Distributed Coevolutionary Genetic
Algorithms for Multi-Criteria and
Multi-Constraint Optimisation *

Phil Husbands
School of Cognitive and Computing Sciences
University of Sussex

Brighton, UK, BN1 9QH

email: philh@Qcogs.susx.ac.uk

Abstract

This paper explores the use of coevolutionary genetic algorithms to at-
tack hard optimisation problems. It outlines classes of practical problems
which are difficult to tackle with conventional techniques, and indeed with
standard ‘single species’ genetic algorithms, but which may be amenable to
‘multi-species’ coevolutionary genetic algorithms. It is argued that such al-
gorithms are most coherent and effective when implemented as distributed
genetic algorithms with local selection operating. Examples of the success-
ful use of such techniques are described, with particular emphasis given
to new work on a highly generalised version of the job shop scheduling
problem.

1 Introduction

The vast majority of genetic algorithm (GA) work involves a single ‘species’.
That is, a single genetic encoding aimed at finding solutions to a single problem.
The GA machinery may be configured to work with a single population or, in
the case of ‘island’ models [9], a number of interacting populations. But in either
case there 1s just one evaluation function, and just one solution encoding.

This paper shows how coevolutionary genetic algorithms, employing more than
one interacting ‘species’ evolving under different evaluation functions, can be
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used to tackle certain types of hard optimisation problems in a more efficient
way than single species GAs.

Particular stress is put on multi-criteria and multi-constraint problems. These
are often among the most demanding of optimisation problems and severely
test all search techniques. From this class two types of problems are deemed
potentially most amenable to coevolutionary techniques.

o Well defined problems with well defined evaluation functions, but which
are hugely complex. Sometimes such problems can be redefined in terms
of interacting sub-problems. In this paper a scheduling problem is given
as an example of a such a task. It is shown how coevolutionary techniques
can be usefully applied to it.

e Problems with evaluation functions which are not well defined. Examples
are where solutions are desired to perform well over a potentially infinite
set of test cases; or when there is no way of weighting different, irresolvable,
criteria relative to each other. Hillis’s work is given as an example of a
coevolutionary approach to such problems [4].

Since they are seen as the basic techniques underpinning sensible coevolutionary
GAs, the paper begins with descriptions of distributed and coevolutionary dis-
tributed GAs. Hillis’s host-parasite coevolutionary system is explained, and its
application to practical problems other than those he has explored is outlined.
The remainder of the paper looks in detail at the coevolutionary aspects of my
work on a highly generalised version of the job shop scheduling problem. Finally
general conclusions are drawn.

2 Parallel Distributed GAs

From the very earliest days of its development the GA’s potential for parallelisa-
tion, with all its attendant benefits of efficiency, has been noted. The availability
of hardware has recently allowed significant progress in this direction. The stan-
dard sequential GA uses global population statistics to control selection, so the
processing bottleneck is evaluation. The earliest parallel models simply paral-
lelised this phase of the sequential algorithm, see, for instance, the paper by
Grefenstette [2]. Recently more sophisticated parallel GAs have started to ap-
pear in which population can be thought of as being spread out geographically,
usually over a 2D toroidal grid. All interactions, e.g. selection and mating,
are local, being confined to small (possibly overlapping) neighbourhoods on the
grid. Such GAs will be referred to as distributed in the remainder of this paper.
By doing away with global calculations, 1t is possible to develop fine-grained



highly parallel asynchronous algorithms. There is mounting evidence to suggest
that such systems are more robust and faster (in terms of solutions evaluated)
than other implementations, e.g. see the articles by Collins & Jefferson [1] and
Husbands [5]. Highly parallel models can also result in powerful new ways of
approaching optimisation problems at the conceptual level, as will be seen later
in this paper.

Population Members Neighbourhood of Z

Figure 1: Fraction of typical 2D grid used for distributed GAs.

Typical fine grained distributed GAs use a grid like that shown in Figure 1. Pop-
ulation members are scattered across the grid with no more than one member
per cell. Potential mates for a given individual will be found in a neighbourhood
centred on the individual. Local selection rules ensure that the most fit mem-
bers of the population in the neighbourhood are the most likely to be chosen as
mates. After breeding, the offspring produced are placed in the neighbourhood
of their parents, so genetic material remains spatially local. A probabilistic re-
placement of the weaker members of the neighbourhood may be employed. By
using overlapping neighbourhoods the resulting algorithms generate extremely
fierce local selection but allow any improved solutions found to flow around the
grid. The effect 1s to continually stimulate the search process and prevent con-
vergence of the population. A particular distributed algorithm will be described
in more detail in Section 5. Further discussion of the parallel implementation of
distributed GAs, and their comparison with other forms of parallel GAs, can be
found in [5].

