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Introduction 

In 2005 an international, multi-disciplinary, inter-institutional group of researchers began a three-year research project 
that is attempting to use evolutionary and adaptive systems methodology (genetic algorithms, neural networks, etc…) to 
make an embodied robot that can exhibit creative behaviour by making marks or drawing (in the most general sense).  The 
research is popularly known as the DrawBots Project.  The research group is composed of computer and cognitive scientists, 
philosophers, artists, art theorists and historians.  One outcome of the project will be a large-scale art installation of a group of 
DrawBots.  Other outcomes will include the various research publications reflecting the vested interests of the group both as 
independent researchers and as a group. 

There are a number of motivations for the project including the production of machine-created art and the exploration of 
whether it is possible to develop (minimally) creative artificial agents and the research has two, mutually dependent, 
contextual frameworks.  One concerns methodologies for making an agent that has the potential for manifesting autonomous 
creative behaviour.  The second concerns methodologies for recognising such behaviour. Another emphasis is attempting to 
place this work in an art historical context. Amongst the key concepts that the project is examining are:  personality, 
autonomy, value, signature, purpose, novelty, embodiment, social context, environmental interaction, ownership and so on… 

 
This paper forms part of the research supported by UK AHRC Grant no. B/RG/AN8285/APN19307: "Computational 

Intelligence, Creativity, and Cognition: A Multidisciplinary Investigation". 
 
Context and Background 

Artistic precedence for creative autonomy appears in the mid- to late-20th century with works like Nicolas Schöffer’s 
CYSP 1 (1956) and Edward Ihnatowicz’ Senster (1970).  Writing about CYSP 1 Schöffer said … “Spatiodynamic sculpture, 
for the first time, makes it possible to replace man with a work of abstract art, acting on its own initiative, which introduces into 
the show world a new being whose behaviour and career are capable of ample developments” (Olats 2007).  Ihnatowicz was 
aware of the work of the developmental psychologist Jean Piaget and his robotic artworks express his belief that machines 
would never attain intelligence until they learned to interact with their environment (Brown 2008).  Although at the time this 
was an unpopular approach within the AI discipline – which was dominated by top-down ideology – Ihnatowicz laid down an 
important foundation for future embodied research and in recent years his pioneering artworks have been recognised as an 
important root of the current interest in bottom-up AI and the scientific discipline of Artificial Life.  He was a friend of the co-
author (Paul Brown) and his work and ideas have directly influenced the DrawBots project as have the words of Jack 
Burnham, who, in “Beyond Modern Sculpture” (1968), suggested that the future for art was the production of “life-simulation 
systems”. 

In addition to the works above, which roughly fit into the Kinetics framework several other important critical agendas 
emerged in the 1960’s.  These included the precedence of process over object; interaction; conceptual art; systems art and 
many others (Lippard 1973).  The computational metamedium – as Kay later named it (1984) – provided an exceptional 
opportunity for the investigation of many of these ideas and during the 1960’s and ‘70’s the digital computer and 
programming languages were adopted by a number of artists who wishes to explore these emerging agendas.  In particular 
Paul Brown developed a process using cellular automata with the intention of producing artworks that could display autonomy, 
self-determination and that would transcend the artist’s personal signature.  Over the following three decades this approach 
led to an interesting and fruitful body of work but one aim in particular proved elusive.  Brown’s assumption that the use of 
text-based symbolic languages (in contrast to “intimate” tools like brushes and pencil) could effectively subsume signature 
proved, in retrospect, to be hopelessly naive.  In 2000, as artist-in-residence at the Centre for Computational Neuroscience 
and Robotics (CCNR) at the University of Sussex (where the current research project is based) he revisited this ambition.  If it 
wasn’t possible to design a signature-free artwork/process then could one be “evolved”?  The DrawBots project begins here. 
 
Minimal creativity 

Our assumptions about creativity are minimal. We start with only two conditions, each of them necessary but non-
sufficient, for creativity. A creative behaviour must result from agency. Agency requires autonomy. Our sense of the term 
does not require, as the philosophical sense does, intentionality, deliberation, or cognition. It simply requires behaviour that is 
not imposed by an external agent or programmer. A remote controlled robot would thus not qualify, while many of the 
systems that populate evolutionary robotics would. We sometimes refer to this as ‘no strings attached agency.’ 

