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Abstract: This paper presents two novel bio-inspired particle swarm optimisation (PSO) variants,
namely biased eavesdropping PSO (BEPSO) and altruistic heterogeneous PSO (AHPSO). These
algorithms are inspired by types of group behaviour found in nature that have not previously been
exploited in search algorithms. The primary search behaviour of the BEPSO algorithm is inspired by
eavesdropping behaviour observed in nature coupled with a cognitive bias mechanism that enables
particles to make decisions on cooperation. The second algorithm, AHPSO, conceptualises particles
in the swarm as energy-driven agents with bio-inspired altruistic behaviour, which allows for the
formation of lending–borrowing relationships. The mechanisms underlying these algorithms provide
new approaches to maintaining swarm diversity, which contributes to the prevention of premature
convergence. The new algorithms were tested on the 30, 50 and 100-dimensional CEC’13, CEC’14
and CEC’17 test suites and various constrained real-world optimisation problems, as well as against
13 well-known PSO variants, the CEC competition winner, differential evolution algorithm L-SHADE
and the recent bio-inspired I-CPA metaheuristic. The experimental results show that both the BEPSO
and AHPSO algorithms provide very competitive performance on the unconstrained test suites and
the constrained real-world problems. On the CEC13 test suite, across all dimensions, both BEPSO and
AHPSO performed statistically significantly better than 10 of the 15 comparator algorithms, while
none of the remaining 5 algorithms performed significantly better than either BEPSO or AHPSO. On
the CEC17 test suite, on the 50D and 100D problems, both BEPSO and AHPSO performed statistically
significantly better than 11 of the 15 comparator algorithms, while none of the remaining 4 algorithms
performed significantly better than either BEPSO or AHPSO. On the constrained problem set, in
terms of mean rank across 30 runs on all problems, BEPSO was first, and AHPSO was third.

Keywords: bio-inspired search algorithm; optimisation; particle swarm optimisation; swarm intelligence;
altruism; eavesdropping; group behaviour; metaheuristics

1. Introduction

In recent years, swarm intelligence algorithms have become one of the most widely
used class of optimisation methods [1–3]. Their effectiveness and convenience have led to
many variants [4] and successful applications to diverse real-world problems [5–8]. One of
the best known and most widely applied swarm algorithms is particle swarm optimisation
(PSO) [9]. The PSO algorithm has been extensively investigated with regards to its search
dynamics [10,11] and theoretical strengths and limitations [12,13], resulting in many recent
extensions developed with the intention of improving the performance of the canonical
PSO [14–19].

Despite the development of many variants with diverse inspirations, the core analogy
at the heart of most PSO algorithms is biological—a simple model of flocking behaviour
observed in many species. Indeed, bio-inspiration has become the dominant driving force
for many new metaheuristic algorithms. However, the canonical PSO algorithm’s model of
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particle movement [9] is relatively simple compared to natural flocking behaviours. Hence,
in most cases, the homogeneous nature of canonical PSO particles’ behaviour moves them
towards a common goal using two standard ‘exemplars’ (or guiding positions), namely their
‘cognitive’ (own best position) and ‘social’ (swarm best position) influences, which tends to
trigger rapid loss of diversity, leading to premature convergence. Various approaches have
been proposed to address this problem over the past decade or so, including hybridisation
with other search algorithms [16,20,21], using extended learning strategies [22–24] and
employing more sophisticated topologies to define the local population structure [25–28].
Another powerful contemporary way to potentially minimise this issue and to improve
the balance between exploitation and exploration within the search process is to design
efficient, heterogeneous agent behaviours to avoid the stagnation of particles and improve
overall performance by avoiding premature convergence [14,17,29].

In light of this, in the current paper, we propose two novel PSO algorithms that take
their inspiration from forms of dynamic animal group behaviour that, as far as we know,
have not previously been used in search algorithms, namely eavesdropping and altruism.
These analogies are used to develop algorithms that possess heterogeneous behavioural
dynamics at the both agent and swarm levels. Through this heterogeneity, more efficient
exploration and exploitation search dynamics are enabled while maintaining diversity and
avoiding premature convergence. Such effective exploration and exploitation performance
is especially important for efficient searches of high-dimensional and complex problem
spaces, which feeds into our overall motivation, i.e., the development of powerful new
general-purpose optimisers for unconstrained and constrained single-objective, real-valued
problems.

The first of these novel algorithms, BEPSO (biased eavesdropping PSO), is inspired by
the alert-signalling behaviour of animals used to attract conspecifics (of the same species or
group) to a discovered resource location for potential exploitation and the way in which
surrounding heterospecific (of a different species or group) eavesdropper animals try to
exploit that information themselves to improve their own fitness.

Eavesdropping plays a significant role in animal communication and the evolution of
such communication [30]. Briefly, eavesdropping occurs as a result of animals accessing
communication signals transmitted by heterospecifics that were not intended for them. In
nature, it is more common for signal interceptors to be intraspecific (of the same species) in
order to perceive the call and extract the required information accurately. However, it is not
uncommon to observe interspecific animals (competitors of a different species) intercept
signals and use them as an advantage to increase their own fitness. Interspecific eaves-
dropping is particularly interesting, as different species may be proficient in distinct areas
within the same habitat and capable of recognising different threats through their distinct
sensory capabilities. A concrete example of interspecies eavesdropping is illustrated by the
relationship between red squirrels and Eurasian jays [31]. In this case, truly astonishing
evolutionary dynamics have resulted in communication between a mammal and a bird,
which have become positively biased towards one another and are able to warn and guard
each other within the same habitat.

BEPSO takes ideas from animal eavesdropping to develop a set of dynamic interacting
mechanisms that underlie particle behaviours and generate movement exemplars that
prove to be far more efficient than the simple personal best position and population best
positions used by the canonical PSO.

The second of the novel algorithms, altruistic heterogeneous PSO (AHPSO), is inspired
by a certain kind of altruistic animal group behaviour.

The role of altruism in evolutionary dynamics was first analysed in mathematical
detail by W.D. Hamilton in 1964 [32]. He showed how altruism could arise and be main-
tained within the Darwinian framework, conferring overall benefit to the group if not to
the individual. Traditionally, researchers tended to assess the benefit of altruism to an
organism by examining the average number of offspring, with contributors exhibiting less
reproductive success in comparison to beneficiaries. However, several different types of
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altruistic behaviours have been discovered in various species. Some exemplary altruistic
behaviours are observed in social insect colonies such as ants, wasps, bees and termites. In
these colonies, the sterile workers are devoted to the queen by protecting the nest and for-
aging food. By doing so, sterile workers have no reproduction fitness, but they contribute
to the queen’s reproductive efforts. An example of a more complex organism exhibiting
altruistic behaviour is the blood-regurgitating vampire bat, which feeds undernourished
bats in their group to avoid starvation [33]. Velvet monkeys exhibit similar behaviour to
their groups by giving alarm calls to warn of the presence of predators, putting themselves
at risk in doing so [34]. The type, level and results of altruistic behaviour vary widely
between organisms, as do the relationships evolved between helper and beneficiary actors.

The AHPSO algorithm incorporates a kind of conditional altruistic behaviour in which
particles in a behaviourally heterogeneous population can lend and borrow ‘energy’, with
such transactions depending on the lender’s judgment of how ‘credit-worthy’ a borrower is.
These mechanisms generate more effective exemplars than in the canonical PSO, delaying
the loss of population diversity and preventing premature convergence, resulting in a
highly efficient search algorithm.

The performance of the new BEPSO and AHPSO algorithms was verified over 30, 50
and 100 dimensions of the widely used CEC’13, CEC’14 and CEC’17 benchmark test suites,
along with a set of 14 constrained real-world problems, compared against a demanding
set of 13 well-known state-of-the-art PSO variants, the 2014 CEC competition winner, L-
SHADE (a powerful differential evolution algorithm) and the recent bio-inspired I-CPA
metaheuristic. The overall results of this very thorough comparative investigation show
that both BEPSO and AHPSO are statistically significantly superior to a large majority of
the comparator algorithms and highly competitive against all others, particularly on high-
dimensional complex problems (none of the other algorithms were statistically superior
to the new algorithms on such problems). In addition, they are shown to be very strong
candidates for constrained real-world applications, with BEPSO having the highest mean
rank of all the test algorithms on the suite of constrained problems. Both BEPSO and
AHPSO achieved robust, high-quality performance across the entire range of test problems
and suites with a single set of parameter values; they did not need tuning for each new type
of problem. Both algorithms were shown to maintain diversity in the population without
sacrificing efficient convergence to optimal solutions.

Section 2 discusses related work; then Section 3 describes the proposed algorithms in
detail. Section 4 details the experimental method. This is followed by Section 5, in which
we present the results of the extensive comparative experiments, and the paper closes with
discussion and conclusions in Sections 6 and 7.

2. Related Work
2.1. Bio-inspired Search Algorithms

There has been a surge in the development of bio-inspired search algorithms in the
last few decades due to the applicability of these methods across a wide variety of domains
and problems. A part of this surging interest is due to the limitation of traditional gradient-
based algorithms. In contrast to gradient-based algorithms, bio-inspired algorithms are not
gradient-dependent and are significantly less sensitive to the initial solution.

Two of the main research topics in bio-inspired algorithms have been avoidance of
premature convergence and sensitivity to/dependence on control parameters. Work in
these areas has led to the proposal of many variants of the basic canonical bio-inspired
algorithms to address these issues [35–41] .

Various recent and matured bio-inspired algorithms include the genetic algorithm [42],
the wasp algorithm [43], the shark algorithm [44], ant colony optimisation [45], particle
swarm optimisation [9], bacterial foraging optimisation [46], cuckoo search [47], artificial
bee colony search [48], the firefly algorithm [49], the bat algorithm [50], flower pollination
algorithms [51], artificial plant optimisation [52], the squirrel search algorithm [53] and the
mayfly optimisation algorithm [54]. Whilst many of the newly published algorithms are
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typically benchmarked solely on artificial test problems, various recently published and
matured algorithms have successfully been applied to real-world problems [55–66].