3 Coevolutionary Distributed GAs

The algorithms described thus far have, at least implicitly, referred to a single
population (or ‘species’) searching for solutions to a single problem. Coevo-
lutionary algorithms involve more than one ‘species’ breeding separately, from
their own gene pools, but interacting at the phenotypic level.

In Nature the environment of most organisms is mainly made up of other or-
ganisms. Hence a fundamental understanding of natural evolution must take
into account evolution at the ecosystems level. There are competing theories



from evolutionary biology [11], but many are based on Van Valen’s Red Queen
Hypothesis [12] which states that any evolutionary change in any species is ex-
perienced by coexisting species as a change in their environment. Hence there
is a continual evolutionary drive for adaptation and counter adaptation. As the
Red Queen explained to Alice in Wonderland:

“... 1t takes all the running you can do, to keep in the same place.
If you want to get somewhere else, you must run at least twice as
fast as that!” [From L. Carroll, Through The Looking Glass]

It is possible to exploit this phenomenon in GA-based artificial evolution to
develop more and more complex competitive behaviours in animats (artificial
animals [13]), without having to specify complicated evaluation functions [8]. As
we will see, coevolutionary GAs can also be used to tackle difficult optimisation
problems of the kinds outlined in the introduction to this paper.

How coevolutionary GAs should be implemented must, of course, at least in part
depend on the application. But there are three obvious contenders.

o Separate sequential (or parallel) GAs for each species where the evaluation
functions used in each somehow takes into account interactions with the
other populations.

e A parallel ‘island’ implementation in which each population evolves in
isolation with occasional interactions with members from other species.

e Distributed GAs for each species where the different populations are spread
out over the same grid. Interactions between populations are (spatially)
local.

In the first model it is difficult to maintain the kind of coherent coevolution
required. Which members of any given population are coevolving with given
members of another population? All with all? All members of any given pop-
ulation with randomly chosen members of all other populations? How can the
population dynamics from generation to generation be controlled to maintain
a consistent coevolutionary system? Negative experiences with such an imple-
mentation will be described later (see Section 5.1).

The second model will be adequate only if the inter-population interactions
desired really are weak, otherwise it will give a misleadingly benign picture of
the effects of the different species on each other’s environments.

However, the third model gives a very clear and coherent implementation of
coevolution. Each species interact locally with its own population but also with
the members of the other species in its neighbourhood. Since all offspring appear



in their parents’ neighbourhoods, a consistent coevolutionary pressure emerges.
Examples of such algorithms will be discussed in the following sections.

4 Parasites and Sorting Networks

Danny Hillis, who lead the team that developed the Connection Machine [3] |
was the first to significantly extend the parallel GA paradigm by showing how
to develop a more powerful optimisation system by making use of coevolution
[4]. Using a distributed coevolutionary GA he had considerable success in devel-
oping sorting networks. In this extended model there are two independent gene
pools, each evolving according to local selection and mating. One population,
the hosts, represents sorting networks, the other, the parasites, represents test
cases. Interaction of the populations is via their fitness functions. The sorting
networks are scored according to the test cases provided by the parasites in their
immediate vicinity. The parasites are scored according to the number of tests
the network fails on.

Hillis’s two species technique can be applied directly to many engineering opti-
misation problems where the set of test cases is potentially infinite. The most
appropriate range and difficulty of evaluation tests can be coevolved with prob-
lem solutions as in the work described here. Another use of the technique, being
explored at Sussex, is in the coevolution of problem solutions and sets of con-
straints to apply in the evaluation of these solutions. This is applicable where it
is difficult, or impossible, to weight constraints relative to each other, and where
there are too many constraints for it to be feasible to have them all active in all
parts of the search space.

5 Coevolution, Arbitrators and Emergent Schedul-
ing

This section outlines the use of a multi-species coevolutionary GA to handle
a highly generalised version of Job Shop Scheduling (JSS). Tt is based on the
notion of the manufacturing facility as a complex dynamical system akin to an
ecosystem. Space does not allow a full description of the cost functions and
encodings, such engineering and mathematical details can be found in an earlier
paper [6]. This paper concentrates on previously unpublished details of the
distributed genetic algorithms used.

