
Survival of the Sickest: A Site-Specific Recombination Operator
for Accelerated Function Optimization

Stephen Drake Phil Husbands

School of Cognitive and Computing Sciences
University of Sussex

Brighton, UK, BN19QH
Email: {stevedr, philh}@cogs.susx.ac.uk

Abstract
This paper describes experiments with a new crossover
operator which is based on the mechanism of biological
site-specific recombination. By using hill-climbing to
gather additional information about the fitness
landscape, it increases the constructive power of
crossover. The nature of the operator calls for a
somewhat unusual selection strategy which, in contrast
with traditional methods, automatically selects a
relatively unfit member of the population to be a parent.
When applied to difficult continuous-variable function
optimization problems, the operator is seen to perform
better than standard one-point crossover in terms of
quality of solutions found and its speed in finding them
(as measured by the number of function evaluations
carried out).

1 Introduction

A considerable body of literature has amassed which
attempts to explain crossover’s place among evolutionary
algorithms, and research has yielded increasingly
sophisticated analyses since the time when conventional
wisdom decreed that recombination was the primary engine
of optimization while mutation was regarded as being
somehow ‘less powerful’. However, a complete and
accurate analysis is still proving elusive, with much of the
research either posing more questions than it answers
(questions such as: is crossover redundant? Is crossover
simply macromutation?) or contradictory, in the case of
Holland’s Schema Theorem versus Goldberg’s Building
Blocks Hypothesis [I l l . There appears to be scant work
which marries investigation of such theoretical bases as
those mentioned above to the efficacy of crossover as
observed empirically (other than evaluating its performance
under variations of parameter values (for example, [4, 91)
or in recombination strategy itself, such as in [lo, 121).
Moreover, it can be illustrated (see section 5) that, very
often, standard one-point crossover constructs better
solutions for only a relatively short length of the time; it
very quickly becomes redundant, and a GA can then only
rely on mutation to explore different areas of the search
space. Thus the immediate motivation for this paper was to
improve the performance of crossover by increasing the

length of time for which it constructs better solutions. An
‘intelligent’ operator is proposed, which incorporates a
generic - that is, problem non-specific - mechanism
inspired by biological site-specific recombination.
Biological site-specific recombination works by mediating
proteins that bind specific target sequences in a strand of
DNA, and catalyse recombination at those positions [6] .

2 An Artificial Site-Specific Recombination
Operator

This operator incorporates a hill-climbing technique into its
mechanism, and can so be viewed as a hybrid. Hybrid
approaches have traditionally involved employing
problem-specific search techniqutas, or relegating the
additional technique to a supplemeritary capacity by bolting
it onto the end of the GA: for example, applying some local
search to the fittest individual (or, indeed, every individual)
at the end of a generation, or some hill-climbing at the end
of a run. However, in this site-specific recombination
(S-SR) operator, hill-climbing plays a much more
important r61e, and can be seen as imbuing the operator
with its ‘intelligence’.

Figure 1 : Allele bounds

2.1 Allele Bounds

The structure of an individual in the population has been
modified to incorporate a higher ;and a lower ‘bound’ for
every gene of its genotype, as illustrated in figure 1. (These
are initialised respectively to be the: higher and lower values
of the evaluation function’s variable range.) During the

0-7803-6657-3/01/$10.00 02001 IEEE 1374

mailto:philh}@cogs.susx.ac.uk

random generation of a population, and after every mating
cycle, an approximation to random-mutation hill-climbing
(RMHC) is applied to a specified percentage of an
individual’s genes. RMHC mutates random loci in the
current best genotype until a maximum number of
evaluations have been performed (or until the optimum
string has been found), only retaining mutations which lead
to an equal or higher fitness [8]. This strategy was adapted
to accommodate real-valued genotypes and the concept of
allele bounds.

