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Abstract 
This paper describes experiments with a new crossover 
operator which is based on the mechanism of biological 
site-specific recombination. By using hill-climbing to 
gather additional information about the fitness 
landscape, it increases the constructive power of 
crossover. The nature of the operator calls for a 
somewhat unusual selection strategy which, in contrast 
with traditional methods, automatically selects a 
relatively unfit member of the population to be a parent. 
When applied to difficult continuous-variable function 
optimization problems, the operator is seen to perform 
better than standard one-point crossover in terms of 
quality of solutions found and its speed in finding them 
(as measured by the number of function evaluations 
carried out). 

1 Introduction 

A considerable body of literature has amassed which 
attempts to explain crossover’s place among evolutionary 
algorithms, and research has yielded increasingly 
sophisticated analyses since the time when conventional 
wisdom decreed that recombination was the primary engine 
of optimization while mutation was regarded as being 
somehow ‘less powerful’. However, a complete and 
accurate analysis is still proving elusive, with much of the 
research either posing more questions than it answers 
(questions such as: is crossover redundant? Is crossover 
simply macromutation?) or contradictory, in the case of 
Holland’s Schema Theorem versus Goldberg’s Building 
Blocks Hypothesis [ I l l .  There appears to be scant work 
which marries investigation of such theoretical bases as 
those mentioned above to the efficacy of crossover as 
observed empirically (other than evaluating its performance 
under variations of parameter values (for example, [4, 91) 
or in recombination strategy itself, such as in [lo, 121). 
Moreover, it can be illustrated (see section 5 )  that, very 
often, standard one-point crossover constructs better 
solutions for only a relatively short length of the time; it 
very quickly becomes redundant, and a GA can then only 
rely on mutation to explore different areas of the search 
space. Thus the immediate motivation for this paper was to 
improve the performance of crossover by increasing the 

length of time for which it constructs better solutions. An 
‘intelligent’ operator is proposed, which incorporates a 
generic - that is, problem non-specific - mechanism 
inspired by biological site-specific recombination. 
Biological site-specific recombination works by mediating 
proteins that bind specific target sequences in a strand of 
DNA, and catalyse recombination at those positions [6] .  

2 An Artificial Site-Specific Recombination 
Operator 

This operator incorporates a hill-climbing technique into its 
mechanism, and can so be viewed as a hybrid. Hybrid 
approaches have traditionally involved employing 
problem-specific search techniqutas, or relegating the 
additional technique to a supplemeritary capacity by bolting 
it onto the end of the GA: for example, applying some local 
search to the fittest individual (or, indeed, every individual) 
at the end of a generation, or some hill-climbing at the end 
of a run. However, in this site-specific recombination 
(S-SR) operator, hill-climbing plays a much more 
important r61e, and can be seen as imbuing the operator 
with its ‘intelligence’. 

Figure 1 :  Allele bounds 

2.1 Allele Bounds 

The structure of an individual in the population has been 
modified to incorporate a higher ;and a lower ‘bound’ for 
every gene of its genotype, as illustrated in figure 1. (These 
are initialised respectively to be the: higher and lower values 
of the evaluation function’s variable range.) During the 
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random generation of a population, and after every mating 
cycle, an approximation to random-mutation hill-climbing 
(RMHC) is applied to a specified percentage of an 
individual’s genes. RMHC mutates random loci in the 
current best genotype until a maximum number of 
evaluations have been performed (or until the optimum 
string has been found), only retaining mutations which lead 
to an equal or higher fitness [8]. This strategy was adapted 
to accommodate real-valued genotypes and the concept of 
allele bounds. 