The traditional academic view of JSS is shown in Figure 2. A number of fized
manufacturing plans, one for each component to be manufactured, are inter-
leaved by a scheduler so as to minimise some criteria such as the total length
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Figure 2: Traditional academic approach to job shop scheduling.

of the schedule. However, a problem that would often be more useful to solve
is that illustrated in Figure 3. Here the intention is to optimise the individual
manufacturing plans in parallel, taking into account the numerous interactions
between them resulting from the shared use of resources. This is a much harder
and far more general problem than the traditional JSS problem. In many manu-
facturing environments there is a vast number of legal plans for each component.
These vary in the number of manufacturing operations, the ordering of the oper-
ations, the machines used for each operation, the tool used on any given machine
for a particular operation, and the orientation of the work-piece (setup) given
the machine and tool choices. All these choices will be subject to constraints on
the ordering of operations, and technological dependencies between operations.
Optimising a single process plan 1s an NP-hard problem. Optimising several in
parallel requires a powerful search technique. This section presents a promis-
ing GA-based method for tackling the problem. This paper will not delve very
deeply into the problem-specific technbical details, instead it will concentrate
on GA issues. Much very useful work has been done in the application of GAs
to scheduling problems. This will not be discussed here, since this paper is not
intended to be specifically about scheduling. However, see [6, 10] for discussions
of related work.

The i1dea behind the ecosystems model is as follows. The genotype of each specie
represents a feasible manufacturing (process) plan for a particular component
to be manufactured in the machine shop. Separate populations evolve under
the pressure of selection to find near-optimal process plans for each of the com-
ponents. However, their fitness functions take into account the use of shared
resources in their common world (a model of the machine shop). This means
that without the need for an explicit scheduling stage, a low cost schedule will
emerge at the same time as the plans are being optimised.

Data provided by a plan space generator (complex and beyond the scope of this
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Figure 3: Parallel plan optimisation leading to emergent scheduling.

paper, see [6]) is used to randomly construct initial populations of structures
representing possible plans, one population for each component to be manufac-
tured. An important part of this model is a population of Arbitrators, again
initially randomly generated. The Arbitrators’ job is to resolve conflicts between
members of the other populations; their fitness depends on how well they achieve
this. Each population, including the Arbitrators, evolve under the influence of
selection, crossover and mutation.

Each process plan ‘species’ uses the plan encoding described in detail in [6], that
paper also describes the special genetic operators used with the encoding, and
the machining cost functions used in the algorithms given later.

The Arbitrators are required to resolve conflicts arising when members of the
other populations demand the same resources during overlapping time intervals.
The Arbitrators’ genotype is a bit string which encodes a table indicating which
population should have precedence at any particular stage of the execution of
a plan, should a conflict over a shared resource occur. A conflict at stage L
between populations K and J is resolved by looking up the appropriate entry
in the Lth table. Since population members cannot conflict with themselves,
and we only need a single entry for each possible population pairing, the table
at each stage only needs to be of size N(N — 1)/2, where N is the number
of separate component populations. As the Arbitrators represent such a set of
tables flattened out into a string, their genome is a bit string of length SN(N —
1)/2, where S is the maximum possible number of stages in a plan. Each bit
is uniquely identified with a particular population pairing and is interpreted
according to the function given in Equation 1.
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Where ny and ny are unique labels for particular populations, ny < ns, k refers to
the stage of the plan and g[i] refers to the value of the ith gene on the Arbitrator

genome. If f(ni,na, k) =1 then ny dominates, else ny dominates.

By using pair wise filtering the Arbitrator can be used to resolve conflicts between
any number of different species. It is the Arbitrators that allow the scheduling
aspect of the problem to be handled. In general, a population of coevolving
Arbitrators could be used to resolve conflicts due to a number of different types
of operational constraint, although their representation may need to increase in
complexity.

It should be noted that in early versions of the work to be described, the Arbi-
trators were not used. Instead fixed population precedence rules were applied.
Not surprisingly, this and similar schemes were found to be too inflexible and did
not give good results. Hence the Arbitrator idea was developed and has proved
successful.

5.1 Early MIMD Implementation

The first implementation of the basic ecosystems model was described in [7]. Tt
used a set of interacting sequential genetic algorithms and was implemented on a
MIMD parallel machine as well as on a conventional sequential machine. On each
cycle of the algorithm each population was ranked according to cost functions
taking into account plan efficiency. The concurrent execution of equally ranked
plans from each population was then simulated. The simulation provided a final
cost taking into account interactions between plans for different components.
Conflicts were resolved by an equally ranked Arbitrator. This final cost was
used by the selection mechanism in the GAs.