The values of a gene’s allele bounds are altered
according to the effects of hill-climbing on that gene: if
incrementing a gene’s value by a constant STEP-SIZE
brings about a fitness increase, its lower bound is set to the
gene’s new value; conversely, if there occurs a decrease in
fitness, the gene, together with its upper bound, is reset to
its previous value. (The above operates in reverse if
hill-climbing decrements a gene’s value; incremental
hill-climbing is applied first; if this effects a fitness
decrease, the gene’s value is reset and decremental
hill-climbing is applied.) The algorithm is represented by
the following pseudo-code:

REPEAT N TIMES
Select random Gene in CurreritGenotype
Increment Gene by StepSize
IF CurreritGenofype is fitter OR of equal fitness THEN

ELSE IF CitrrerrtGeriotype is less fit THEN
Lower bound of Gene = Gene

Reset Gene to original value
Upper bound of Gene = Gene
Decrement Gene by StepSize
IF CurrentCenotype is fitter OR of equal fitness THEN

ELSE IF CurrentGeriotype is less fit THEN
Upper bound of Gene = Gene

Reset Gene to original value
Lower bound of Gene = Gene

END IF
END IF

END REPEAT

2.2 Selection and Recombination

Mating was restricted to small neighbourhoods of
individuals as detailed in section 3.2. In contrast to
traditional methods of selection, the least fit member of a
neighbourhood is selected as the first parent. (Preliminary
experiments were carried out, of which each set of 50 runs
consecutively selected the next fittest neighbour to be the
first parent. Results showed that the worse the first parent
is, the more effective the S-SR operator proves to be -
unsurprisingly, given the nature of the operator, since there
is more scope for improvement in an unfit individual.)

A set of allele bounds determines the general
direction in the search space which an individual takes by
defining the range in which the bounds’ gene may find a
profitable point. Moreover, if an increase in a gene’s value

due to hill-climbing effects an increase in the individual’s
fitness then presumably moving in the immediately
opposite direction would prove detrimental to the
individual’s fitness. The S-SR operator looks for a mate
which contains genes whose alleles lie between the
corresponding gene’s allele bounds in the first parent. The
neighbour containing the most such ‘desirable’ genes is
selected as a mate and one offspring is produced which
consists of all these desirable genes and the remaining
genes of the first parent.

Thus the pseudocode for S-SR selection and
crossover is as follows:

SELECTION:
Neighbourhood = array of six vicinal population members
MostDesirableNo is the greatest number of desirable genes found in any
neighbour so far = 0
CurrenfFave is the current neighbour with the greatest number of desirable
genes
CurreritDesirableNo is the current number of desirable genes found in
current neighbour
Sort Neighbourhood in order of increasing fitness
Pareiitl = Neighbuurhood[l]
F O R i from 2 to Neighbourhoodsize DO

CurreritDrsirableNo = 0
FOR j from 1 to GerrotypeLerrgfh DO
1Fjth gene of Neighbourhood[i] >j th lower allele bound AND c j t h

upper allele bound of Pareiitl THEN

Append value of j to Neighbourhood[i]’s DesirableCeriesList
CurreritDesirableNo = CurreritDesirableNo + 1

END IF
END FOR
IF CurreritDesirableNo 2 MostDesirableNo THEN
MostDesirableNo = CurrentDesirableNo
CurreritFave = Neighbourhood[i]

END IF
END F O R
Parent2 = CurreritFave

CROSSOVER:
Child = Parent1
FOR i from 1 to MostDesirableNo DO
j = value of ith element in Parent2’s DesirableGeriesLisr
ith gene of Child =jth gene of Parent2

END FOR

3 Experiments

3.1 Functions Used

In order to assess the performance of S-SR in relation to
standard one-point crossover, various optimization
problems were used, as represented by the following
functions.

The first three, to be minimized, are the last in a
suite of five functions originally constructed by De Jong [3]
and which were intended to represent common difficulties
among optimization problems in an isolated manner.

1375

F1 De Jong’s F3 has a single optimal value of 0, and is
defined by

for 0 < x, < 10, i = 1 ,..., n
5

zinteger(x,) for - 5 . 1 2 2 ~ ~ 55.12
I

F2 De Jong’s F4 is ‘noisy’: random Gaussian noise is
added to its value every time it is evaluated, and is defined
by

30

zix: + Gauss(0,l) for - 1.28 5 xi 5 1.28
i=I

F3 De Jong’s F5 has a global minimum of 0.002 -
although there are many suboptimal minima - and is
defined by

25

O.O02+C 2 for 65.536 I x, 2 65.536
F 1 , + Z (x , - , t , , Y

1-1

The following two functions, to be maximized, are taken
from a set due to Baluja [l]. Both have a global maximum
of 100,000 at the origin, where the variable ranges are
-2.56 5 xi 5 2.56. A small constant C = le-5 is added to the
denominator of the functions to avoid division by zero.