The values of a gene’s allele bounds are altered 
according to the effects of hill-climbing on that gene: if 
incrementing a gene’s value by a constant STEP-SIZE 
brings about a fitness increase, its lower bound is set to the 
gene’s new value; conversely, if there occurs a decrease in 
fitness, the gene, together with its upper bound, is reset to 
its previous value. (The above operates in reverse if 
hill-climbing decrements a gene’s value; incremental 
hill-climbing is applied first; if this effects a fitness 
decrease, the gene’s value is reset and decremental 
hill-climbing is applied.) The algorithm is represented by 
the following pseudo-code: 

REPEAT N TIMES 
Select random Gene in CurreritGenotype 
Increment Gene by StepSize 
IF CurreritGenofype is fitter OR of equal fitness THEN 

ELSE IF CitrrerrtGeriotype is less fit THEN 
Lower bound of Gene = Gene 

Reset Gene to original value 
Upper bound of Gene = Gene 
Decrement Gene by StepSize 
IF CurrentCenotype is fitter OR of equal fitness THEN 

ELSE IF CurrentGeriotype is less fit THEN 
Upper bound of Gene = Gene 

Reset Gene to original value 
Lower bound of Gene = Gene 

END IF 
END IF 

END REPEAT 

2.2 Selection and Recombination 

Mating was restricted to small neighbourhoods of 
individuals as detailed in section 3.2. In contrast to 
traditional methods of selection, the least fit member of a 
neighbourhood is selected as the first parent. (Preliminary 
experiments were carried out, of which each set of 50 runs 
consecutively selected the next fittest neighbour to be the 
first parent. Results showed that the worse the first parent 
is, the more effective the S-SR operator proves to be - 
unsurprisingly, given the nature of the operator, since there 
is more scope for improvement in an unfit individual.) 

A set of allele bounds determines the general 
direction in the search space which an individual takes by 
defining the range in which the bounds’ gene may find a 
profitable point. Moreover, if an increase in a gene’s value 

due to hill-climbing effects an increase in the individual’s 
fitness then presumably moving in the immediately 
opposite direction would prove detrimental to the 
individual’s fitness. The S-SR operator looks for a mate 
which contains genes whose alleles lie between the 
corresponding gene’s allele bounds in the first parent. The 
neighbour containing the most such ‘desirable’ genes is 
selected as a mate and one offspring is produced which 
consists of all these desirable genes and the remaining 
genes of the first parent. 

Thus the pseudocode for S-SR selection and 
crossover is as follows: 

SELECTION: 
Neighbourhood = array of six vicinal population members 
MostDesirableNo is the greatest number of desirable genes found in any 
neighbour so far = 0 
CurrenfFave is the current neighbour with the greatest number of desirable 
genes 
CurreritDesirableNo is the current number of desirable genes found in 
current neighbour 
Sort Neighbourhood in order of increasing fitness 
Pareiitl = Neighbuurhood[l] 
F O R  i from 2 to Neighbourhoodsize DO 

CurreritDrsirableNo = 0 
FOR j from 1 to GerrotypeLerrgfh DO 
1Fjth gene of Neighbourhood[i] >j th  lower allele bound AND c j t h  

upper allele bound of Pareiitl THEN 

Append value of j to Neighbourhood[i]’s DesirableCeriesList 
CurreritDesirableNo = CurreritDesirableNo + 1 

END IF 
END FOR 
IF CurreritDesirableNo 2 MostDesirableNo THEN 
MostDesirableNo = CurrentDesirableNo 
CurreritFave = Neighbourhood[i] 

END IF 
END F O R  
Parent2 = CurreritFave 

CROSSOVER: 
Child = Parent1 
FOR i from 1 to MostDesirableNo DO 
j = value of ith element in Parent2’s DesirableGeriesLisr 
ith gene of Child =jth gene of Parent2 

END FOR 

3 Experiments 

3.1 Functions Used 

In order to assess the performance of S-SR in relation to 
standard one-point crossover, various optimization 
problems were used, as represented by the following 
functions. 