Due to the vast and ever-accumulating number of newly published bio-inspired
algorithms in the literature, Kar [67] divided bio-inspired algorithms into four quadrants,
namely the zone of theory development, zone of applications, zone of rediscovery and
zone of commercialisation. Quadrant 1 includes algorithms that are most recently published
and not sufficiently studied in all dimensions. Hence, the absence of literature on such
work provides potential for researchers to further improve and investigate these algorithms.
Algorithms within quadrant 2 are more mature in relation to theoretical development
and have significant potential for researchers to apply them to novel areas. Quadrant 3
encapsulates algorithms that were introduced but were overlooked or failed to attract
sufficient attention from researchers. Similarly, revisiting the theoretical foundations and
practical aspects of these algorithms to improve, hybridise, ensemble or apply them to
novel domains may be of interest to researchers. Finally, quadrant 4 captures algorithms
that have already been extensively applied to different domains. Although it may be
more challenging for researchers to find an unexplored application of these algorithms,
at the same time, these algorithms have greater potential to be adopted and applied to
real-world applications, as they are proven. The work presented in this paper is probably
best characterized as falling within quadrant 1.

Many of the most competitive bio-inspired algorithms also fall under the umbrella of
swarm intelligence. PSO and its variants are probably the most widely used class of swarm
intelligence algorithms.

2.2. Particle Swarm Optimisation

In the canonical PSO [9,68], particles represent a solution in a D-dimensional search
space, and each particle possesses three attributes, namely its position, memory of its best
position so far and a velocity, as denoted by vectors xi, pbesti and vi, respectively. Initially,
each particle’s velocity and position are randomly assigned, and subsequently, at each time
step, the fitness function is employed to guide particles towards a combination of two
‘exemplars’, namely pbesti and gbest, the latter corresponding to the best position known
to the swarm at time t. At each time step, the velocity and position of each particle are
updated using the following two equations:

v(t+1)
i = ωv(t)

i + c1r1(pbesti − x(t)i ) + c2r2(gbest − x(t)i ) (1)

x(t+1)
i = x(t)i + v(t)

i (2)

where ω is an inertia weight parameter that reflects the impact of the previous velocity on
the new velocity, an important factor in achieving a balance between global exploration
and local exploitation [68]. In addition, c1 and c2 are the ‘cognitive’ and ‘social’ acceleration
coefficients, where the cognitive coefficient controls the local search (guided by exemplar
pbesti), whilst the social component controls global exploration (guided by exemplar
gbest) and represents a kind of cooperation between the particles. The control of these two
coefficients is important in performing am efficient search, as excessive values of c1 would
lead to excessive wandering of the particles and, similarly, an excessive value of c2 would
lead to premature convergence of the swarm. r1 and r2 are random D-dimensional vectors,
with each component generated in the range of [0, 1], powering the stochastic element of
the search.

The novel search algorithms introduced in the next section build upon this basic
framework. They employ heterogeneous populations (not all members following the same
rules as in the canonical version) and use more complex ways of calculating the dynamic
exemplars, among other developments.

As an indication of their effectiveness, PSO algorithms have been successfully applied
to various practical problems in the last few decades [69–77].
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As mentioned in the previous section, in common with various other bio-inspired
algorithms, one of the main limitations of the canonical PSO algorithm is premature conver-
gence that originates from loss of population diversity. PSO variants that address premature
convergence and related issues tend to propose mechanisms that periodically revamp or
maintain population diversity throughout the search process [14,15,78,79]. However, the
development of mechanisms to maintain high population diversity while concurrently
enabling rapid convergence to optimal or near-optimal solutions is an area that has only
been partially explored and remains an active field of research. It is exactly this area to
which the new algorithms proposed in this paper belong; they use novel mechanisms that
are shown to maintain diversity and drive rapid convergence to optimal solutions.

3. Proposed Algorithms

In this section, the two novel PSO search algorithms, BEPSO and AHPSO, are explained
in detail. For both, the aim was to design heterogeneous particle behaviours that maintain
diversity and provide an efficient search.

3.1. BEPSO: Biased Eavesdropping PSO

In BEPSO, the bio-inspired particle behaviour model comprises the following three
components: recognition, communication and bias. The recognition component refers to
the particle’s ability to distinguish between conspecific and heterospecific particles. The
communication component refers to the implicit signal-based communication particles per-
form when they discover a new and better position. The bias component enables particles
to build a form of perception towards each other that evolves through social experiences.
This perception is used to adopt different behaviours during the search process.

Initially, particles are divided into two groups. Particles of the same group recognise
each other as conspecifics and those from the other group as heterospecifics. All particles
are assigned an initial random bias towards the rest of the particles in the swarm in such
a fashion that any two conspecific particles may be either negatively biased or unbiased
towards each other, while any two heterospecifics may be positively biased towards each
other. In the first cycle of the algorithm, particle search behaviour initiates by updating
velocity and position using the canonical PSO algorithm’s update equations (Equations (1)
and (2)). Thereafter, the more complex update rules given below take over. After the posi-
tional update, if a particle discovers a better position, in an attempt to guide conspecifics
to a potentially better location, the particle communicates with the surrounding conspe-
cific particles by transmitting a signal indicating the new location. The signaller particle
intends the communication signal recipients to be solely conspecifics, but surrounding
heterospecific particles eavesdrop and exploit the information in the signal (as detailed
later). The signal recipients (from both conspecific and heterospecific groups) either accept
or reject the information provided by the signal, considering several factors, including their
bias towards the signaller particle. Before transmitting the signal, the particle determines
the transmission point (τ) for the intended communication signal. τ is a position that lies
between the previous and the current position of the signaller particle and is calculated
using Equation (3).

τt
i = x t−1

signaller + rand ∗ (x t
signaller − x t−1

signaller) (3)

where xt
signaller and x t−1

signaller are the current (newly discovered) and previous position of
the signaller particle, respectively, and rand is a uniformly distributed random number in
the range of (0, 1). The communication signal has a radius defined by the SR parameter
with minimum and maximum bounds. SRmax = 0.01 ∗ (UB − LB) ∗ d, and SRmin = 0.001 ∗
(UB − LB) ∗ d, where UB and LB are the upper and lower bounds of the given problem,
respectively, and d is the dimension of the problem. The radius of the communication
signal is determined individually for each signal based on the particle’s fitness compared
to the average fitness in the swarm. This simulates the signal’s loudness; hence, the range
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of the signal extends or shrinks based on the quality of the discovered position. This
behaviour mimics the confidence of the particle in the quality of the discovered location to
attract more conspecifics. Hence, a confident signaller particle transmits a signal with a
wider influence range, while particles with less confidence in the quality of the discovered
position use lower SR with the intention of transmitting a signal to fewer conspecifics,
thereby minimising the potential loss of fitness in the conspecific population. The SR
parameter is calculated using Equation (4).

SR(ψ(x), ψ, SRmin, SRmax) =

{
rand(SRmin, SRmin+SRmax

2 ) ψ(x) < ψ

rand( SRmin+SRmax
2 , SRmax) else,

(4)

where ψ(x) is the fitness of a signaller particle (to be maximised, in the case of function
minimisation, this is inversely proportional to the function evaluation value ( f (x))), ψ
is the average fitness in the swarm at time t and rand(n1, n2) is a random number in
the range of (n1, n2). This ensures that fitter particles shout louder (have higher SR).
The communication signal is modelled using k signal layers to mimic environmental
noise and the distortion of the signal as it travels out towards the boundary of the signal
range. Hence, recipient particles located in different locations relative to the signal “hear”
differently distorted variants of the original signal (newly located position). Figure 1 shows
a visual depiction of the communication signal with intended conspecific recipients and
eavesdroppers. We mutate the signal vector k times (for k signal layers) with a non-uniform
Gaussian mutation operator, starting with a small mutation (p = 0.1), and as k increases,
increasing the mutation probability to trigger larger mutations, with an upper bound of 1.
This ensures that the further away a particle is, the more distorted the signal it receives.
Any particle whose Euclidean distance from the transmission point (τ) is less than SR is a
recipient of the signal (see the algorithm pseudocode). The upper and lower bounds for
p were chosen after preliminary experiments, as values outside that range were found to
be ineffective. Other researchers have found that p = 0.1 is a good lower bound for the
non-uniform mutation operator when it is used to increase diversity [17].

Particles (both conspecific and eavesdroppers) can accept or ignore the information
provided by the communication signal, depending on their bias and the signaller particle’s
confidence in the newly discovered position (detailed later). The recipient particles closest
to the transmission point receive the least distorted signal, and those furthest away receive
the most distorted signal. This set of stochastic mechanisms–distorting the signal as it
travels across the search space and placing the transmission point between the current and
last location–prevents multiple particles from clustering in exactly the same location while
encouraging movement towards confidently signalled better regions, helping to avoid
stagnation within recipient particles.