F4 Trial solutions to this function are affected by high
epistasis; that is, there exists a high degree of
inter-dependence between loci: the variables in the first
portions of the solution string have a large influence on the
quality of the rest of the solution - small changes in their
values can cause large changes in the evaluation of the
solution [13.

where y, = x, and yi = xi + sin(Yi-l)
1

c + IIYS + E I Y j l l i=2

F5 In contrast to the previous function, trial solutions to
this function are affected by low epistasis; that is, there
exists a low degree of inter-dependence between loci.

n 1%
x i < -- subject to n xi > 0.75 and

;=I ;=I 2

Details of the penalty function used with the above function
can be found in [5].

M This is the most complex in a set of multimodal
functions q constructed by Corana et al. [2]. These
functions, to be minimized, are ohtained by defining a
regular, rectangular grid in a space Rn and a set of open,
non-overlapping, rectangular subdomains, each centred
around the node of the grid. The definition of the function
qn(x) of n variables is a rectangular subdomain of Rn
centred at the origin and including several nodes of the
grid. The function qn is a parabo!loid with axes to the
coordinate directions except inside the open subdomains
mentioned above, where it is constant with a value lower
than the lowest value of qn computld on the boundary of
each subdomain. These subdomains are like a set of‘ ‘holes’
representing local minima of qn and introducing, strong
discontinuities in the test function. The total number of
local minima of the test function qJx) is lo%, and for
the purposes of this comparison, n = 10. The absolute
minimum lies on the origin and has value 0. (A
comprehensive definition of the function can be found in
PI.)

3.2 The Genetic Algorithm

A geographically distributed GA was used, with the
population spread across a two-dimensional toroidal grid of
size 15x15, each cell of which contained a single
individual. Mating was restricted to small groups of
individuals which were generated as follows:

Select a grid cell at random.
Build a neighbourhood of six individuals

100 around the current cell by, for each
neighbour, generating x- and y-distances

i = l from the current cell dependent upon a
binomial approximation to a Gaussian
distribution where n = 4 and p = 0.85. Thus,

F6 To simulate a multi-peak problem the following for individuals in cells at consecutive
constrained function was defined by Keane [5] . distances away from the current cell, the

probabilities of being selected are 0.52, 0.37,
0.1 and 0.01. (The direction of the distances

1

C + xlO.O24(i + 1) - xil

1376

- up, down, left or right - are chosen at
random.)
Rank the neighbourhood members according
to their fitness.

The selection of parent individuals differed in strategy
depending on which method of crossover was to be applied:
in anticipation of site-specific recombination, the least fit
member of the neighbourhood was chosen automatically as
the first parent, and a mate selected according to the
selection strategy described in section 2.2. However, if
conditions precluded S-SR (that is, if none of the first
parent’s neighbours contained desirable genes, or if the
number of desirable genes in a neighbour equalled the
length of the genotype) standard one-point crossover was
used. In this instance, parents were selected according to a
linear selection function favouring the fitter individuals.
After mating, in both cases, the fittest child replaced a
member of the neighbourhood selected according to the
inverse of this function.

3.3 Mutation

Mutation was applied after crossover with a probability of
0.01, and the experiments were carried out essentially using
two different methods with both one-point crossover and
S-SR. Method 1 incorporated a fairly standard method of
real-valued mutation: in 90% of mutations, a gene was
selected randomly, and mutated according to a uniform
distribution centred on the current value and of width 10%
of the gene range. In the remaining lo%, the selected gene
was simply assigned a random value from within its entire
range. Method 2 granted genotypes a greater chance of
exploring more remote areas of the search space by
assigning a randomly selected gene a random value within
its range (while resetting the gene’s allele bounds to those
parameters respectively for S-SR) 100% of the time.
However, resetting the allele bounds could mislead S-SR.
Recall that the neighbour with the most desirable genes is
chosen to be the second parent; with a gene’s allele bounds
reset, S-SR would now identify any value for that gene’s
equivalent in a potential mate as desirable. Therefore, it is
possible that a neighbour with several desirable genes -
plus one misleadingly desirable gene - would be chosen in
favour of a neighbour with one less desirable gene, but
which ultimately would have proved more profitable. To
help rectify this, a third mutation method, 2.1, for S-SR,
acted in the same way as the second, but, in addition, it was
ensured that when hill-climbing was subsequently applied,
it would be applied to the mutated gene first and foremost,
thus updating its allele bounds once again in anticipation of
a later S-SR operation.