The first three, to be minimized, are the last in a 
suite of five functions originally constructed by De Jong [3] 
and which were intended to represent common difficulties 
among optimization problems in an isolated manner. 
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F1 De Jong’s F3 has a single optimal value of 0, and is 
defined by 

for 0 < x, < 10, i = 1 ,..., n 
5 

zinteger(x,)  for - 5 . 1 2 2 ~ ~  55.12 
I 

F2 De Jong’s F4 is ‘noisy’: random Gaussian noise is 
added to its value every time it is evaluated, and is defined 
by 

30 

zix: + Gauss(0,l) for - 1.28 5 xi 5 1.28 
i=I 

F3 De Jong’s F5 has a global minimum of 0.002 - 
although there are many suboptimal minima - and is 
defined by 

25 

O.O02+C 2 for 65.536 I x, 2 65.536 
F 1  , + Z ( x , - , t , , Y  

1-1 

The following two functions, to be maximized, are taken 
from a set due to Baluja [l]. Both have a global maximum 
of 100,000 at the origin, where the variable ranges are 
-2.56 5 xi 5 2.56. A small constant C = le-5 is added to the 
denominator of the functions to avoid division by zero. 

F4 Trial solutions to this function are affected by high 
epistasis; that is, there exists a high degree of 
inter-dependence between loci: the variables in the first 
portions of the solution string have a large influence on the 
quality of the rest of the solution - small changes in their 
values can cause large changes in the evaluation of the 
solution [ 13. 

where y, = x, and yi = xi + sin(Yi-l) 
1 

c + IIYS + E I Y j l l  i=2 

F5 In contrast to the previous function, trial solutions to 
this function are affected by low epistasis; that is, there 
exists a low degree of inter-dependence between loci. 

n 1% 
x i  < -- subject to n xi  > 0.75 and 

;=I ;=I 2 

Details of the penalty function used with the above function 
can be found in [5]. 

M This is the most complex in a set of multimodal 
functions q constructed by Corana et al. [2]. These 
functions, to be minimized, are ohtained by defining a 
regular, rectangular grid in a space Rn and a set of open, 
non-overlapping, rectangular subdomains, each centred 
around the node of the grid. The definition of the function 
qn(x) of n variables is a rectangular subdomain of Rn 
centred at the origin and including several nodes of the 
grid. The function qn is a parabo!loid with axes to the 
coordinate directions except inside the open subdomains 
mentioned above, where it is constant with a value lower 
than the lowest value of qn computld on the boundary of 
each subdomain. These subdomains are like a set of‘ ‘holes’ 
representing local minima of qn and introducing, strong 
discontinuities in the test function. The total number of 
local minima of the test function qJx) is lo%, and for 
the purposes of this comparison, n = 10. The absolute 
minimum lies on the origin and has value 0. (A 
comprehensive definition of the function can be found in 
PI.) 

3.2 The Genetic Algorithm 

A geographically distributed GA was used, with the 
population spread across a two-dimensional toroidal grid of 
size 15x15, each cell of which contained a single 
individual. Mating was restricted to small groups of 
individuals which were generated as follows: 

Select a grid cell at random. 
Build a neighbourhood of six individuals 

100 around the current cell by, for each 
neighbour, generating x- and y-distances 

i = l  from the current cell dependent upon a 
binomial approximation to a Gaussian 
distribution where n = 4 and p = 0.85. Thus, 

F6 To simulate a multi-peak problem the following for individuals in cells at consecutive 
constrained function was defined by Keane [5 ] .  distances away from the current cell, the 

probabilities of being selected are 0.52, 0.37, 
0.1 and 0.01. (The direction of the distances 

1 

C + xlO.O24(i + 1) - xil 
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- up, down, left or right - are chosen at 
random.) 
Rank the neighbourhood members according 
to their fitness. 