Among animals, survival and cooperation strongly depend on bias towards others,
either through genetic influence, e.g., cooperating with a conspecific for the first time,
regardless of any lack of previous experience, or through social learning, where positive
association plays a role. In our algorithmic model, particles are either positively biased,
negatively biased or neutral (unbiased) towards each other and use their bias to decide
whether to accept or reject the information the signal provides as a guide. Negative bias can
be thought of as the particle’s defence mechanism built over time to avert potential negative
social guidance and, thus, minimise the loss of fitness due to misleading communication
signals. Positive bias, on the other hand, enables particles to form an implicit cooperative
relationship and accept guidance through signal calls from established “social partners”
formed over time in an attempt to improve fitness. The two mechanisms complement
each other and allow particles to form decentralised communication that evolves based
on particles’ individual social experiences. Particles’ biases form over time as a result of
the accumulation of consecutive positive or negative experiences resulting from the use of
signal information. An experience is positive when the signal improves the fitness of the
recipient particles and negative when it reduces it. The accumulator decision model from
the free-response paradigm [80] is employed to enable particles to accumulate evidence
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through signaller–recipient relationships. When either of the two accumulated experience
variables (α (positive) and β (negative); Equations (5) and (6), respectively) reaches a
threshold, a decision response is triggered to accept or reject a signal. The following update
equations are used to build the bias “evidence” between a recipient and a signaller particle
(assuming minimisation of the fitness function ( f (x))):

αt
ji =

{
αt−1

ji + λt f (xj)
t ≤ f (xj)

t−1

αt−1
ji f (xj)

t > f (xj)
t−1 (5)

βt
ji =

{
βt−1

ji f (xj)
t ≤ f (xj)

t−1

βt−1
ji − λt f (xj)

t > f (xj)
t−1 (6)

where αt
ji is the positive bias variable and βt

ji is the negative bias response variable at time
t that the jth particle (recipient) has collected for the ith particle (signaller), and λt is the
accumulating factor that contributes to the bias response variables as follows:

λt = ( f (x)t − f (x)t−1)2 × 0.01 (7)

Figure 1. Visual representation of the communication signal sent by the signaller particle in the
BEPSO algorithm.

If the experience is positive, α increases; if it is negative, β decreases. The multiplicative
factor of 0.01 in Equation (7) was chosen after preliminary experiments conducted with a
range of possible values.

Figure 2 shows a visual depiction of Equations (5) and (6) unfolding over time. Each
time evidence is collected, Equation (8) is used to determine if either of the response
variables (α or β) has reached the specified bias threshold value (the α threshold is positive,
and the β threshold is negative).

Biasj
i =


1, αt

ji ≥ η

−1, βt
ji ≤ −η

0, else
(8)

where Biasj
i is the jth particle’s bias towards the ith particle, and the threshold (η) is an

integer in the range [10, 100]. The value of η controls the pace at which particles become
biased; hence, the value of η can have a direct impact on the behaviour of particles Particles
tend to be rapidly biased when η is set in the lower range. On the contrary, particles can
remain unbiased towards most other particles in the swarm for extended periods when η is
in the higher range.
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Figure 2. The accumulator decision model showing the ith particle’s bias towards the jth particle at
time t.

At the beginning of the search process, all particles are given random biases (posi-
tive (1), negative (−1) or neutral (0)) to allow for heterogeneity from the start of the search
process. Since there would be no transmission of signals at t = 1, all particles initially
update their velocity and position using the standard PSO update equations (Equations (1)
and (2)). After the positional update, if the particle discovers a better position, it must
transmit a communication signal to attract conspecifics to a potentially better location using
the procedures described above.

To try and avoid costly ‘mistakes’ due to misleading information, receiving particles—both
conspecifics and surrounding eavesdropping heterospecifics—decide to exploit or ignore the
signal information according to a simple risk-versus-reward assessment. The following rules
define the criteria both conspecifics and eavesdroppers use to exploit or ignore the signal
information:

1. Conspecific recipient particles decide to exploit signal information only if the recipi-
ent particle is positively biased or unbiased towards the signaller and the signaller
particle’s confidence in the newly discovered position is high.

2. Eavesdropper particles decide to exploit signal information if the eavesdropper is
positively or negatively biased towards the signaller but the signaller’s confidence in
the newly discovered position is high.

The signaller particle’s confidence is high if SR >= ((SRmin + SRmax))/2 and low if
SR < ((SRmin + SRmax))/2).

In nature, animals adopt various strategies to deter eavesdroppers or make their
signals less desirable or noticeable to heterospecifics. In this study, the signaller particle
aims to evade eavesdroppers by adopting a probabilistic strategy whereby it occasionally
deliberately uses a smaller SR value to attract fewer particles (see algorithm psuedocode
for details). This behaviour enables signallers to appear less confident in the quality of the
discovered position to make the signal less conspicuous for eavesdroppers. This evasion
strategy mostly affects eavesdroppers, even whilst negatively biased towards the signaller
particle, because they place weight on the signaller’s confidence. However, it comes at a cost
to conspecifics of the signaller, as it narrows the range, meaning fewer receive the signal.

Both conspecific and eavesdropper recipients that adopt the signal-based guidance
use the following equation to update their velocity:

vt+1
i = ωvt

i + ct
1r1(pbesti − xt

i) + ct
2r2(Lk − xt

i) (9)

where Lk is the signal vector for the kth layer of the signal (the appropriate layer relative
to the distance between the signaller and recipient), and the other symbols are as used in
Equation (1).

Non-signal-based behaviour uses two repellent exemplars and a collaboration exem-
plar. The two repellent exemplars (xt

f ur and xt
OoR) are the particle located farthest from

the signaller and a (randomly selected) non-recipient particle that is outside of the signal
range. The two repellent exemplars are selected from the recipient’s conspecific group.
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The collaboration exemplar (xt
coll) requires the random selection of four recipients from the

other group (eavesdroppers). It is calculated as shown in Equation (10).

xt
coll = R =

2

∑
i=1

xrnd
i
2

,

xrnd
1 = xed

1 + rand ∗ (xed
2 − xed

1 ),

xrnd
2 = xed

3 + rand ∗ (xed
4 − xed

3 )

(10)

where xed
1 –xed

4 are the four randomly selected eavesdropper particles within the signal
range. xrnd

1 is a vector that lies between the positions of the first and second selected
recipient particles, and, similarly, xrnd

2 lies between the third and fourth selected recipients,
as illustrated in Figure 3. xt

coll is the average of the two vectors.
Particles that adopt the non-signal-based guidance update their velocities using the

following equation:

vt+1
i = ωvt

i + ct
1r1(pbesti − xt

i) + ct
2r2(S − xt

i) (11)

where S is an exemplar randomly selected as either xt
f ur, xt

OoR or xt
coll .

Imitation is one of the most common social learning behaviours that animals adopt. In
our algorithmic model, the unbiased recipients imitate the dominating behaviour of their
conspecifics. Hence, if p particles of the conspecifics or eavesdroppers adopt the signal-
based guidance while q of them adopt the non-signal-based guidance and p > q, then the
unbiased conspecifics/eavesdroppers imitate the behaviour dominantly adopted by their
conspecifics. When p = q or unbiased particles dominate one or both groups, signal-based
or non-signal-based behaviour is randomly adopted by the unbiased recipient particles.

Figure 3. Visual depiction of the particles selected for the collaboration exemplar.

The heterogeneity in the swarm is formed by the mix of signal-based and non-signal-
based behaviour adopted by recipient particles. The particles’ biases formed over time
maintain the balance of particles adopting these behaviours. The entitlement of particles
as recipients depends on several factors, including the previous position, the position
discovered position by the signaller, the SR value and the calculated transmission point.
Hence, a small fluctuation in one of these factors significantly alters the list of potential
recipients of both conspecifics and eavesdroppers at time t. Consequently, which set of
particles become recipients is unpredictable for each transmitted signal. This unpredictable
yet self-organising behaviour is a further support for population diversity, minimising the
risk of particles being stuck at local optima.
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In order to fully exploit existing potential solutions, the BEPSO model also incorporates
the periodic use of multi-swarms, as introduced in [29]. Every so often, the swarm is split
into multiple swarms, which supports another phase of search, after which they join back
together, the standard BEPSO mechanisms resume and the cycle repeats.

The initiation of the multi-swarm mechanism requires the division of the swarm into
N subswarms. Instead of randomly splitting the swarm into N equal subswarms, in our
method, N = 3 subswarms are formed based on particles’ dominating biases to enable each
subswarm to possess an asymmetrical and self-regulating population. Hence, a particle
is a member of subswarm1 if it is predominantly positively biased towards most particles
in the swarm. Similarly, if a particle is mostly negatively biased or unbiased, then the
particle belongs to the corresponding groups (subswarm2 and subswarm3). Each member
of a subswarm uses the following equation to update its velocity:

vt+1
i = ωvt

i + ct
1r1(pbesti − xt

i) + ct
2r2(lbestk − xt

i) (12)

where lbestk is the position of the fittest particle in the kth subswarm.

3.2. BEPSO Summary

The BEPSO algorithm uses a heterogeneous population that is split into two groups.
Members of a group recognise each other as conspecifics and members of the other group
as heterospecifics. When a particle finds a better position (solution), it generates a signal to
guide conspecifics towards the new solution. The signal range is proportional to the quality
of the solution, and the signal is distorted as it travels through space. The transmission
point of the signal is randomly chosen between the last and the current position of the
transmitting particle. Heterospecific particles in range can eavesdrop on the signal. Particles
have biases towards each other, which determine whether or not a particle decides to adopt
or ignore the signal information based on an accumulator decision model. These interacting
stochastic mechanisms determine the social exemplars for particles in their movement
update equations.

Particles’ biases build over time, ensuring behavioural heterogeneity by forcing par-
ticles to dynamically adopt signal-based and non-signal-based guidance. This primary
search strategy is supported by periodically activated subswarm searches to efficiently
exploit the existing solutions. The asymmetrical populations in the subswarms exploit
different local solutions with varying densities of particles in different search phases, result-
ing in efficient search behaviour with a good balance of exploration and exploitation. The
various interacting mechanisms maintain diversity and prevent premature convergence
while allowing for rapid, efficient movement towards optimal and near-optimal solutions.
The overall BEPSO algorithm is shown in Algorithm 1.

BEPSO Parameters

The BEPSO algorithm involves a number of parameters, but our intention was to
develop a technique that does not need tuning for each new problem it is applied to. Hence,
after extensive preliminary parameter investigations involving a wide range of problems
and problem types and sizes, the following set of parameters was found to be robust and
effective and was adopted for all subsequent experiments reported in this paper. Note
that, in common with many current PSO algorithms, the momentum term (ω) is adaptive
and time-varying, as detailed in Algorithm 1. Full details of the extensive parameter
investigations can be found in the Supplementary Material.