3.4 Hill-Climbing

A major concern while designing the S-SR operator was
the potentially enormous expense incurred due to repeated
function evaluations during the hill-climbing stages: for
example, using one-point crossover with genotypes of any
length for a run of 300 generations, the total number of
evaluations would be 67500; however, using S-SR with
genotypes of length 100 (and assuming hill-climbing is
applied to every gene), the number of evaluations for a
single run potentially could range from 6817500 to
13567500. Therefore in order to reduce this expense,
hill-climbing was only applied to specified percentages of
randomly selected genes; the percentages used were 50%,
30%, lo%, 5% and 1%.

In order that the comparison was fair in terms of
the amount of function evaluations, all runs were set to last
the number of evaluations equal to the minimum number of
evaluations possible in a run of 300 generations using
S-SR, with hill-climbing applied to 50% of a genotype, i.e.
((1 + 50) x 225) x 300 = 3442500 for a genotype of length
100; ((1 + 25) x 225) x 300 =1755000 for a genotype of
length 50, and so on.

3.5 Local Search

In addition to comparing S-SR with simple one-point
crossover, a subsequent set of runs were carried out in order
to compare S-SR performance with a GA using one-point
crossover which was also boosted by local search. The
method of local search was shown to perform well in
studies such as [7] and comprised 200 mutations applied to
the current fittest individual after every 225 breeding
cycles. (A breeding cycle includes hill-climbing during
S-SR runs.)

4 Results

De Jong published his suite of test functions in 1975 [3],
and they have been used extensively ever since, becoming a
standard test bed. However, it is interesting to note how the
increase in computing power and GA efficiency has
rendered trivial what once represented common difficulties
among optimization problems: while comparing the
one-point and site-specific operators, both implementations
invariably found the optimum during the first few
generations (if not during the initialisation of the
population) for all of the three De Jong problems used.
Therefore this section will concentrate only on results
obtained for the other four functions.

Differences for both one-point (see tables 1 and 2)
and S-SR (see tables 3 and 4) between the standard
mutation type, method 1, and the less constrained method 2

1377

showed that on average the latter yielded slightly better
results. (Table 5 shows that, for S-SR, method 2.1
performed best.) Only on F7, and using S-SR, did method 1
yield substantially better results.

In comparison with one-point crossover, S-SR -
with the appropriate amount of hill-climbing and, typically,
mutation type 2.1 - performed better on all functions except
F5: the best mean achieved by S-SR was 2.06 as opposed to
2.63 by one-point.

In comparison with alternative strategies, S-SR
improved on results detailed in [l] with regard to quality
of solutions and the speed with which they were found for
F4. On F5, S-SR only performed worse than a
multiple-restart stochatsic hill-climbing method (MRSH)
when incorporating Gray encoding. On F6, S-SR proved
competitive with results detailed in [5] which were
achieved by a GA which incorporated elitism and niching.
On F7, S-SR achieved significantly better results than are
given in [2].

Table 1 : results for runs using one-point crossover, mutation
method 1

S-SR then still only performed worse than one-point with
local search on one function, F5. Figure 4 illustrates runs
using local search with both one-point crossover and S-SR
(mutation type 2.1) respectively, averaged over fifty runs as
before.