Intuitions also tell us that novelty is a condition for creativity: creative artefacts or processes are novel ones. Here too 
we err towards barely minimal assumptions. Following Boden (2004), we distinguish absolute and relative forms of novelty. 
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As Boden argues, relative novelty is sometimes as theoretically interesting as absolute novelty. For example, one may have a 
novel thought which, although others have had it before, is novel relative to one’s own mind. We broaden the latter—which is 
what Boden calls ‘psychological’ novelty—to include non-cognitive behaviours. This is done in two ways. A behaviour of 
some agent R may be novel relative to the behavioural history of R. Or a behaviour of some agent R may be novel relative to 
a population of which R is a member. Call the first ‘individual-relative novelty’; call the second ‘population-relative novelty.’ 

The choice for conceptualising agency and novelty so thinly is motivated both by our particular research goals and a 
general methodological assumption we share with much of cognitive science. Our interest is to see what lessons can be 
learned about creativity and cognition though the use of synthetic, bottom-up modelling techniques. We may, after all, be 
working with overly thin notions, but the working supposition that weaker instances of agency and novelty may be near what’s 
necessary for creative behaviour enables fruitful experimentation and hypothesis generation. This is often how cognitive 
scientists begin, that is, by asking what might some minimal conditions be for some phenomenon, and what can we learn 
from attempting to satisfy just those conditions? 

The agency and novelty conditions give us two necessary conditions for creativity. The weakness of this definition is 
easy to see. I can right now place my head in the oven and utter ‘We need milk, butter, and bread.’ This is novel behaviour 
for me, and indeed behaviour that depends upon my autonomy. But would anyone count it creative? Novelty and agency, 
even of a very rich, cognitive sort, are thus not enough for creativity. We recognize that, and are trying to determine what is 
enough, even minimally. Nonetheless, we have to this point been proceeding with this incomplete definition in hand: creativity 
requires agency and novelty. So if we are going to build creative systems, we at least have to build systems that possess 
these two properties. This, as it turns out, is hard enough as a start. For a fuller discussion of these issues see Bird and 
Stokes (2006a,b, 2007) and Bird et al. (2007). 

 
Evolutionary Robotics 

The main synthetic, bottom-up methods used in the project are those of Evolutionary Robotics (ER). ER is a biologically 
inspired approach to the automatic design of autonomous robots (Cliff et al. 1993, Nolfi and Floreano 2000). The field 
encompasses a wide range of work where one or more (sometimes all) of the following aspects of robot design are in the 
hands of artificial evolution: the control system, the overall body morphology, sensor and actuator properties. Populations of 
artificial genomes (lists of characters and numbers) encode the properties of the robot under evolutionary control. The 
genomes are mutated and interbred, creating new generations of robots, according to a Darwinian scheme in which the fittest 
individuals are most likely to produce offspring. Fitness is measured in terms of how good a robot’s behaviour is according to 
some evaluation criteria; this is usually automatically measured but may, in the manner of 18th century pig breeders, be based 
on the experimenters’ judgment. Fitness is tested either in simulation, in the real world or using a combination of the two. 
Typically some form of artificial neural network acts as the nervous system of the robot; properties of the network will 
invariably be evolved even if other aspects of the robot design are not.  

Over the last decade or so, ER has been successfully applied to the design of many autonomous robots (Floreano et al. 
2007).  It is a discovery methodology that is free to exploit any constraints arising from the interaction of components in the 
controller and between the robot and environment, even when the human experimenter is not aware of them. This can 
potentially produce simpler, more robust robots than conventional design. It can also produce robots that exhibit 
unpredictable, and thus potentially novel, behaviour. Another feature of ER suitable to our minimal approach to creativity is 
that it provides a means of generating novel designs that can, to some extent, overcome inductive bias. This is the 
phenomenon where the explicit and implicit biases of an experimenter constrain the possible space of designs that is 
explored. By artificially evolving control architectures from suitably low level primitives, the final controller “need not be tightly 
restricted by human designers’ prejudices” [Cliff et al. 1993, p.83]. ER therefore has the potential to produce models of 
minimal creativity not dominated by our preconceptions, case studies, or, perhaps mistaken, theories of creativity. By the 
same token, it has the potential to produce autonomous art-making machines that are not constrained by the artist’s (systems 
designer’s) prejudices or ‘signature’. Finally, artificially evolving neural networks as robot controllers allows for open-ended 
evolution, since their architecture can be incrementally increased in complexity by adding processing units and connections 
(Husbands et al. 1997). Thus, even if robot behaviour does not exhibit relative novelty at early stages in experimentation, 
incremental increases in neural complexity may well make the relevant difference. 
 