The selection of parent individuals differed in strategy 
depending on which method of crossover was to be applied: 
in anticipation of site-specific recombination, the least fit 
member of the neighbourhood was chosen automatically as 
the first parent, and a mate selected according to the 
selection strategy described in section 2.2. However, if 
conditions precluded S-SR (that is, if none of the first 
parent’s neighbours contained desirable genes, or if the 
number of desirable genes in a neighbour equalled the 
length of the genotype) standard one-point crossover was 
used. In this instance, parents were selected according to a 
linear selection function favouring the fitter individuals. 
After mating, in both cases, the fittest child replaced a 
member of the neighbourhood selected according to the 
inverse of this function. 

3.3 Mutation 

Mutation was applied after crossover with a probability of 
0.01, and the experiments were carried out essentially using 
two different methods with both one-point crossover and 
S-SR. Method 1 incorporated a fairly standard method of 
real-valued mutation: in 90% of mutations, a gene was 
selected randomly, and mutated according to a uniform 
distribution centred on the current value and of width 10% 
of the gene range. In the remaining lo%, the selected gene 
was simply assigned a random value from within its entire 
range. Method 2 granted genotypes a greater chance of 
exploring more remote areas of the search space by 
assigning a randomly selected gene a random value within 
its range (while resetting the gene’s allele bounds to those 
parameters respectively for S-SR) 100% of the time. 
However, resetting the allele bounds could mislead S-SR. 
Recall that the neighbour with the most desirable genes is 
chosen to be the second parent; with a gene’s allele bounds 
reset, S-SR would now identify any value for that gene’s 
equivalent in a potential mate as desirable. Therefore, it is 
possible that a neighbour with several desirable genes - 
plus one misleadingly desirable gene - would be chosen in 
favour of a neighbour with one less desirable gene, but 
which ultimately would have proved more profitable. To 
help rectify this, a third mutation method, 2.1, for S-SR, 
acted in the same way as the second, but, in addition, it was 
ensured that when hill-climbing was subsequently applied, 
it would be applied to the mutated gene first and foremost, 
thus updating its allele bounds once again in anticipation of 
a later S-SR operation. 

3.4 Hill-Climbing 

A major concern while designing the S-SR operator was 
the potentially enormous expense incurred due to repeated 
function evaluations during the hill-climbing stages: for 
example, using one-point crossover with genotypes of any 
length for a run of 300 generations, the total number of 
evaluations would be 67500; however, using S-SR with 
genotypes of length 100 (and assuming hill-climbing is 
applied to every gene), the number of evaluations for a 
single run potentially could range from 6817500 to 
13567500. Therefore in order to reduce this expense, 
hill-climbing was only applied to specified percentages of 
randomly selected genes; the percentages used were 50%, 
30%, lo%, 5% and 1%. 

In order that the comparison was fair in terms of 
the amount of function evaluations, all runs were set to last 
the number of evaluations equal to the minimum number of 
evaluations possible in a run of 300 generations using 
S-SR, with hill-climbing applied to 50% of a genotype, i.e. 
((1 + 50) x 225) x 300 = 3442500 for a genotype of length 
100; ((1 + 25) x 225) x 300 =1755000 for a genotype of 
length 50, and so on. 

3.5 Local Search 

In addition to comparing S-SR with simple one-point 
crossover, a subsequent set of runs were carried out in order 
to compare S-SR performance with a GA using one-point 
crossover which was also boosted by local search. The 
method of local search was shown to perform well in 
studies such as [7] and comprised 200 mutations applied to 
the current fittest individual after every 225 breeding 
cycles. (A breeding cycle includes hill-climbing during 
S-SR runs.) 

4 Results 

De Jong published his suite of test functions in 1975 [3], 
and they have been used extensively ever since, becoming a 
standard test bed. However, it is interesting to note how the 
increase in computing power and GA efficiency has 
rendered trivial what once represented common difficulties 
among optimization problems: while comparing the 
one-point and site-specific operators, both implementations 
invariably found the optimum during the first few 
generations (if not during the initialisation of the 
population) for all of the three De Jong problems used. 
Therefore this section will concentrate only on results 
obtained for the other four functions. 