1 Function 1 Std. Dev. 1 Mean 1 Best Wokt-1
F4 50% Hd 0.031607 I 0.136203 1
F4 30% Hd 0.033396 I 0.140692 I
IF4 10% Hd 0.021976 I 0.13131 I 0.226073 I 0.067965 1
F4 5% HC] 0.028029 1 0.152747
F4 1% HCI 0.004488 I 0.045702

Table 3: results for runs using S-SR, mutation type 1

IFuit ion 1 Std.Dev. 1 Mean 1 Best 1 Worst 1
0.002008 0.04099 0.045272 0.036733
0.251945 2.631828 3.266276 2.17429
0.023615 0.601511 0.646866 0.551677
4.26E+05 2.54E+05 3.26E+03 2.77E+06

1 Function4 Std.Dev. 1 Mean 1 Best 1 Worst 1
F4 50% H 0.024879 0.153171 0.204769 0.087742
F4 30% H 0.02661 0.16219 0.215401 0.115917
F4 10% H a 0.013164 1 0.13987
F4 5% HCI 0.023869 10.161398

Save for the occasional anomaly, a fortuitous pattern was
observed with regard to the amount of hill-climbing applied
during S-SR runs: in general, performance - in terms of
both the quality of solutions and the speed with which they
were found - improved as the amount of hill-climbing
applied, and therefore the number of function evaluations,
was reduced (although such evidence for runs with F6 is
more ambiguous). This is illustrated in figure 3; the
percentage of genes to which hill-climbing was applied in a
particular run is included where convenient.

The addition of local search improved
significantly the performance of runs using one-point
crossover, except on F4. However, S-SR by itself still beat
these runs for two of the functions, F4 and F7; adding local
search to S-SR improved its performance even more and

Table 2: results for runs using one-point crossover, mutation
method 2

1378

F4 1% HC(0.004367 I 0.052315 '

F5 50% Hd 0.040895 I 0.771428
F5 30% H a 0.045143 1 0.81307
F5 10% Hd 0.04596 I 0.865588

Table 4: results for runs using S-SR, mutation type 2

A pattern of behaviour similar to that of the first set of runs
was evident, although the inclusion of local search

appeared to slow down convergence, particularly with
functions F4, F5 and F7. However, with regard to F5,
whereas typically solutions improved much faster using
S-SR than one-point at the beginning of a run (until
subsequently being overtaken) during the second set of
runs, one-point invariably performed better than S-SR from
the outset when local search was applied. Figure 4
illustrates levels of performance for runs using local search.

Function I Std.Dev. I Mean I Best 1 Worst
F4 50% Hd 0.029256 10.147835 10.184381 10.074057

Similarly, on F4 (the first of the two Baluja functions used)
the optimum hill-climbing percentage appears to be around
5%, whereas percentages of 1% and 10% elicited poor
results. Conversely, on F5 (the sister Baluja function) a
hill-climbing percentage of 1% elicits a performance far
better than those using higher percentages. Moreover,
either too low a level of hill-climbing or too high a level of
hill-climbing results in an increased rate of convergence.

p4 10% H a 0.01805 10.144346 10.194791 I0.109044
F4 5% HCI 0.015724 10.163612 10.197257 10.133717
F4 1% HC 0.004473 0.051899 0.064543 0.038423
F5 50% HC 0.039983 0.769808 0.866052 0.686105
F5 30% HC 0.058376 0.829737 0.976668 0.74918

p4 30% Hd 0.030406 10.163875 10.215593 10.077442 1

F6 1% HCI 0.05638 OS76746 0.675144 0.434858
F7 50% Hd 9.37E+03 1.99E+03 4.43E+00 6.06E+04
h7 30% HC

10% HC
79.270 75.484 0.894 280.827
87.234 83.041 0.427 354.467

b6 30% Hd 0.036691 10.622573 10.719462 10.560513 1
6 10% H a 0.041 164 I 0.626924 I 0.744267 I OS63771
6 5% HCI 0.039392 10.618657 10.724491 10.521155

Table 5: results for runs using S-SR, mutation type 2.1

5 Discussion

On examining the results, particularly those gathered for
functions F4 and F5 given their opposing characteristics, it
is encouraging to see that S-SR performs comparatively
well on problems with high epistasis - problems which
both GAS and hill-climbing traditionally find difficult. The
repeated application of hill-climbing undoubtedly will
assist a GA to some extent, as traditional hybrid approaches
illustrate. However, regardless of any benefits reaped from
hill-climbing per se, clearly, the rate of solution
improvement using S-SR is very often much faster than
with one-point, particularly at the beginning of a search.
Such an assertion is reinforced by recalling that the
reduction in the hill-climbing percentage invariably
increases this speed significantly. Nevertheless, there would
appear to be distinct optimum levels of hill-climbing for the
different functions: figure 3 illustrates that although
reducing the amount of hill-climbing invariably increases
the speed of solution improvement in the early stages of the
search, sometimes runs with the least amount of
hill-climbing ultimately are not the best performers.