Although promising results were achieved with this model, it suffered from popu-
lation convergence and little progress was made after a few hundred generations,
despite many attempts to cure this problem. It was also felt that the implemen-
tation was over complicated and lacked coherence at some levels, resulting in
some of the problems discussed earlier in Section 3. The ranking process ap-
pears to facilitate coevolution to some extent. But, since the populations are
continually reordered there is little continuity, from generation to generation, in
the members being costed together until population members are very similar.
This may have indirectly been one of the causes of strong convergence. For these
reasons this implementation was abandoned and another much more coherent
version developed. This is based on the kind of geographically distributed GA
mentioned earlier.
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Figure 4: Distributed interacting populations.

5.2 Distributed Implementation

In the second implementation, the cost, hence selection, functions for plan or-
ganisms again involve two stages, but for Arbitrators now just one. The first
stage involves population specific criteria (basic machining costs), as before, and
the second stage again takes into account interactions between populations. Ar-
bitrators are only costed at the second stage. Again the second phase of the cost
function involves simulating the simultaneous execution of plans derived from
stage one. The process plans and Arbitrators are costed as before, it is the way
in which the cost functions are used within the GA machinery which is now quite
different.

This second, more satisfactory, implementation spreads each population ‘geo-
graphically’ over the same 2D toroidal grid, this is illustrated in Figure 4. Each
cell on the grid contains exactly one member of each population. Selection is
local, individuals can mate only with those members of their own species in
their local neighbourhood. Following Hillis [4], the neighbourhood is defined in
terms of a Gaussian distribution over distance from the individual; the stan-
dard deviation 1s chosen so as to result in a small number of individuals per
neighbourhood. Neighbourhoods overlap allowing information flow through the
whole population without the need for global control. Selection works by using a
simple ranking scheme within a neighbourhood: the most fit individual is twice
as likely to be selected as the median individual. Offspring produced replace in-
dividuals from their parents’ neighbourhood. Replacement is probabilistic using
the inverse scheme to selection. In this way genetic material remains spatially
local and a robust and coherent coevolution (particularly between Arbitrators
and process plan organisms) is allowed to unfold. Interactions are also local:
the second phase of the costing involves individuals from each population at the
same location on the grid. This implementation consistently gave better faster
results than the first. The notion of coevolution is now much more coherent; by
doing away with the complicated ranking mechanism, and only using local se-
lection, based on a concrete model of geographical neighbourhood, the problems
and inconsistencies of the first implementation are swept away.



The overall algorithm is quite straightforward. It can be implemented sequen-
tially or in a parallel asynchronous way, depending on hardware available.

Overall()

[

. Randomly generate each population, put one member of each

population in each cell of a toroidal grid.

. Cost each member of each population (phasel + phase2 costs).

Phase2 cost are calculated by simulating the concurrent execu-
tion of all plans represented in a given cell on grid, any resource
conflicts are resolved by Arbitrator in that cell.

.1=0.
. Pick random starting cell on the toroidal grid.

. Breed each of the representatives of the different populations

found in that cell.

. If all cells on the grid have been visited Go to 7. Else move to

next cell,Go to 5.

. If i < MaxIterations, i = i + 1, Go to 4. Else Go to 8.

. Exit.

The breeding algorithm, which is applied in turn to the members of the different
populations, is a little more complicated.

Breed(current_cell,current_population)

[

.1=0.
. Clear NeighbourArray

. Pick a cell in neighbourhood of current_cell by generating x and

y distances (from current_cell) according to a binomial approxi-
mation to a Gaussian distribution. The sign of the distance (up
or down, left or right) is chosen randomly (50/50).

. If the cell chosen is not in NeighbourArray, put it in Neigh-

bourArray, 1 = i+1, Go to 5. Else Go to 3.

. If i < LocalSelectionSize, Go to 3. Else Go to 6.

. Rank (sort) the members of current_population located in the

cells recorded in NeighbourArray according to their cost. Choose
one of these using a linear selection function.
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7. Produce offspring using the individual chosen in 6 and current_population
member in current_cell as the parents.

8. Choose a cell from ranked NeighbourArray according to an in-
verse linear selection function. Replace member of current_population
in this cell with offspring produced in 7.