Explorations in Simulation 

Initial experiments were carried out in simulation using an accurate model of a Khepera robot, a standard ER platform 
(Mondada et al. 1993), augmented with a drawing pen placed between its drive wheels (see Figure 2 for pictures of a 
physical robot used in later work which employs this same arrangement). In the simulation, each robot controller was a neural 
network consisting of six motor neurons (two for each of the left wheel, right wheel and pen position - up or down - motors). At 
each time step in the simulation, the most strongly activated neuron of each motor pair controlled its associated actuator. The 
robot has seven sensors (six frontal IR sensors and one line detector positioned under the robot that can detect marks made 
by the pen). Each of the seven sensors was connected to each of the six motor neurons. A genetic algorithm was used to 
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determine the strength of each of these connections and the bias of each of the motor neurons.  An initial population of 100 
robots controllers (phenotypes) was encoded as a string of 0s and 1s (genotypes). Every generation each genotype was 
decoded and the performance of the robot controller tested and assigned a fitness value. A new generation of genotypes was 
then generated by randomly selecting genotypes, with a bias towards fitter ones, and mutating them (flipping 0s to 1s or 1s to 
0s with a probability of 0.01 per gene). Our experiments were carried out for 600 generations.  

We aim for fitness functions that minimise our influence on the resulting robot behaviour. In these early experiments, 
rather than specifying the types of marks that a robot should make, we rewarded controllers that correlated the changes in 
state of their line detector and pen position. For example, if a line is detected and the robot’s pen is then raised or lowered 
within a short time window, the robot accumulates fitness. This fitness function resulted in robots that followed the walls and 
made marks around the edge of the arena (Figure 1). When the fitness function also rewards robots for making marks over 
the whole area of the arena then different behaviours evolve (Figure 1 right) and robots turn away from the walls at angles 
and mark the central parts of the arena as well. In all our experiments crashing into walls is implicitly penalised by stopping 
the evaluation and thereby giving the robots less time to accumulate fitness. It is important to note that although we, via the 
fitness function, evaluate the mark making behaviour of the robots, the robots themselves do not assess the marks that they 

have made. See Bird and 
Stokes (2006a,b) for further 
details. 

A number of common 
criticisms of these preliminary 
experiments fall under the broad 
category of value. The robots 
neither evaluate the process nor 
the product of mark making. The 
robots can only detect the 
presence of a mark in a 2mm x 
2mm region underneath them. 
How could an agent, from such 
a ‘myopic’ viewpoint, have any 
sense of the global pattern of 
the marks made across a large 
arena? And how could such 
agents have any sense of when 
to stop? It is possible that some 
kind of value condition may be 
what’s needed for a complete 
analysis of creativity. That is, 

perhaps value plus agency and novelty will get you creativity. Without committing to this notion, we accept that value is a 
good general area to mine in the search for richer models of creativity, and, perhaps, for more interesting robot drawings. An 
ongoing strand of work is addressing the concerns about value by extending our robotics framework.  

The direction we are currently exploring revolves around fractals. Fractals, understood broadly, are patterns that 
display self-similarity at different magnifications (Mandelbrot 1982). We are using them in the following ways. Endow the 
agents with a ‘fractal detector.’ Endow the agents further with a ‘fractal preference’, such that they will acquire fitness for 
making fractal patterns on the arena surface (see Bird and Stokes [2006a, 2007] for a description of how this is done).  In this 
approach, the myopia of our earlier agents is partly cured by allowing them to see a larger area of the drawing surface, but, 
since they have not been given global viewpoint, mainly by taking advantage of the nature of fractal patterns. If a region of 
marked surface that the agent can see isn’t self-similar, then a fit agent will detect this and add marks to make it self-similar. 
The agent thus has something to look for and a preference for making things that look a certain way. This capacity is 
admittedly not a sophisticated aesthetic or artistic one. But it is an evaluation technique, which results in the agent making 
choices: it will prefer some marks over others, and will change some and leave others. Moreover, fractals are a broad enough 
pattern category that the agents have considerable freedom in the marks they can make. The fractal framework allows for a 
natural completion criteria: at some point the drawing surface will be covered with a self-similar pattern and the robot will no 
longer add any more marks.  

Fractal patterns seem to have a natural aesthetic appeal and, because the range of self-similar patterns that the robots 
can produce is potentially very broad, the resulting marks may surprise us. An element of surprise is an aesthetic merit, and 
thus a potential benefit of the fractal framework.  
 