0.18 1

0 2000 4000 6000 8000 10000 12000 14000 16000
'Generatons' (225 evaluatbns)

0 2000 4000 6000 8000 10000 12000 14000 l i

'Generatbns' (225 evaiualbns)

(b)

00

i 0.7 /
0 6

0 5

E 0 4

03

02

0 1000 2000 3000 4000 5000 6000 7000 8000
0 1

'Generatbns (225 evaluatans)

(c)

Figure 3: average performance of runs for (a) F6, (b) F5 and (c)
F6

13-79

1 Fu!tioni Std.Dev.1 Mean 1 Best 1 Worst 1
0.002434 0.042893 0.047696 0.037158
4.320856 43.787925 55.267357 34.799 17 1

F6 0.044467 0.703679 0.785085 0.61512
695.948 489.109 17.844 4654.804

F5 1% HC
F6 50% HC

Table 6: results for runs using one-point crossover (mutation
method 2), with local search

3.224481 (31.630345 39.186485 25.348616
0.031754 I 0.765916 0.815092 0.62449

Function 1 Std.Dev. I Mean I Best I Worst
F3 50% Hd 0.014196 10.174359 10.209247 10.143221

F6 1% HCI 0.044304 I 0.739859
F75O%Hd 3.654 I 0.522

0.808975 0.64303
0 26.100

/F6 30% Hd 0.027081 I 0.771703 I 0.820694 I 0.705847 I
F6 10% H a 0.032556 1 0.775546 1 0.824942 I 0.656737
F6 5% HCI 0.030724 I 0.768574 I 0.817979 I 0.686743

lF73O%Hd 20.813 I 2.973 I 0 I 148.667 1
lO%H4 3.121 I 0.446 I 0 I 22.293 I

Table 7: results for runs using S-SR with local search

It would appear that, on the functions where S-SR
beats one-point, the improved performance is due to there
being a much greater number of constructive crossover
operations, per generation, during the early stages of the
search. (For the purposes of this paper, a 'constructive
crossover' is defined as one that yields at least one
offspring which is fitter than either parent; one generation
is taken to equal 225 breeding cycles.) Indeed, with the
exception of F6 (where the percentage of crossover
operations per generation remained high throughout runs
of 300 generations), when one-point is used the percentage
of constructive operations falls to a negligible - if not
non-existent - level in a very short time. In contrast, a
relatively high percentage of constructive operations is
maintained for longer when S-SR is used; furthermore,
constructive operations (albeit a small number) is evident
for the duration of a run. This is illustrated using €7 in
figure 5. It seems likely that the S-SR selection strategy
plays an important part in the success of the operator. GAS
have always been based on the concept 'survival of the
fittest', which implicitly dictates that the least fit members
of a population are left to die out. Conversely, the best S-SR

performance is observed when the least fit member of a
neighbourhood is selected and resuscitated via the donation
of genes from a fitter neighbour.

018 , , . . . - . ,

0""
0 2000 4000 6000 8000 10000 12000 la000 11

'Genelatans' (2.25 evatuilbns)

(a)

40t
35

08

0 7

06

05

' 0 4

: : I , , , , ,

0 1000 2000 3000 4000 5000 6000 7000 8000 9
0 1

'Generatans' (225 evahiatans)

(C)

00

DO

DO

Figure 4: average performance of runs for (a) F6, (b) F5 and (c)
F6 with local search

Perhaps it is unsurprising that more constructive
crossovers are observed when the S-SR strategy i s to take
an unfit individual and make it fitter, but one possible
explanation may be that fit schemata concealed within unfit
individuals, which normally waald be overlooked by
selection, instead are being exploited. Indeed, this would

seem likely if the least fit individual mates with its fittest
neighbour to produce offspring fitter than either of its
parents (thereby fulfilling the axiom which dictates that
‘opposites attract’ !).