The population size = 40, the length of the two phases of the search (signalling and
multi-swarm) = 10 iterations, SRmax = 0.01, SRmin = 0.001, and bias threshold = 20 (for other
parameters, see Algorithm 1).
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Algorithm 1: BEPSO
INPUT: swarm size, n, problem dimension, d, maximum number of iterations, Tmax
OUTPUT: gbest
Define initial values for particles’ velocity υ⃗ and position x⃗;
initialise ⃗guidance1...n // guidance vector for particles
status = (0, 0, 0.., n); // guidance status as 0 or 1
C = 0.15, ωmax = 0.99, ωmin = 0.2;
c1 = 2.5 − (1 : Tmax) ∗ 2/Tmax
c2 = 0.5 − (1 : Tmax) ∗ 2/Tmax

ω1 =
ωmax+(ωmin−ωmax )

1+exp(−5( 2t
Tmax

−1))
;

SRmax = 0.05 ∗ (UB − LB) ∗ d;
SRmin = 0.01 ∗ (UB − LB) ∗ d;
counter = 0;
for t=1:Tmax do

if mod(t,100)==0 then
phasemulti−swarm = true;

end
if phasemulti−swarm == true then

counter = counter + 1
if counter == 100 then

phasemulti−swarm = f alse;
counter = 0

end
end
for i=1:n do

if f (xi) ≥ f (x) then
ω = ω

(t)
1 + C; if ω > 0.99, ω = 0.99, end;

else
ω = ω

(t)
1 − C; if ω < 0.20, ω = 0.20, end;

end
if phasesubswarm == true then

update v⃗i and x⃗i using Equations (12) and (2)
else

if statusi == 0 then
update v⃗i and x⃗i using Equations (1) and (2) // at start, no signal info

else
update v⃗i and x⃗i using Equations (1) and (2) (but use ⃗guidancei instead of the ⃗gbest exemplar)
Evaluate the fitness of x⃗t

i
Update particle’s bias using Equations (5)–(8)

end
if f (x⃗t+1

i ) < f (x⃗t
i ) then

Calculate τ⃗ using Equation (3)
if randi([0 1])==0 then

// 50/50 chance of disguising SR

SR =U(SRmin , SRmin+SRmax
2 )

else
Calculate SR using Equation (4)

end
for j=1:n do

if norm(⃗τ − x⃗t
j) < SR then

if jth particle is a conspecific then
if jth particle qualifies for signal-based guidance then

calculate ⃗guidancej using Equations (9) and (2)
else

calculate ⃗guidancej using Equations (11) and (2)
end
statusj = 1;

else if jth particle is a heterospecific then
if jth particle qualifies for signal-based guidance then

calculate ⃗guidancej using Equations (9) and (2)
else

calculate ⃗guidancej using Equations (11) and (2)
end
statusj = 1;

end
end

end
end

end
end

end
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3.3. AHPSO: Altruistic Heterogeneous PSO

In this section, we describe our second novel PSO algorithm inspired by a certain kind
of altruistic animal behaviour, a direction that has not been explored before.

The AHPSO algorithm incorporates conditional altruistic behaviour and a heteroge-
neous particle model that delays the loss of population diversity and prevents premature
convergence, resulting in a highly effective search algorithm. In our approach, particles
are conceptualised as energy-driven entities with two possible states, namely active and
inactive. Particles have a current energy level and an activation threshold and are inclined
to be active by maintaining their current energy level above the threshold. The distinction
in a particle’s state is used to create a heterogeneous population, and particles’ tendency to
become active is aided by lending–borrowing relationships among them. Hence, condi-
tional altruistic behaviour is exhibited by particles by lending energy to inactive particles
to allow them to change their state. In doing so, helper/lender particles risk downgrading
their own state from active to inactive. To minimise the risk of reducing their own fitness, a
group of lenders assesses the situation of the beneficiary/borrower particle based on the
level of altruistic behaviour it has exhibited before making a decision as to whether or not
to lend. In our behavioural model, heterogeneity is attained through altruism, and better
population diversity is achieved through heterogeneity. Hence, these two concepts depend
on, feed and maintain each other.

In AHPSO, two behaviour models are used. The first is the altruistic particle model,
which constitutes the particles’ primary behavioural model. The second, the paired particle
model, extends the former to boost population diversity further. They are applied one after
the other in each overall cycle of the AHPSO algorithm.

3.4. Altruistic Particle Model (APM)

The activation status of particles is dependent on their current energy level (Ecurrent)
and activation threshold (Eactivation). Initially, both values are randomly assigned. The
concept of activation is employed to determine the type of movement strategy for particles
at the individual level and, as a result, controls behavioural heterogeneity in the swarm.

Particles have an inherent tendency to be active; hence, particles in the inactive state
are expected to borrow energy from other particles when their Ecurrent < Eactivation. The
main factor influencing and maintaining swarm heterogeneity is the particles’ altruistic
behaviour. A particle that behaves altruistically by making significant energy contributions
to other swarm members is highly unlikely to be rejected when in need of energy itself, and
on the contrary, particles that exhibit lower altruistic behaviour are inclined to be rejected.

Persistent borrowing behaviour in a particle over prolonged periods results in a highly
unstable lending–borrowing ratio and reduces the altruism value (Ai) of the particle (as the
particle consumes a lot more resources than it contributes to the swarm). Ai is calculated
according to Equation (13).

Ai =
Lt

i
Bt

i
(13)

where Lt
i and Bt

i are the number of times the ith particles lent and borrowed energy,
respectively, up to time t. When a particle is unable to activate, it attempts to borrow energy
from randomly selected potential lenders, and in order to lend energy, potential lender
particles expect the energy-requesting particle to meet an altruism criterion defined by ϕ
(Equation (14)).

ϕ = P1 × P2 (14)

This criterion is based on the independent probability of two events (P1 and P2). For
P1, the altruism value of the borrower particle (Ai) is used, and P2 is calculated as

P2 =
δ

N
(15)
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where δ is the number of particles in the swarm with active status at time t, and N is the
population size.

P2 gives a rough measure of the probability that a lender particle will return the energy
lent by the swarm. In addition to enforcing altruistic behaviour, the criterion (ϕ) provides a
form of altruistic assessment of lender particles’ probability of returning lent energy.

Potential lender particles use the γ value described by Equation (16) to inform the
final decision to either lend energy or reject the request of the borrower particle.

γ(ϕ, β) =

{
f alse, if ϕ < β

true, if ϕ ≥ β
(16)

where β is the average altruism value in the swarm.
If the decision (γ) is in favour of the energy-requesting particle (i.e., true), an equal

amount of energy is borrowed from each lender to compensate for the required energy of
the borrower particle. This is calculated as

Erequired =
Eactivation − Ecurrent

α
(17)

where Erequired is the amount of energy required from each lender and α is the number of
selected lenders. The movement strategy adopted by particles in the altruistic behaviour
model is based on the altruistic traits of particles. Particles that are active use the canonical
PSO update equation shown in Equations (1) and (2), whereas inactive particles who do
not meet the criterion (ϕ) and, therefore, cannot borrow use Equation (18) to update their
velocity (and position via Equation (2)).

vt+1
i = ωv(t

i + c1r1(pbesti − xt
i) + c2r2(pbestt

minA − xt
i) (18)

where pbest(t)minA is the personal best position of the least altruistic particle at time t. In the
AHPSO framework, particles that do not meet the criterion (ϕ) are less altruistic at time t
and, hence, behave together with similarly less altruist particles. Considering the evolving
dynamics of the altruistic model, the least and most altruistic particles fluctuate. Hence,
guidance towards the least altruistic particle partially enables cooperation through altruism
and supports heterogeneity. Energy sharing takes place between the lender particles and
the borrower who meets the criterion (ϕ). As lenders are randomly selected without any
criteria, there is a distinct possibility of some lenders not having excess energy to lend.
Therefore, after borrowing energy, the borrower particle may still lack sufficient energy to
activate. In this case, an exemplar for the particle is generated by the mean position of half
of the lender particles, and their velocities are updated according to Equation (19).

vt+1
i = ωv(t

i + c1r1(pbesti − xt
i) + c2r2(xmean − xt

i) (19)

where xmean is the mean position of the randomly selected ⌈ α
2 ⌉ lender particles.

As commonly seen in certain PSO variants, in our behavioural model, particles do
not explicitly exchange positional information; hence, by using the mean position of a
proportion of lender particles, we aim to establish implicit communication between lender
and borrower particles.

If, however, the borrower particle succeeds in borrowing sufficient energy to activate,
the particle’s velocity is calculated using Equation (20).

vt+1
i = ωv(t

i + c1r1(pbesti − xt
i) + c2r2(pbestt

maxA − xt
i) (20)

where pbest(t)maxA is the personal best position of the most altruistic particle at time t. The
ith particle is guided towards the most altruistic particle to establish partial cooperation
and maintain heterogeneity. An additional stochastic element is introduced by randomly
reinitiating Ecurrent and Eactivation for the entire swarm at specific intervals. The idea behind
this is to fluctuate the altruism value of particles and allow less altruistic particles at time t to
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cooperate, contribute and evolve as altruistic particles. In contrast, an altruistic particle could
“devolve” and exhibit selfish behaviour. As a result, this model allows altruistic and selfish
particles to adopt distinct movement strategies that change and adapt depending on the level
of a particle’s “evolution”, leading to an adaptive and heterogeneous particle population.

3.5. Paired Particle Model (PPM)

The paired particle model is an extension of the altruistic behaviour model described
in the previous section. The purpose of the PPM is to further boost the heterogeneity
properties of the algorithm, leading to increased population diversity. The PPM is run
after the APM in each overall iteration of AHPSO. A relatively small proportion of the
population is used for the paired particle model (see Section 3.6 for values). This model
employs two movement strategies for the selected particles, namely a coupling-based
strategy and an opposition-based strategy; each pair randomly selects which to use (see
Algorithm 2). The paired particle model enables particles to randomly form and maintain
pair-style bonds similar to the mechanism employed in [81]. An altruistic particle may
abandon its pair if the pair is less altruistic than the swarm’s average.