Differences for both one-point (see tables 1 and 2) 
and S-SR (see tables 3 and 4) between the standard 
mutation type, method 1, and the less constrained method 2 
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showed that on average the latter yielded slightly better 
results. (Table 5 shows that, for S-SR, method 2.1 
performed best.) Only on F7, and using S-SR, did method 1 
yield substantially better results. 

In comparison with one-point crossover, S-SR - 
with the appropriate amount of hill-climbing and, typically, 
mutation type 2.1 - performed better on all functions except 
F5: the best mean achieved by S-SR was 2.06 as opposed to 
2.63 by one-point. 

In comparison with alternative strategies, S-SR 
improved on results detailed in [ l ]  with regard to quality 
of solutions and the speed with which they were found for 
F4. On F5, S-SR only performed worse than a 
multiple-restart stochatsic hill-climbing method (MRSH) 
when incorporating Gray encoding. On F6, S-SR proved 
competitive with results detailed in [5]  which were 
achieved by a GA which incorporated elitism and niching. 
On F7, S-SR achieved significantly better results than are 
given in [2]. 

Table 1 :  results for runs using one-point crossover, mutation 
method 1 

S-SR then still only performed worse than one-point with 
local search on one function, F5. Figure 4 illustrates runs 
using local search with both one-point crossover and S-SR 
(mutation type 2.1) respectively, averaged over fifty runs as 
before. 

1 Function 1 Std. Dev. 1 Mean 1 Best Wokt-1  
F4 50% Hd 0.031607 I 0.136203 1 
F4 30% Hd 0.033396 I 0.140692 I 
IF4 10% Hd 0.021976 I 0.13131 I 0.226073 I 0.067965 1 
F4 5% HC] 0.028029 1 0.152747 
F4 1% HCI 0.004488 I 0.045702 

Table 3: results for runs using S-SR, mutation type 1 

IFuit ion 1 Std.Dev. 1 Mean 1 Best 1 Worst 1 
0.002008 0.04099 0.045272 0.036733 
0.251945 2.631828 3.266276 2.17429 
0.023615 0.601511 0.646866 0.551677 
4.26E+05 2.54E+05 3.26E+03 2.77E+06 

1 Function4 Std.Dev. 1 Mean 1 Best 1 Worst 1 
F4 50% H 0.024879 0.153171 0.204769 0.087742 
F4 30% H 0.02661 0.16219 0.215401 0.115917 
F4 10% H a  0.013164 1 0.13987 
F4 5% HCI 0.023869 10.161398 

Save for the occasional anomaly, a fortuitous pattern was 
observed with regard to the amount of hill-climbing applied 
during S-SR runs: in general, performance - in terms of 
both the quality of solutions and the speed with which they 
were found - improved as the amount of hill-climbing 
applied, and therefore the number of function evaluations, 
was reduced (although such evidence for runs with F6 is 
more ambiguous). This is illustrated in figure 3; the 
percentage of genes to which hill-climbing was applied in a 
particular run is included where convenient. 

The addition of local search improved 
significantly the performance of runs using one-point 
crossover, except on F4. However, S-SR by itself still beat 
these runs for two of the functions, F4 and F7; adding local 
search to S-SR improved its performance even more and 

Table 2: results for runs using one-point crossover, mutation 
method 2 
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F4 1% HC( 0.004367 I 0.052315 ' 

F5 50% Hd 0.040895 I 0.771428 
F5 30% H a  0.045143 1 0.81307 
F5 10% Hd 0.04596 I 0.865588 

Table 4: results for runs using S-SR, mutation type 2 

A pattern of behaviour similar to that of the first set of runs 
was evident, although the inclusion of local search 



appeared to slow down convergence, particularly with 
functions F4, F5 and F7. However, with regard to F5, 
whereas typically solutions improved much faster using 
S-SR than one-point at the beginning of a run (until 
subsequently being overtaken) during the second set of 
runs, one-point invariably performed better than S-SR from 
the outset when local search was applied. Figure 4 
illustrates levels of performance for runs using local search. 