The DrawBot Robot 

While the initial simulation experiments suggest the viability of the approach, the intention was always to develop 

Figure 1: Left - a high fitness individual from an initial experiment as described above– it does an initial 
loop of the arena with its pen down and on the second loop makes line segments parallel to the line it 
initially made by moving the pen up and down as it detects the original line.  A segment of the pattern 
produced is blown up in the centre. Right - when the fitness function rewards making marks over the 
whole arena, the robots no longer follow the walls but turn away from them at angles and mark more 
central regions.  
 
 



 4 

drawing behaviours on real robots. The current physical manifestation of the DrawBot is illustrated in Figure 2. The main body 
of the robot forms a ring with an outer diameter of approximately 329mm and an inner diameter of 165mm.  The main drive 
wheels are on each side with supporting castors at the front and back.   

The primary navigational sensors 
consist of eight Infra Red rangefinders 
and eight tactile switches each 
distributed equally around the body of 
the robot.  The eight tactile switches 
are grouped in pairs with each pair 
operated by a single bumper such that 
contact at one end of the bumper will 
activate only one switch whist contact 
in the centre will operate both.  The 
bumpers extend from a few millimetres 
from the floor to the full height of the 
robots main body, approximately 
75mm from the floor, and the 
rangefinders are mounted inside the 
body pointing out through holes in the 
bumpers (see Figure 2).  In addition to 
the distance and contact sensors each 
wheel is equipped with a rotary 
encoder producing 200 counts per 
revolution or approximately 1 count per 
1.3mm of movement along the floor. 

This arrangement of sensors and 
body shape produces a robot with both 
side-to-side and front to back 

symmetry and, as such, the robot has no explicit ‘front’ or ‘back’.  This symmetry, along with the narrow beam rangefinders 
produces a platform that is easy to reproduce in a two dimensional simulation. 

The ring shaped body was chosen in order to keep the central portion of the robot completely clear of structure.  This 
allows us to mount a variety of drawing implements in the centre of the robot, along with a variety of floor sensors to detect 
marks on the drawing surface.  The current version uses a penholder mounted on an arm that allows the pen to be lifted off 
the drawing surface. 

Local control for the robot, along with the power supply, is mounted on a platform above the ring shaped body at a 
height of approximately 200mm.  The robot is not designed to operate with on board autonomy and instead incorporates a 
Bluetooth based radio modem and a serial control protocol allowing the robot to be controlled by a host PC.  The on board 
processing is provided by a PIC microcontroller which can respond to commands from the host PC and reply with sensory 
and other data.  As well as controlling the main sensor and drive functions of the robot the on board controller is capable of 
controlling a drawing implement controller with up to four degrees of freedom and eight analogue sensors.  The robot has a 
limited autonomy mode where it will subsume commands from the host PC in order to avoid obstacles. 

For simple sensing of the drawing surface an eight point linear light sensor can be interfaced to the control board to 
provide information about the area directly ahead of the pen. In the near future video cameras will be added both as more 
powerful drawing surface sensors and, more generally, as distal sensors allowing a richer set of interactions between the 
robot and its environment.  The robot is deliberately constructed to allow easy addition of new sensors as needed.  
 
From Simulation to Reality 

This section outlines initial successful results in transferring behaviours evolved in simulation on to the real robot. A 
simulation of the robot described in the previous section was developed using Jakobi’s (1998) minimal simulation 
methodology whereby the robot dynamics and its interactions with the environment are modelled in a relatively simple way 
but a large amount of structured noise is used to force robust generalised behaviours that will cross over into reality despite 
the discrepancies between the simulation and the world. Minimal simulations are computationally very efficient allowing 
relatively fast evolution of robot controllers. 

The controllers evolved in the experiment briefly described below were Continuous Time Recurrent Neural Networks 
(CTRNNs) (Beer et al. 1989), a rather more complex network than those used in the earlier experiments described above. 
The activation of a node, y, is defined by the following differential equation: 

 

Figure 2: The current physical implementation of the DrawBot. The positioning of the drive wheel 
can be seen in the left image, the position of the drawing pen (centre pointing down) can be seen 
in the right image. See text for further details. 
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The networks consisted of forty fully connected nodes. The connection weights, time constants, biases and gains were 

encoded as a string of real numbers in the range [0,1]. The weights, biases and gains were linearly scaled to values in the 
range [-30,30], [-4,4] and [1,31] respectively. The time constant was calculated as 10x where x = (-0.6 + 3×a) and a is the 
value encoded in the genotype. The state of each neuron was initially set to a random value equal to the bias for that neuron 
± 2.  Ten of the neurons had external inputs from the sensors, three neurons acted as motor outputs, one for each wheel and 
one to lower and raise the pen. For full details see Perris (2007). 