3.5.1. Coupling-Based Strategy

The coupling-based strategy distinguishes pairs as tightly or loosely coupled or neutral,
which determines the type of movement strategy. The following rules govern the type of
coupling relationship paired particles adopt:

1. A pair is tightly coupled if both particles are active at time t.
2. A pair is loosely coupled if both particles are inactive at time t.
3. A pair is neutral if one particle is active and the other is inactive at time t.

Tightly coupled paired particles tend to have more influence on each other than
loosely coupled pairs. Tightly and loosely coupled particles update their velocities using
Equation (21) and Equation (22), respectively.

vt+1
i = ωv(t

i + c1r1((xi
pair × Ei

current)− xt
i) + c2r2((pbesti

pair × Ei
current)− xt

i) (21)

where xi
pair and pbesti

pair are the ith particle’s pair position and personal best position,
respectively.

vt+1
i = ωv(t

i + c1r1((pbesti
pair × Ei

current)− xt
i) + c2r2((xi

pair × Ei
current)− xt

i) (22)

Ei
current is used as a damping factor to prevent the possibility of particles rapidly

oscillating, instead performing small movements in this secondary phase of the search. In
essence, the coupling-based strategy empowers particles within the paired behaviour model
to influence each other, regardless of any distance constraints between pairs. Therefore,
clustered particles take small steps towards their pair, depending on the type of coupling
relationship formed, causing perturbations in the current position without an explicit
impact on pbest. However, these fluctuations in particle position subsequently influence
the next position of the particle, helping to escape local optima.

3.5.2. Opposition-Based Strategy

The opposition-based movement strategy guides paired particles towards exemplars
with opposite features. By guiding both particles of a pair in potentially distinct directions,
the strategy aims to maintain diversity within such pairs and, hence, within a proportion
of the population. In a way, this movement strategy partly compensates for the limitations
of previously described coupling-based strategy, where pairs influence each other. The
opposition-based strategy aims to slow down learning between pairs without destroying it
and delays the loss of diversity between pairs by guiding both in the direction of distinct
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exemplars. The altruism value of the paired particles is used as the determining factor to
distinguish the type of movement a particle performs. Exemplar selection for members of
paired particles works as follows. If the ith particle is more altruistic than its coupled pair,
its velocity is updated using Equation (23).

vt+1
i = ωvt

i + c1r1(pbesti − xt
i) + c2r2(xpair

maxA − xt
i) (23)

where xpair
maxA is randomly selected as either pbest or the position of the most altruistic

individual of the most altruistic pair at time t.
But if the ith particle is less altruistic than its pair, its velocity is updated using

Equation (24).

vt+1
i = ωvt

i + c1r1(pbesti − xt
i) + c2r2(xpair

minA − xt
i) (24)

where xpair
minA is randomly selected as either pbest or the position of the least altruistic

individual of the least altruistic pair at time t.
Since both movement strategies in the paired particle model always result in particles

moving, they act as a stabilising mechanism that enables particles to partially escape from
local optima and continue the search process. In both coupling-based and opposition-based
learning, the fitness of the exemplar particles is deliberately not considered; this helps to
minimise particle clustering around local optima, aiming to maintain diversity and, hence,
guard against premature convergence.

The overall AHPSO algorithm is shown in Algorithm 2; note that an adaptive, time-
varying momentum term (ω) is employed.

3.6. AHPSO Summary

The AHPSO algorithm uses a heterogeneous population in which a dynamic energy-
based ecosystem develops. Particles are either active or inactive, depending on their
energy level. All particles have an inherent drive to become active and, when inactive,
attempt to borrow energy from other (randomly selected) particles in order to reach the
activation threshold. The altruism of a particle develops over time, depending on its
lending and borrowing behaviour. Particles use a model based on the altruism level of
a potential borrower in order to decide whether or not to lend—a form of conditional
altruism. Particles’ movement strategies depend on their levels of activation and altruism,
which are controlled by social exemplars generated by interacting stochastic rules. The
algorithm uses two search phases, in which different movement rules apply.

The two phases of AHPSO, which are executed consecutively in each cycle, namely
the altruistic and paired particle models, complement each other. The search process is
initiated with the APM, during which particles attempt to change their state from inactive
to active. Behaviourally, active particles tend to be more focused on exploitation. On the
contrary, inactive particles, attempting to borrow energy, are more focused on exploration
and are mainly influenced by the most and least altruistic particles at time t. The level
of altruistic behaviour exhibited by particles varies a great deal, and particles evolve
frequently from more to less or less to more altruistic. Hence, the different types of particles
(active, successful borrowers and unsuccessful borrowers) are guided by highly diverse
and rapidly evolving exemplars, enabling efficient search behaviour while maintaining
population diversity.

Next, the second behaviour model (PPM) takes over. Unlike the main APM, this is used
for only a selected proportion of the population. The main purpose of the PPM is to further
increase heterogeneity and prevent stagnation of particles for the selected proportion of
the population. Because energy and altruism levels play a part in the movement strategies,
changes in the values of Ecurrent and Ai shape particles’ behavioural patterns and result in
stochastic switching between different types of movements, leading to diverse behaviour
and an evolution of the strategy. The result, as with BEPSO, is a highly effective balance
between exploration and exploitation.
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Algorithm 2: AHPSO
INPUT: swarm size, n, max number iteration, Tmax
OUTPUT: gbest
C = 0.15, ωmax = 0.99, ωmin = 0.2;
c1 = 2.5 − (1 : Tmax) ∗ 2/Tmax
c2 = 0.5 − (1 : Tmax) ∗ 2/Tmax

ωt
1 = ωmax+(ωmin−ωmax)

1+exp(−5( 2t
Tmax −1))

E1..n
current = U(0.1, 1, [1 n])

E1..n
activation = U(0.5, 1, [1 n])

α = ⌊n ∗ 0.2⌋
for t=1:Tmax do

β=average A value in swarm at t
δ=number of active particles at t
for i=1:n do

if f (xi) ≥ f (x) then
ω = ωt

1 + C; if ω > 0.99, ω = 0.99, end
else

ω = ωt
1 − C; if ω < 0.20, ω = 0.20, end

end
if Ecurrent ≥ Eactivation then

// APM phase
update v⃗i and x⃗i using Equations (1) and (2)

else
calculate At

i , P2 and ϕ using Equations (13)–(15)
if ϕ < β then

update v⃗i and x⃗i using Equations (18) and (2)
else

randomly select α potential lenders
calculate Erequired using Equation (17)
deduct Erequired from Ecurrent of each lender
update Ecurrent of the borrower
increment L by one for all lenders
increment B by one for the borrower
if Ecurrent ≥ Eactivation then

update v⃗i and x⃗i using Equations (20) and (2)
else

update v⃗i and x⃗i using Equations (19) and (2)
end

end
end
if ith particle is paired then

// PPM phase
if randi([0 1])==0 then

// randomly (50/50) chose strategy
if pair is tightly coupled then

// coupling based
update v⃗i and x⃗i using Equations (21) and (2)

else if pair is loosely coupled then
update v⃗i and x⃗i using Equations (22) and (2)

end
else

if Ai > Acouple then
// opposition based
update v⃗i and x⃗i using Equations (23) and (2)

else
update v⃗i and x⃗i using Equations (24) and (2)

end
end

end
evaluate the fitness of x⃗i
update the ⃗pbesti and ⃗gbest

end
reinitialise E1..n

current and E1..n
activation

end
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AHPSO Parameters

The AHPSO algorithm involves a number of parameters, but, like with BEPSO,
our intention was to develop a technique that works very well across a wide range of
problems and problem sizes with a single general set of parameters. Hence, after exten-
sive preliminary parameter investigations, the following robust set of parameters was
found to be highly effective and was adopted for all subsequent experiments reported
in this paper. Full details of the extensive parameter investigations can be found in the
Supplementary Material.

The population size = 60, α is randomly set in the range of [10, 18] each time it is used,
the period after which the lender and borrower profiles of the swarm are reset is set to
LBrate = 10 in order to avoid stagnation, the period after which energy and energy activation
values are reinitialised is ER = 5 and the paired population size = 6 (see Algorithm 2 for
other details). The preliminary investigations also established that employing the secondary
PPM phase of the search had a significantly positive impact.

4. Experimental Method

The performance of the new BEPSO and AHPSO algorithms was verified across
multiple dimensions (30, 50 and 100) of the widely used CEC’13 [82], CEC’14 [83] and
CEC’17 [84] benchmark test suites, along with various constrained real-world problems. A
thorough comparison was conducted against 13 well-known state-of-the-art PSO variants; a
recent bio-inspired metaheuristic (I-CPA); and the 2014 CEC competition winner, L-SHADE
(a powerful differential evolution algorithm). Each of the comparator algorithms used the
best published general parameter set.

The CEC test suites comprise unconstrained single-objective benchmark problems of
various classes, including unimodal, multimodal, hybrid and composition functions. The
CEC’13 suite comprises a total of 28 functions, namely 5 unimodal, 15 multimodal and
8 composition functions. The CEC’14 suite comprises 30 functions, namely 3 unimodal,
13 multimodal, 6 hybrid and 8 composition functions. The CEC’17 suite comprises 29 func-
tions, namely 1 unimodal, 7 multimodal, 10 hybrid and 11 composition functions. Overall,
a total of 87 unconstrained benchmark functions were used to evaluate the performance of
the algorithms, each at three different problem dimensions. These test suites are widely
regarded as suitably challenging, enabling thorough evaluation of search algorithms. The
evaluation process of each test suite was carried out according to the evaluation criteria set
out by the official CEC competitions [84].

The algorithms were also tested on the 14 non-convex constrained real-world prob-
lems [85] listed in Table 1.