Function I Std.Dev. I Mean I Best 1 Worst 
F4 50% Hd 0.029256 10.147835 10.184381 10.074057 

Similarly, on F4 (the first of the two Baluja functions used) 
the optimum hill-climbing percentage appears to be around 
5%, whereas percentages of 1% and 10% elicited poor 
results. Conversely, on F5 (the sister Baluja function) a 
hill-climbing percentage of 1% elicits a performance far 
better than those using higher percentages. Moreover, 
either too low a level of hill-climbing or too high a level of 
hill-climbing results in an increased rate of convergence. 

p4 10% H a  0.01805 10.144346 10.194791 I0.109044 
F4 5% HCI 0.015724 10.163612 10.197257 10.133717 
F4 1% HC 0.004473 0.051899 0.064543 0.038423 
F5 50% HC 0.039983 0.769808 0.866052 0.686105 
F5 30% HC 0.058376 0.829737 0.976668 0.74918 

p4 30% Hd 0.030406 10.163875 10.215593 10.077442 1 

F6 1% HCI 0.05638 OS76746 0.675144 0.434858 
F7 50% Hd 9.37E+03 1.99E+03 4.43E+00 6.06E+04 
h7 30% HC 

10% HC 
79.270 75.484 0.894 280.827 
87.234 83.041 0.427 354.467 

b6 30% Hd 0.036691 10.622573 10.719462 10.560513 1 
6 10% H a  0.041 164 I 0.626924 I 0.744267 I OS63771 
6 5% HCI 0.039392 10.618657 10.724491 10.521155 

Table 5: results for runs using S-SR, mutation type 2.1 

5 Discussion 

On examining the results, particularly those gathered for 
functions F4 and F5 given their opposing characteristics, it 
is encouraging to see that S-SR performs comparatively 
well on problems with high epistasis - problems which 
both GAS and hill-climbing traditionally find difficult. The 
repeated application of hill-climbing undoubtedly will 
assist a GA to some extent, as traditional hybrid approaches 
illustrate. However, regardless of any benefits reaped from 
hill-climbing per se, clearly, the rate of solution 
improvement using S-SR is very often much faster than 
with one-point, particularly at the beginning of a search. 
Such an assertion is reinforced by recalling that the 
reduction in the hill-climbing percentage invariably 
increases this speed significantly. Nevertheless, there would 
appear to be distinct optimum levels of hill-climbing for the 
different functions: figure 3 illustrates that although 
reducing the amount of hill-climbing invariably increases 
the speed of solution improvement in the early stages of the 
search, sometimes runs with the least amount of 
hill-climbing ultimately are not the best performers. 
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Figure 3: average performance of runs for (a) F6, (b) F5 and (c) 
F6 
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1 Fu!tioni Std.Dev.1 Mean 1 Best 1 Worst 1 
0.002434 0.042893 0.047696 0.037158 
4.320856 43.787925 55.267357 34.799 17 1 

F6 0.044467 0.703679 0.785085 0.61512 
695.948 489.109 17.844 4654.804 

F5 1% HC 
F6 50% HC 

Table 6: results for runs using one-point crossover (mutation 
method 2), with local search 

3.224481 (31.630345 39.186485 25.348616 
0.031754 I 0.765916 0.815092 0.62449 

Function 1 Std.Dev. I Mean I Best I Worst 
F3 50% Hd 0.014196 10.174359 10.209247 10.143221 