A steady state genetic 
algorithm (see e.g. Eiben and 
Smith 2003) was used with a 
population of size 30 and run 
for 3000 generations. 
Offspring were created by 
making mutated copies of 
parents selected by a 
tournament method. 

Figure 3 shows the 
results from an experiment 
with this setup. The aim was 
to explore indirect fitness 
functions that did not involve 
specific drawing elements but 
had a more ‘ecological’ feel. 
Such indirect fitness 
functions are an interesting 
direction complementary to 
the other experimental 
strands described above.  In 
the simulation small circular 
pieces of ‘food’ were 

randomly scattered in a rectangular area of the arena (represented by the inner rectangle in the central image in Figure 3 – 
‘food’ not shown). Fitness was gained when a line drawn by the pen intersected one of the food particles. However, each 
robot started with a fixed amount of energy which was used up at a constant rate while the pen was down but not while it was 
up; the robot could move and ‘draw’ freely for a fixed time period (1 minute) or until its energy ran out, whichever was sooner. 
The robot started in a random position and fitness was averaged over 50 trials. 

The most fit robots all displayed similar behaviour: they made sweeping curves that alternated in direction and fanned 
out over a reasonable area of the ‘food zone’. This is a good strategy for systematic coverage of a large area without running 
out of energy and also produces some aesthetically interesting results. The image produced by the real robot, shown at the 
right of Figure 3, is qualitatively very similar to those found in the simulation but the semi-circular curves are closer together 
and the robot tends to draw a full circle at the start. These differences are mainly due to more wheel slippage on the real 
drawing surface (a shiny whiteboard) and can be rectified in the future by slight changes to the simulation.  These initial 
results look very promising and, with more complex fitness functions and ‘ecological’ scenarios, including making use of 
sensors that give feedback from the current state of the drawing (see the discussion of ‘value’ earlier), it is very likely that 
richer drawings will soon be produced. 
 
Conclusions 

With 15 months of the project still remaining the team are cautiously optimistic that their goal of evolving minimally 
creative behaviour will be met.  However the very significant problem of how to recognise and acknowledge such behaviour 

Figure 3: Results using an indirect ‘ecological’ fitness function. The left and central images are from the 
simulation, the right image was produced when one of the controllers was transferred to the real robot. See 
text for details. The black circle in the simulation images shows the initial position of the robot. 



 6 

remains.  There is considerable historical evidence that humans are inept at recognising new creative behaviours amongst 
themselves.  Examples from the arts include:  the 1863 Salon des Refusés where works by Monet and his fellow 
Impressionists were spat upon by “knowledgeable” Parisian art critics; the neglect of Bach as a major figure for over a century 
until his reinstatement by Mendelssohn; the status of graffiti in most modern cities and, in the scientific domain, the many 
examples used by Kuhn (1962) to illustrate his theory of scientific revolutions.  Indeed Kuhn states his belief that … 
“disciplines change when old men die” (his use of the gender specific). 

It is only relatively recently that humans have been able to acknowledge creativity in other animals so how will they 
recognise creativity when it emerges from an alife agent?  The DrawBots represent a new mutation, a new form of life, within 
a human environment that is likely to be for the most part unsympathetic if not downright hostile.  Mary Shelly’s Frankenstein 
(1818), Fritz Lang’s Metropolis (1927, restored 2002), Karel Capek’s R.U.R and the more recent Terminator movies are 
amongst the fictional illustrations of the unease most people feel when confronted by human-made autonomous agency.  The 
homunculus, succubus and golem give a good indication of the theological attitude to human interference in work that should 
be the sole preserve of the gods! 

Even a sympathetic observer is likely to have problems in qualifying the output of a strange new mutant lifeform.  The 
research team are themselves subject to this constraint and have discussed the problem but have no clear solutions at this 
time.  One possibility is to evolve an a-life agent specialised to recognise creative behaviour (Saunders 2001). 

This latter possibility suggests that, in the not-too-distant future, we may live alongside colonies of artificial lifeforms.  
They will be adapted to many different environments and a wide variety of applications and will pursue creative endeavours 
that may be fully comprehensible only to themselves.  We hope that the DrawBots project will provide some insight into this 
brave new and alien post-human world. 
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