In order to produce statistically robust results, each algorithm was run 30 times on
each test problem. For the CEC test suites, the maximum number of function evaluations
per problem was 104 × d, where d is the problem dimension.

For the constrained problems, the maximum number of function evaluations for each
problem (MaxFEs) was determined using the following criteria:

MaxFEs =


1 × 105, D ≤ 10
2 × 105, 10 < D ≤ 30
4 × 105, 30 < D ≤ 50

(25)

where D is the dimension of the problem. A penalty method, as defined in [86,87], was
used to convert the constrained evaluation functions to unconstrained evaluation func-
tions (adding penalties proportional to constraint violations). The method is defined by
Equations (26) and (27), assuming function minimisation.

F(x) = f (x) + H(x) (26)

H(x) = ω1δ + ω2σ (27)
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where ω1 and ω2 are static weights (ω1, ω1 = 100), δ is the number of violated constraints
and σ is the sum of all violated constraints.

The full set of 15 comparator algorithms and their key parameters, as used in this
study, are shown in Table 2. The same set of general algorithm parameters was used for
both the unconstrained and constrained test suites.

Table 1. Details of the 14 constrained real-world problems. D is the number of decision variables;
g and h are the numbers of inequality and equality constraints, respectively; and f (x∗) is the best
known objective function value.

Problem D g h f (x∗)

Process Synthesis and Design Problems

RC01 Process flow sheeting problem 3 3 0 1.0765430833

RC02 Process synthesis problem 7 9 0 2.9248305537

Mechanical Engineering Problems

RC03 Weight minimisation of a speed reducer 7 11 0 2.9944244658 × 103

RC04 Pressure vessel design 4 4 0 5.8853327736 × 103

RC05 Three-bar truss design problem 2 3 0 2.6389584338 × 102

RC06 Step-cone pulley problem 5 8 3 16.069868725

RC07 10-bar truss design 10 3 0 5.2445076066E × 102

RC08 Rolling element bearing 10 9 0 1.4614135715 × 104

RC09 Gas transmission compressor design 4 1 0 2.9648954173 × 106

RC10 Gear train design 4 1 1 0.0000000000

Power Electronic Problems

RC11 SOPWM for 7-level inverters 25 24 1 1.5164538375 × 10−2

RC12 SOPWM for 8-level inverters 30 29 1 1.6787535766 × 10−2

RC13 SOPWM for 11-level inverters 30 29 1 9.3118741800 × 10−3

RC14 SOPWM for 13-level inverters 30 29 1 1.5096451396 × 10−2

Table 2. The comparator algorithms used in the detailed investigations of BEPSO and AHPSO, along
with their key parameter values.

Key Algorithm Parameters

L-Shade [88] SHADE with linear population reduction Ninit = round(D × rNinit
), |A| = round(Ninit × rarch),

rarch = 2.6, p = 0.11, H = 6

BBPSO [89] Bare-bones PSO ϕ = 4.1, λ = 0.729, c1, c2 = 2.05, r1, r2 U(0, 1)

BreedingPSO [90] A GA/PSO hybrid w = 0.8–0.6, c1, c2 = 1.49445 Vmax = 0.15 ∗ Range

HCLPSO [23] Heterogeneous comprehensive learning PSO w = 0.99–0.29, c1 = 2.5 − 0.5, c2 = 0.5 − 2.5, K : 3 − 1.5, Vmax = 0.5 ∗ Range

CLPSO [22] Comprehensive learning PSO w = 0.9–0.2; c1, c2 = 1.49445, Vmax = 0.2 ∗ Range

FIPS [91] Fully informed PSO χ = 0.729, ∑ ci = 4.1

FDR-PSO [92] Fitness distance ratio PSO w = 0.9–0.4, c1 = c2 = 1, c = 2, Vmax = 0.2 ∗ Range

UPSO [93] Unified PSO χ = 0.729, c1, c2 = 2.05, NR = 1

EPSO [94] Ensemble PSO

w = 0.9 → 0.2, w1 = 0.9 → 0.4, c1 = 3 → 1.5,
c21 = 2.5 → 0.5, c22 = 0.5 → 2.5, c31 = 2.5 → 0.5,
c32 = 0.5 → 2.5, c41 = 2.5 → 0.5, c42 = 0.5 → 2.5,
Pc = 0.5, nsize = 3

DMS-PSO [29] Dynamic multi-swarm PSO w = 0.729, c1 = c2 = 1.49445, m = 3; R = 15;
Vmax = 0.5 ∗ Range

HPSO-TVAC [95] Hierarchical PSO with time-varying coefficients c1 = 2.5 − 0.5, c2 = 0.5 − 2.5, Vmax = 0.5 ∗ Range

LPSO [96] Linearly decreasing inertia weight PSO w = 0.9 − 0.4; c1, c2 = 1.49445

maPSO [97] Macroscopic PSO w = 0.9 − 0.4, c = 1.49445
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Table 2. Cont.

Key Algorithm Parameters

miPSO [97] Microscopic PSO w = 0.9 − 0.4, c = 1.49445

I-CPA [98] Improved carnivorous plant alg nCPlant = 2, nPrey = 8, n = nCPlant + nPrey

Computational Complexity

The metric proposed in [82] was used to calculate computational complexity (see
Section 6) using the following steps (originally designed for the CEC13 suite) for each
required dimension:

Step 1—Calculate the given code (according to the methodology proposed in [82]) and
record the computation time as T0.
Step 2—Calculate the computation time just for F14 (CEC13 test suite) for 20 × 104 function
evaluations on dimension D and record the results as T1.
Step 3—Calculate the complete algorithm computation time for F14 with 20 × 104 function
evaluations on the same dimension as T2.
Step 4—Repeat step 3 5 times and attain 5 individual T2 values (T2 = mean(T2)).

Finally, the time complexity (Tc) is calculated as Tc = T2 − (T1/T0).

5. Results

This section presents the results of detailed comparative investigations of the efficacy
of BEPSO and AHPSO using the methodology outlined in the previous section. All results
are based on the mean of 30 runs. See the Data Availability Statement at the end of this
paper for details of access to raw results data, including all convergence graphs.

5.1. BEPSO: Performance

Figures 4 and 5 illustrate the performance of BEPSO relative to the comparator al-
gorithms on first test suite (CEC’13) at dimensions of 30, 50 and 100. The height of the
bars show how many test functions from the suite the algorithm found the best solution to
(averaged over 30 runs), that is, the best solution found among all algorithms. Sometimes,
multiple algorithms find the same best solution for a test function, and in other cases, they
fin just one. Figure 4 compares all algorithms (including L-SHADE), and Figure 5 compares
all PSO variants.
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Figure 4. BEPSO comparison. The total number of best performances achieved by each algorithm
with respect to mean error values (relative to best known/found function values) on the CEC’13 prob-
lems. (A) 30 dimensions; (B) 50 dimensions; (C) 100 dimensions. * No best performances achieved.
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Figure 5. BEPSO comparison. The total number of best performances achieved by each PSO algorithm
with respect to mean error values on the CEC’13 problems. (A) 30 dimensions; (B) 50 dimensions;
(C) 100 dimensions. * No best performances achieved.

Two things are clear from these bar charts of performance on the CEC’13 test suite.
BEPSO is highly competitive relative to all other comparator PSO algorithms, dominating
all of them at 30-D and 50-D in terms of the number of best solutions found and all but one
(EPSO, which is equal) at 100-D; it is also highly competitive in comparison to the powerful
differential evolution L-SHADE algorithm, with its performance relative to L-SHADE
increasing as the dimension of the problem increases (equal at 100-D).

Table 3 summarises a detailed statistical analysis of the comparative experiments
across all runs at each of the three dimensions in terms of the quality of the found solutions.
Pairwise statistical difference tests between BEPSO and the comparison algorithms were
carried out using the non-parametric Wilcoxon signed-rank test with a significance level of
5% and appropriate adjustments for multiple comparisons [99]. The (+) symbol is used to
denote the algorithms over which BEPSO exhibited statistically significantly better perfor-
mance, (=) indicates no statistically significant difference in the mean performance and (−)
marks the comparison algorithms whose performance is statistically significantly better
than that of BEPSO. The table shows us that BEPSO’s performance on the CEC’13 test suite
is significantly better than that of 10 of the 15 comparator algorithms across all dimensions,
with no significant difference for the other 5. This means that none of the comparator
algorithms were statistically significantly better than BEPSO on any the dimensions.

Table 3. BEPSO statistical tests. Wilcoxon signed-rank test results with a significance level of
p = 0.05 for CEC’13 problems at 3 different dimensions. +: statistically significantly better; =: no
significant difference; −: statistically significantly worse.
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30 = + + + + + = + = + + + = = +

10/5/0
p 0.19 6.3 ×

10−4
3.7 ×
10−6

1.6 ×
10−5 0.015 9.2 ×

10−6 0.6 4.8 ×
10−6 0.45 0.001 0.0027 9.3 ×

10−6 0.6 0.09 0.014

50 = + + + + + = + = + + + = = +

10/5/0
p 0.19 6.3 ×

10−4
3.7 ×
10−6

1.6 ×
10−5 0.015 9.2 ×

10−6 0.6 4.8 ×
10−6 0.45 0.001 0.0027 9.3 ×

10−6 0.6 0.09 0.014

100 = + + + + + = + = + + + = = +

10/5/0
p 0.19 6.3 ×

10−4
3.7 ×
10−6

1.6 ×
10−5 0.015 9.2 ×

10−6 0.6 4.8 ×
10−6 0.45 0.001 0.0027 9.3 ×

10−6 0.6 0.09 0.014

BEPSO performed particularly well on the multimodal and composition test functions
of this suite, which are generally regarded as the hardest problems.
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Figures 6 and 7 and Table 4 illustrate the corresponding results and analysis for the
CEC’14 test suite. Again, we see that BEPSO compares very well with the comparator
algorithms across all dimensions, if not as strongly as for CEC’13. L-SHADE is statistically
significantly better, on average, than BEPSO on each dimension, and EPSO is statisti-
cally significantly better at 30 dimensions and 100 dimensions. BEPSO is statistically
significantly better or equal to all other algorithms on all dimensions. Again, BEPSO
performed particularly well on the multimodal and composition problems and strongly on
the hybrid functions.
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Figure 6. BEPSO comparison. The total number of best performances achieved by each algorithm
with respect to mean error values on the CEC’14 problems. (A) 30 dimensions; (B) 50 dimensions;
(C) 100 dimensions. * No best performances achieved.
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Figure 7. BEPSO comparison. The total number of best performances achieved by each PSO algorithm
with respect to mean error values on the CEC’14 problems. (A) 30 dimensions; (B) 50 dimensions;
(C) 100 dimensions. * No best performances achieved.

