ-ment: simulating vision in cluttered environments soonimposes deeply problematic computational burdens onthe overall system.Nevertheless, the results so far have been su�cientlysuccessful that our approach bears further exploration in

increasingly complex environments and with more chal-lenging tasks. But there is a severe limitation on howmuch further the work can be taken in its current form:the computational costs of simulating vision and realis-tic physics mean that vast quantities of computer timeare taken up with providing an accurate `virtual reality'for the simulated robots. For this reason, we are movinginto a second phase in our work. This reduces our re-liance on simulation, by using an accurately controllablereal-world robot linked to o�-board processing. We callthis system `toytown'.The toytown experimental setup described below isnow under development and we expect our �rst resultsin the near future. The apparatus has been designedto allow us to engage in long term fundamental experi-ments aimed at thoroughly exploring the possibilities ofour evolutionary methodology. In particular, we aim toexplore the concurrent evolution of control networks andvisual sensors for navigational tasks. As in the exper-iments described earlier, details of the animat's visualsensing and neural architecture are under genetic con-trol.6.1 ToytownOur experiences to date have con�rmed earlier intuitivenotions that simulation of visual inputs is computation-ally horrendous | this is directly associated with theusefulness of vision, in that it gives inputs from a vastrange of the environment both far and near. So the in-centives for working with real rather than simulated vi-sion are even higher than with the other senses. Activevision for a robot in a real world requires something like acamera moving with the robot through that world, whichfor experimental purposes normally requires a decisionto be made between having computational processing ofvisual inputs done onboard the robot, or o�board viasome link to more powerful stationary computers. Bothof these choices have negative factors associated, eitherthe size and weight of onboard computation, or the prob-lems of radio links and tangled umbilical cables.So for experimental purposes we have devised a thirdmethod, which allows a miniature robot with active vi-sion, with the robot size e�ectively only a few cms across,to roam freely through an environment set up by theexperimenters. The environment could be a `toytown',although the word `toy' here only refers to the size. It isa real world that the robot is in, with real-world visionproblems.A gantry is set up above a 
at surface, with a hori-zontal girder able to move west and east by means of astepper motor, providing the X-coordinates of the robot.Along the girder another stepper motor allows movementof a platform north and south (the Y-coordinates). Fromthe platform a ccd camera is �xed pointing verticallydownwards. A conical mirror is �xed with its axis along8



Figure 11: The toytown gantry system. See text for furtherdetails.the camera axis, some cms below the lens and occupyingits �eld of view. The camera and mirror can be movedtogether with its supporting platform in the X and Ydimensions. Vertical movement relative to the platformcan also be provided to give the Z dimension. The mir-ror itself can be considered as the body of the sightedarti�cial creature which can move through the environ-ment provided for experimental purposes. A sketch ofthe toytown system is shown in Figure 11.Potentially a 360� �eld of view is available, althoughsoftware sampling (under `genetic' control) can provideany number of virtual pixels or photoreceptors facing anyspeci�ed direction; rotation of this visual �eld about thevertical axis can be e�ected in software, as can any num-ber of strategies for sampling the visual �eld (cf. [3]). Asystem of servo motors, racks and pinions can provide anaccuracy of movement of plus or minus one millimetre.Touch sensors around the conical mirror complete the`body' of the robot. The robot's control network is sim-ulated o�-board on a computer. The sensory inputs arefed into the controller via an umbilical cable and inter-facing cards. In a similar way the controller sends motorcommands to the various actuators.The `body' of the robot is only the size of the conicalmirror plus touch sensors, and subject only to its attach-ment to the camera above, and hence to the gantry, canbe moved anywhere in an experimental setup. This setupcan be suitably small, and easily altered. In this way allof the real world characteristics of moving around in anoisy visual environment are retained, with a numberof advantages for experimental purposes over a wheeledground-based autonomous robot:� There are no problems with tangled umbilicals, andon-board power supplies and computers are not anissue.� The environment is easily changed - it can be madeless structured or more dynamic or whatever suits

the current level of evolution.� Time can be slowed down to a rate appropriateto computational resources. As cognitive process-ing becomes more computationally demanding thespeed of movement of the creature and other dy-namic objects in the environment can be made asslow as is desired.� The highly controllable nature of the apparatusmeans that experiments are repeatable and verylong runs can be achieved without any human inter-vention. This means that, for each generation, eachmember of the population can be evaluated withoutrecourse to simulation.A succession of tasks of increasing complexity can beset for such a robot. Automatic evaluations for each taskallow a succession of tests, and the evolutionary process,to continue without immediate human intervention. Apossible succession of tasks would be:� Movement towards an `object' (a prominent darkmark, perhaps).� Rotation (virtual rotation via software resamplingof camera input) to face a moving object.� Avoidance of obstacles.� Movement between two objects.� Movement centrally along a striped corridor.� Identi�cation of, and movement through, `door-ways'.� Exploratory movement within a simple maze.� Identi�cation of particular `situations' within sucha maze or environment, and return to them afterexploration.� Development of `place recognition' by navigationthrough the environment between speci�ed pointsvia self-selected intermediary places.� Navigation and interaction with a dynamic world.� Performance of previous tasks but subject to arbi-trary polarity reversal of the motor outputs.The outputs from the controller provide signals to themotor drives (with the deliberate addition of noise if de-sired) which e�ectively allow the robot to move continu-ously and freely in this world. The robot is to all intentsand purposes autonomous. However, although it doesnot `know' its absolute position and orientation, this in-formation is always available to the experimenters. Thisis extremely useful for automatic �tness evaluation, re-peatability, repositioning and so on.9



The `Toytown' environment has some similarities withthe `Tinytown' environment at Rochester [8]. Howeverthe latter has a camera pointing down that can move onlyin two dimensions, giving the equivalent of `low-
yingaerial photographs'. In contrast, the toytown robot hasa (virtual) rotational degree of freedom, and can travel inand amongst the objects of a 3-D world, with a horizontal�eld of view manipulable between 0� to 360�.7 Summary and ConclusionsAs further support of our claims in [7], we have pre-sented early results from experiments in evolving net-work processing architectures for mobile robots. Usingnetworks of relatively constrained processing units (`neu-rons'), and simple evaluation functions, we have beenable to evolve visual control architectures, even when theevaluation function is not de�ned in terms of monitoringvisual inputs.The results have demonstrated the feasibility of the ap-proach, but the computational costs of simulating visionhave lead us to develop a method which allows for a mixof `real' vision and evolutionary methods, using readilyavailable hardware. The `toytown' project is at an earlystage, but our current results are su�ciently promisingthat we are con�dent of future success. Watch this space.AcknowledgementsMany thanks to Linda Thompson for help in the prepa-ration of this paper. Inman Harvey is supported by aSerc grant.References[1] V. Braitenberg. Vehicles: Experiments in SyntheticPsychology. M.I.T. Press | Bradford Books, Cam-bridge MA, 1984.[2] D. T. Cli�. The computational hover
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