That constructive crossover operations are still
being carried out even at the very end of a run perhaps
indicates a slowing of convergence - despite the
acceleration of improvement, and that, intuitively, the
nature of the site-specific operator suggests an increased
rate of convergence. Another possibility may be that S-SR
makes the most of small differences between a converged
population; or that, in a population of converged fitness,
one individual benefits from receiving a particular gene
from another individual which is of similar fitness but
which inhabits a different area of the search space.

- One-poml
60

.._ siie.spmw

g 50 *,
2 : -
g 4 0 ;
; :
f 30 ; ,2 ’-,

$20.

-7 10-

D1 8 ,,1. : ,. y,
3 I .I I,

:;-,:
a .

-.-- ..,. - -.- ..,- - + ..___... ,.. -,,-,
0 ”. ’

6 Conclusion

The immediate objective of designing an operator which
attempts to increase the probability of affecting a
constructive crossover, thereby increasing the power of a
CA, has been fulfilled: it has been shown empirically that
using site-specific crossover on some (currently!) difficult
functions will accelerate optimization to a considerable
degree as well as usually achieving fitter solutions than are
reached when one-point is used. However, only continuous
function optimization problems have been addressed so far
- a set of problems which constitute only a small subset of
those to which GAS are routinely applied. Therefore, the
operator must be adapted, if necessary, to tackling such
combinatorial tasks such as job-shop scheduling and the
travelling salesman problem, or even neural network
weight optimization. In addition, an analytical
investigation of the operator should be carried out in the
hope of producing a more complete explanation
overall rBle of crossover in evolutionary algorithms.

of the

References

[11 S. Baluja, An Empirical Comparison of Seven Iterative
and Evolutionary Function Optimisation Heuristics,
Internal Paper CMU-CS-95-193, School of Computer
Science, Carnegie Mellon University (1995).

[2] A. Corana, M. Marchesi, C. Martini, and S. Ridella,
Minimizing Multimodal Functions of Continuous
Variables with the ‘Simulated Annealing’ Algorithm,
in ACM Transactions on Mathematical Sofrware, Vol.
13, No. 3, September 1987, pages 262-280.

[3] K. DeJong, An Analysis of the Behaviour of a Class of
Genetic Adaptive Systems, PhD thesis, University of
Michigan (1975).

[4] J. J. Grefenstette, Optimization of Control Parameters
for Genetic Algorithms, IEEE Transactions on
Systems, Man & Cybernetics 16, No. I (1986).

[5] A. Keane, Experiences with Optimisers in Structural
Design. in Proceedings of the First International
Conference on Adaptive Computing in Engineering
Design and Control, University of Plymouth (1994).

[6] R. F. Leach, Genetic Recombination, Blackwell Science
Ltd. (1996).

[7] M. McIlhagga, P. Husbands and R. Ives, A Comparison
of Search Techniques on a Wing-Box Optimisation
Problem, in H.-M. Voigt, W. Ebeling, I. Rechenberg
and H.-P. Schwefel, editors, PPSN ZV, Springer (1996).

[8] M. Mitchell, An Introduction to Genetic Algorithms,
MIT Press (1998).

[9] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, R. Das,
A Study of Control Parameters Affecting On-Line
Performance of Genetic Algorithms for Function
Optimization, in J. D. Schaffer, ed., Proceedings of the
Third ICGA, Morgan Kaufman (1989).

[lo] G . Syswerda, Uniform Crossover in Genetic
Algorithms, in J. D. Schaffer, ed., Proceedings of the
Third ICGA, Morgan Kaufman (1989).

[113 C. Thornton, The Building Block Fallacy, Complexity
Interntational Vol. 4 (1 997).

[I21 K. Vekari, C. Clack, Selective Crossover in Genetic
Algorithms: An Empirical Study, in A. E. Eiben, T.
Back, M. Schoenauer and H.-P. Schwefel, eds., PPSN
V, Springer (1998).