Table 4. BEPSO statistical tests. Wilcoxon signed-rank test results with a significance level of
p = 0.05 for CEC’14 problems at 3 different dimensions.

BEPSO versus (CEC14)
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5/7/3
p 7.7 ×

10−4 0.23 6.8 ×
10−5 0.009 0.64 2.0 ×

10−5 0.009 3.6 ×
10−6 0.24 0.39 0.52 0.003 0.005 0.83 0.07

50 − = + + = + = + = = = + − = =

5/8/2
p 7.5 ×

10−4 0.36 2.1 ×
10−5

6.2 ×
10−3 0.89 1.1 ×

10−5 0.23 3.1 ×
10−6 0.52 0.14 0.25 0.003 0.047 0.49 0.07

100 − = + + = + = + = = = + − = =

5/8/2
p 0.019 0.89 6.6 ×

10−6
3.4 ×
10−3 0.56 1.1 ×

10−5 0.82 2.0 ×
10−5 0.3 0.15 0.1 2.9 ×

10−3
9.6 ×
10−3 0.7 0.15
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Figures 8 and 9 and Table 5 give the corresponding results and analysis for the
CEC’17 test suite. Here, we, again, see very strong performance from BEPSO across
all dimensions, becoming particularly dominant as the dimensions increases, finding more
best solutions than any other algorithm at 50-D and 100-D. Table 5 shows that BEPSO
is statistically significantly better than the majority of other comparator algorithms at
all dimensions, beating 11 out of 15 on the higher dimensions. L-Shade is statistically
significantly better at 30 dimensions, but none of the comparator algorithms is statistically
significantly better than BEPSO at the higher dimensions (50-D and 100-D). Again, BEPSO
performed particularly well on the multimodal and composition problems and strongly on
the hybrid problems.
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Figure 8. BEPSO comparison. The total number of best performances achieved by each algorithm
with respect to mean error values on the CEC’17 problems. (A) 30 dimensions; (B) 50 dimensions;
(C) 100 dimensions. * No best performances achieved.
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Figure 9. BEPSO comparison. The total number of best performances achieved by each PSO algorithm
with respect to mean error values on the CEC’17 problems. (A) 30 dimensions; (B) 50 dimensions;
(C) 100 dimensions. * No best performances achieved.

Table 5. BEPSO statistical tests. Wilcoxon signed-rank test results with a significance level of
p = 0.05 for CEC’17 problems at 3 different dimensions.

BEPSO versus (CEC17)
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5.2. BEPSO: Convergence

The analysis of the data presented in the previous subsection showed that the five
consistently best-performing algorithms were (in alphabetical order) BEPSO, DMS-PSO,
EPSO, HCLPSO and L-SHADE. In Figures 10–12, we compare the average convergence
rates towards the best solution of these algorithms across a range of representative 100-D
problems for each test suite. It is clear from these figures that BEPSO’s convergence rates
compare very favourably with the other top-performing algorithms. BEPSO’s rates are
consistently better than EPSO and HCLPSO and very similar to those of L-SHADE and
DMS-PSO.

5.3. AHPSO: Performance

Figures 13–18 and Tables 6–8 show AHPSO’s performance on the same set of test
suites against the same collection of comparator algorithms. It can be readily seen that for
the CEC’13 test suite, just like BEPSO, AHPSO is highly competitive relative to all other
comparator PSO algorithms, dominating all of them in terms of number of best solutions
found at all dimensions, with performance also increasing as the dimensions of the problem
increase (Figure 14). Its performance is also highly competitive relative to the powerful
L-SHADE differential evolution algorithm at all dimensions, achieving more best solutions
at 100-D (Figure 13). Table 6 shows us that AHPSO’s performance on the CEC’13 test
suite is statistically significantly better than 10 of the 15 comparator algorithms across all
dimensions, with no significant difference for the other 5. AHPSO performed particularly
well on the composition test functions.
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Figure 10. Average convergence rate comparison of BEPSO with L-SHADE, EPSO, HCLPSO and
DMS-PSO on various 100-dimensional CEC’13 problems.
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Figure 11. Average convergence rate comparison of BEPSO with L-SHADE, EPSO, HCLPSO and
DMS-PSO on various 100-dimensional CEC’14 problems.

Figures 15 and 16 and Table 7 give the results for AHPSO on the CEC’14 test suite.
Relative performance is strong but not as good as for CEC’13. But we see that the increase in
performance with dimensions is more marked, with AHPSO achieving more best solutions
than L-SHADE at 100-D. The statistical analysis reveals that L-SHADE and EPSO were
statistically significantly better at 30-D and 50-D, but AHPSO was statistically significantly
better or equal to all 15 comparator algorithms at 100-D. AHPSO was superior to all other
algorithms on the composition test functions.

Figures 17 and 18 and Table 8 give the results for the CEC’17 test suite. Again, AH-
PSO’s relative performance is very strong, being statistically significantly better than 11
of the 15 comparator algorithms at the higher dimensions (50-D and 100-D), while no
other algorithms were statistically better than AHPSO at these dimensions. At 30-D, only
L-SHADE is statistically significantly better. AHPSO performed particularly well on multi-
modal and composition test functions. At 100-D, AHPSO exhibited the best performance on
more functions (11 out of 29) than all other comparison algorithms (including L-SHADE).
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Figure 12. Average convergence rate comparison of BEPSO with L-SHADE, EPSO, HCLPSO and
DMS-PSO on various 100-dimensional CEC’17 problems.
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Figure 13. AHPSO comparison. The total number of best performances achieved by each algorithm
with respect to mean error values (relative to best known/found function values) on the CEC’13 prob-
lems. (A) 30 dimensions; (B) 50 dimensions; (C) = 100 dimensions. * No best performances achieved.



Biomimetics 2024, 9, 538 26 of 39

* * * * * * *
H

PS
O

-T
VA

C
BB

PS
O

FI
PS

LP
SO

BR
PS

O
H

C
LP

SO
C

LP
SO

D
M

S-
PS

O
M

aP
SO

M
iP

SO
U

PS
O

EP
SO FD

R
I-C

PA
AH

PS
O

*0

2

4

6

8

10

N
um

be
r o

f b
es

t p
er

fo
rm

an
ce

s

* * * * * * * *

H
PS

O
-T

VA
C

BB
PS

O
FI

PS
LP

SO
BR

PS
O

H
C

LP
SO

C
LP

SO
D

M
S-

PS
O

M
aP

SO
M

iP
SO

U
PS

O
EP

SO FD
R

I-C
PA

AH
PS

O
*0

2

4

6

8

10

N
um

be
r o

f b
es

t p
er

fo
rm

an
ce

s

* * * * * * * *

H
PS

O
-T

VA
C

BB
PS

O
FI

PS
LP

SO
BR

PS
O

H
C

LP
SO

C
LP

SO
D

M
S-

PS
O

M
aP

SO
M

iP
SO

U
PS

O
EP

SO FD
R

I-C
PA

AH
PS

O
*0

2

4

6

8

10

N
um

be
r o

f b
es

t p
er

fo
rm

an
ce

sA B C

Figure 14. AHPSO comparison. The total number of best performances achieved by each
PSO algorithm with respect to mean error values on the CEC’13 problems. (A) 30 dimensions;
(B) 50 dimensions; (C) 100 dimensions. * No best performances achieved.

Table 6. AHPSO statistical tests. Wilcoxon signed-rank test results with a significance level of
p = 0.05 for CEC’13 problems at 3 different dimensions. +: statistically significantly better; =: no
significant difference; − : statistically significantly worse.
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Figure 15. AHPSO comparison. The total number of best performances achieved by each algorithm
with respect to mean error values on the CEC’14 problems. (A) 30 dimensions; (B) 50 dimensions;
(C) 100 dimensions. * No best performances achieved.
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Figure 16. AHPSO comparison. The total number of best performances achieved by each PSO
algorithm with respect to mean error values on the CEC’14 problems. (A) 30 dimensions; (B) 50 di-
mensions; (C) 100 dimensions. * No best performances achieved.

Table 7. AHPSO statistical tests. Wilcoxon Signed Rank Test Results with a Significance Level of
p = 0.05 for CEC’14 problems at 3 different dimensions.
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Figure 17. AHPSO comparison. The total number of best performances achieved by each algorithm
with respect to mean error values on the CEC’17 problems. (A) 30 dimensions; (B) 50 dimensions;
(C) 100 dimensions. * No best performances achieved.
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Figure 18. AHPSO comparison. The total number of best performances achieved by each PSO
algorithm with respect to mean error values on the CEC’17 problems. (A) 30 dimensions; (B) 50 di-
mensions; (C) 100 dimensions. * No best performances achieved.

Table 8. AHPSO statistical tests. Wilcoxon signed-rank test results with a significance level of
p = 0.05 for CEC’17 problems at 3 different dimensions.
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5.4. AHPSO: Convergence

Like BEPSO, AHPSO was one of the consistently best-performing algorithms across all
the test suites. Figures 19–21 show its convergence rates relative to the other top-performing
algorithms. AHPSO’s converge rates are very similar to the best rates achieved; they are
consistently better than those achieved by EPSO and HCLPSO.