F6 1% HCI 0.044304 I 0.739859 
F75O%Hd 3.654 I 0.522 

0.808975 0.64303 
0 26.100 

/F6 30% Hd 0.027081 I 0.771703 I 0.820694 I 0.705847 I 
F6 10% H a  0.032556 1 0.775546 1 0.824942 I 0.656737 
F6 5% HCI 0.030724 I 0.768574 I 0.817979 I 0.686743 

lF73O%Hd 20.813 I 2.973 I 0 I 148.667 1 
lO%H4 3.121 I 0.446 I 0 I 22.293 I 

Table 7: results for runs using S-SR with local search 

It would appear that, on the functions where S-SR 
beats one-point, the improved performance is due to there 
being a much greater number of constructive crossover 
operations, per generation, during the early stages of the 
search. (For the purposes of this paper, a 'constructive 
crossover' is defined as one that yields at least one 
offspring which is fitter than either parent; one generation 
is taken to equal 225 breeding cycles.) Indeed, with the 
exception of F6 (where the percentage of crossover 
operations per generation remained high throughout runs 
of 300 generations), when one-point is used the percentage 
of constructive operations falls to a negligible - if not 
non-existent - level in a very short time. In contrast, a 
relatively high percentage of constructive operations is 
maintained for longer when S-SR is used; furthermore, 
constructive operations (albeit a small number) is evident 
for the duration of a run. This is illustrated using €7 in 
figure 5. It seems likely that the S-SR selection strategy 
plays an important part in the success of the operator. GAS 
have always been based on the concept 'survival of the 
fittest', which implicitly dictates that the least fit members 
of a population are left to die out. Conversely, the best S-SR 

performance is observed when the least fit member of a 
neighbourhood is selected and resuscitated via the donation 
of genes from a fitter neighbour. 

018 ,  , . . . - .  , 

0"" 
0 2000 4000 6000 8000 10000 12000 la000 11 

'Genelatans' (2.25 evatuilbns) 

(a) 

40t 
35 

08 

0 7  

06 

05 

' 0 4  

: : I , ,  , , , 

0 1000 2000 3000 4000 5000 6000 7000 8000 9 
0 1  

'Generatans' (225 evahiatans) 

(C) 

00 

DO 

DO 

Figure 4: average performance of runs for (a) F6, (b) F5 and (c) 
F6 with local search 

Perhaps it is unsurprising that more constructive 
crossovers are observed when the S-SR strategy i s  to take 
an unfit individual and make it fitter, but one possible 
explanation may be that fit schemata concealed within unfit 
individuals, which normally waald be overlooked by 
selection, instead are being exploited. Indeed, this would 



seem likely if the least fit individual mates with its fittest 
neighbour to produce offspring fitter than either of its 
parents (thereby fulfilling the axiom which dictates that 
‘opposites attract’ !). 

That constructive crossover operations are still 
being carried out even at the very end of a run perhaps 
indicates a slowing of convergence - despite the 
acceleration of improvement, and that, intuitively, the 
nature of the site-specific operator suggests an increased 
rate of convergence. Another possibility may be that S-SR 
makes the most of small differences between a converged 
population; or that, in a population of converged fitness, 
one individual benefits from receiving a particular gene 
from another individual which is of similar fitness but 
which inhabits a different area of the search space. 
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6 Conclusion 

The immediate objective of designing an operator which 
attempts to increase the probability of affecting a 
constructive crossover, thereby increasing the power of a 
CA, has been fulfilled: it has been shown empirically that 
using site-specific crossover on some (currently!) difficult 
functions will accelerate optimization to a considerable 
degree as well as usually achieving fitter solutions than are 
reached when one-point is used. However, only continuous 
function optimization problems have been addressed so far 
- a set of problems which constitute only a small subset of 
those to which GAS are routinely applied. Therefore, the 
operator must be adapted, if necessary, to tackling such 
combinatorial tasks such as job-shop scheduling and the 
travelling salesman problem, or even neural network 
weight optimization. In addition, an analytical 
investigation of the operator should be carried out in the 
hope of producing a more complete explanation 
overall rBle of crossover in evolutionary algorithms. 

of the 
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