9. Find phase one (local) costs for this new individual (not necessary
for Arbitrators).

10. Calculate new phase two costs for all individuals in the cell the
new individual has been placed in, by simulating their concurrent
execution. Update costs accordingly.

11. Exit.

The binomial approximation to a Gaussian distribution used in step 3, falls off
sharply for distances greater than 2 cells, and is truncated to zero for distances
greater than four cells.

In the results reported here a 15 x 15 grid was used, giving populations of size

225.

5.3 Results of Distributed Implementation

Results of a typical run for a complex 5 job problem shown in Figure 5. Each
of the components needed between 20 and 60 manufacturing operations. Each
operation could be performed, on average, on six different machines using 8
possible setups. There were many constraints on and between plans, but there
were still a very large number of possible orderings of the operations within each
plan. The graph at the top shows the best ‘total factory cost’ found plotted
against the number of plan evaluations on the X axis. The graph represents
the average of ten runs. The ‘total factory cost’ is calculated per grid cell by
summing the costs of all the process plans (exactly one per component), including
the waiting-time costs, represented at that cell. The lower left Gantt chart shows
the loading of the machines (M0-M12) in the job shop early on in a typical run,
and that at the right shows the loading towards the end of the same run. Time,
in arbitrary units, is shown on the horizontal axis. A very tight schedule and low
cost plans for each of the components are obtained. Figure 6 shows the state
of the geographical grid in terms of the ‘total factory cost’ at each cell. The
aim of the overall simultaneous plan optimisation problem is to find the best
cell, i.e. the cell with the lowest ‘total factory cost’. This will not necessarily
contain copies of the individually lowest cost members of each population, but
it will contain that set of plans, one from each population, that interact in the
most favourable way. It can be seen from the figure that the initial random
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Figure 5: Results of distributed coevolution model with large problem. See text
for explanantion.
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Figure 6: Geographical grid states for large problem.

populations give a spread of poor ‘total factory costs’, this is rapidly reduced (a
few thousand function evaluations) to a set of very good costs spread throughout
the whole grid. These are shown more clearly in Figure 7, but note that grid
states have not converged. In much longer runs this was still found to be the
case. Results very close to those shown here were found on each of 50 runs
of the system. Far more consistent behaviour than was found with the earlier
implementation.

By replacing the Arbitrators in low cost cells with randomly generated ones,
higher cost schedules were produced demonstrating that the Arbitrators are
coevolving to make good decisions over all the stages of the plans.

Very promising preliminary results have been obtained for this complex optimi-
sation problem. Although the search spaces involved are very large, this method
has exploited parallelism sufficiently to produce good solutions. Most scheduling
work deals with a problem rather different from that tackled here, so a direct
comparison is very difficult. However, Palmer [10] has recently tackled the gen-
eralised problem using a simulated annealing based technique. He demonstrated
that his technique had significant advantages over traditional scheduling for a
class of manufacturing problems a little simpler than those used here. A direct
comparison of the GA and simulated annealing methods is currently underway.
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Figure 7: Expanded view of final geographical grid states for large problem.

5.4 Dynamics and Noise

Very important properties of manufacturing environments, namely dynamics
and noise, are not handled at all well by most classical JSS techniques. The
distributed coevolutionary method can handle both in a natural way. The dy-
namics of a job shop include such things as machines breaking down, job prior-
ities changing, jobs starting at different times, job due dates changing. These
changes are modelled directly in the cost functions and the whole ‘ecosystem’ re-
configures. The distributed implementation allows the rapid flow of re-adapted
solutions throughout the grid, the unconverged state of the populations facil-
itates the re-adaptation. Noise arises from the fact that the manufacturing
processes are not perfectly reliable and deterministic. This means that in reality
all cost functions must have stochastic elements. Again this can be handled
in a straightforward manner by using evaluation functions which require good
performance over distributions of random variables representing such things as
machining times. Hence a solution which is very sensitive to ezact timings of
manufacturing processes will be selected against.
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6 Conclusions

This paper has advocated the use of coevolutionary genetic algorithms to tackle
certain types of very hard optimisation problems. Examples of the successful use
of such techniques to sorting network design and generalised job shop scheduling
were described. It was argued that coevolutionary genetic algorithms are most
coherent when implemented as distributed systems with local selection rules
operating. These coevolutionary extensions to traditional GAs may well con-
siderably strengthen our armoury of techniques to be applied against real-world
optimisation problems.
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