The comparative experiments for the two algorithms across the CEC test suites were
run independently. Perhaps unsurprisingly, given the nature of the results presented above,
a third set of independent runs across the CEC’13, CEC’14 and CEC’17 test suites revealed
that there was no statistically significant difference in performance of BEPSO and AHPSO
at 30 dimensions, 50 dimensions and 100 dimensions [100].

5.5. Constrained Optimisation Problems

Besides verifying the performance of the two novel algorithms on the CEC’13, CEC’14
and CEC’17 benchmark test suites, we examined the performance of BEPSO and AHPSO
on 14 constrained real-world problems [101] comprising process synthesis and design,
mechanical engineering and power system problems compared against L-SHADE and
the 10 best PSO variants employed in the previous experiments. The complete list of
constrained real-world problems is displayed in Table 1 in Section 4. Each problem was
tested 30 times.

Figure 22 shows the number of best solutions found by the algorithms across all con-
strained problems. By this measure, AHPSO and L-Shade perform best. AHPSO performed
particularly well on the difficult power electronic problems (solving optimal pulse-width
modulation problems with relatively large numbers of variables and constraints), finding
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the best known solution for three of the four problems in this class, with L-SHADE being
the only other algorithm able to find a (single) best solution in this class. Tables 9 and 10
show the pairwise statistical significance analysis (with appropriate reductions for mul-
tiple comparisons). It can be seen that none of the comparator algorithms is statistically
significantly better than either BEPSO or AHPSO, and AHPSO is better than L-SHADE. In
a detailed ranking analysis across all runs on all problems of all algorithms, the best mean
rank (2.36) was achieved by BEPSO, the second best (2.5) by L-SHADE and the third best
(2.57) by AHPSO.

Hence, on constrained real-world problems the two new BEPSO and AHPSO algo-
rithms performed extremely strongly in comparison with all other comparator algorithms.
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Figure 19. Average convergence rate comparison of AHPSO with L-SHADE, EPSO, HCLPSO and
DMS-PSO on various 100-dimensional CEC’13 problems.
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Figure 20. Average convergence rate comparison of AHPSO with L-SHADE, EPSO, HCLPSO and
DMS-PSO on various 100-dimensional CEC’14 problems.
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Figure 21. Average convergence rate comparison of AHPSO with L-SHADE, EPSO, HCLPSO and
DMS-PSO on various 100-dimensional CEC’17 problems.
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Figure 22. Total number of constrained real-world problems solved (lowest obtained mean error
value) by the proposed and comparator algorithms. * No best solutions found.



Biomimetics 2024, 9, 538 32 of 39

Table 9. BEPSO statistical tests. Wilcoxon signed-rank test results with a significance level of
p = 0.05 for constrained real-world problems. The last row shows p values.
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Table 10. AHPSO statistical tests. Wilcoxon signed-rank test results with a significance level of
p = 0.05 for constrained real-world problems. The last row shows p values.
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6. Discussion

Both BEPSO and AHPSO algorithms consistently performed particularly well on the
higher-dimensional, more complex problems, including unconstrained multimodal and
composition problems and problems involving many constraints, matching or bettering
the performance of all other comparator algorithms. However, while their performance
on simpler, lower-dimensional problems was perfectly adequate, it did not match that of
the best of the comparator algorithms. This limitation seems to be associated with the
deliberately high agent-level heterogeneity that is inherent to the designs of BEPSO and
AHPSO. This property significantly aids the algorithms in high-dimensional and complex
search spaces while being less effective in low-dimensional spaces.

The various stochastic mechanisms embedded in both algorithms were partly designed
to maintain diversity while enabling efficient search. Figure 23 shows that both BEPSO
and AHPSO achieve maintenance of diversity. The graphs use the following diversity
quantification method proposed in [1]:

Diversity(S(t)) =
1
n

n

∑
i=1

√√√√ D

∑
d=1

(xd
i − xd)2 (28)

where n is the population size, D is the problem dimension and xd is the average value of
xd (the dth component of the solution vector).

The figure reveals that while EPSO consistently exhibited a more diverse population
compared to the other high-performing algorithms on the 100-dimensional CEC’17 prob-
lems, BEPSO and AHPSO maintained better population diversity compared to all the rest,
namely L-SHADE, LPSO, DMS-PSO and HCLPSO. The trend was repeated across the other
test suites for the majority of functions.

While the multiple, mainly stochastic components of the new BEPSO and AHPSO
algorithms tend to complement each other and, in combination, maintain diversity; balance
exploration and exploitation; and enable efficient, high-quality search, they do increase
the overall complexity of the algorithm. But it is worth noting that many recent variants
of metaheuristics, such as that proposed in [102,103]. and several of the comparator algo-
rithms used in the current study have a much more complex structure than their canonical
versions. These variants are discernibly more efficient and are able to handle more diverse
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problems. Hence, the algorithms proposed in this paper are not unusual in comprising
a more complex structure and set of interaction mechanisms in comparison to canonical
algorithms. However, their individual elements are all simple. Indeed, the slightly more
complex framework of the proposed algorithms is inspired by the observation that bio-
logical degeneracy plays a vital role in boosting evolvability in nature and, therefore, can
improve the efficiency of search processes [104]. Biological degeneracy, whereby multiple
interacting mechanisms enable multiple different ways of producing an outcome, is an
ubiquitous property of biological systems at all levels of organisation [105,106] reveals that
systems with simple redundancy have considerably lower evolvability than degenerate
(e.g., highly versatile) systems with selectable changes of behaviour, which enable com-
pensatory actions to occur within the system (exactly what happens at the core of the new
algorithms presented in this paper).
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Figure 23. Diversity comparison for best-performing algorithms for various representative 100-
dimensional CEC’17 problems.

However, this increased algorithmic complexity does not necessarily equate to signifi-
cantly increased computational cost relative to other high-performing algorithms. Figure 24
shows the time complexity (Tc) of BEPSO, AHPSO and the comparator algorithms at
various problem dimensions calculated using the metric described in Section 4.
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Figure 24. Time complexity of BEPSO, AHPSO and comparator algorithms for four dimension sizes.

As expected, the basic canonical PSO obtained the lowest Tc values across all dimen-
sions (although it is the worst-performing algorithm in terms of solution quality). However,
the complexity of the high-performing AHPSO, L-SHADE and HCLPSO algorithms across
all four dimensions is very similar and not much higher than that of basic PSO. BEPSO’s
complexity is a little higher but still very competitive. In summary, BEPSO and AHPSO
exhibit similar and, in some cases, better complexities compared to their peers; however, it
is worth highlighting that they exhibit a significantly lower increase in complexity with
problem dimensionality (especially AHPSO).
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7. Conclusions

The two novel bio-inspired search algorithms presented in this paper, namely BEPSO
and AHPSO, performed very well across a wide range of unconstrained and constrained
optimisation problems, using a single set of parameters for all. On the CEC13 test suite,
across all dimensions, both BEPSO and AHPSO performed statistically significantly better
than 10 of the 15 comparator algorithms, while none of the remaining 5 algorithms per-
formed significantly better than either BEPSO or AHPSO. On the CEC17 test suite, on the
50-D and 100-D problems, both BEPSO and AHPSO performed statistically significantly
better than 11 of the 15 comparator algorithms, while none of the remaining 4 algorithms
performed significantly better than either BEPSO or AHPSO. On the constrained problem
set, in terms of mean rank across 30 runs on all problems, BEPSO was first, and AHPSO
was third. This provides further evidence that bio-inspiration—in this case, various kinds
of animal group behaviours—continues to be a very fruitful source for algorithm design.

Although both algorithms employ heterogeneous population models, are inspired
by animal group behaviours and are designed to maintain diversity and avoid premature
convergence and stagnation, the underlying metaphors and inspirations are very different,
as are the behavioural rules used to guide particle movement. This illustrates one of the
great strengths of the basic PSO framework, namely that there are numerous ways to
modify and improve it, often, as in the new algorithms described here, by dynamically
changing population structures and movement strategies.

Both algorithms consistently performed particularly well on the higher-dimensional,
more complex problems, including unconstrained multimodal and composition problems
and problems involving many constraints, matching or bettering the performance of all
other comparator algorithms.

The novel mechanisms introduced in these heterogeneous PSO variants were able to
maintain population diversity while enabling rapid convergence to optimal or near-optimal
solutions. They provided a highly efficient balance between exploration and exploitation.

Considering the efficacy of the new algorithms on high-dimensional problems, further
investigation on very large-scale problems would be another interesting direction for future
work. AHPSO’s superior performance on constrained power electronic problems and the
fact that other researchers have recently successfully used it to find the optimal design
parameters for hybrid active power filters [107] suggest that an expanded investigation of
its applications to other problems in the power electronics domain might be very fruitful.

Although canonical PSO is a very efficient algorithm for many small-scale optimisa-
tion problems, as with many metaheuristics, it suffers from the curse of dimensionality.
Although the performance of the new PSO algorithms presented in this paper were much
less impacted by problem dimensionality compared with other algorithms used in the
experiments, various other limitations were identified for possible future improvements.
It is clear that the heterogeneous nature of BEPSO and AHPSO provides various strong
advantages for the general process of optimisation. However, it is this very property
that makes them so good at complex (multimodal, composition, etc.), higher-dimensional
problems, which means that their performance on (simpler) unimodal problems, while
perfectly adequate, is consistently worse than that of some of their competitors, as their
speed of finding solutions is slower. This could be accepted as a clear example of the No
Free Lunch Theorem for optimization [108], which tells us that no method can be uniformly
excellent on all possible problems, or it could be a prompt to try and improve the algorithms
with suitable mechanisms to address this particular issue without destroying their power
on other problem types. In general, unimodal problems do not require such a careful
balance between exploration and exploitation; typically, intensive exploitation is expected
to dominate the search process. This is a possible area for future research, either attempting
to expand the general efficacy of the methods or, alternatively, to produce variants of the
algorithms that are specialized to specific problem classes.
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