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Abstract In this paper we provide an analysis of orientation
flights in bumblebees, employing a novel technique based on
Simultaneous Localisation and Mapping (SLAM) a proba-
bilistic approach from autonomous robotics. We use SLAM
to determine what bumblebees might learn about the loca-
tions of objects in the world through the arcing behaviours
that are typical of these flights. Our results indicate that while
the bees are clearly influenced by the presence of a conspicu-
ous landmark, there is little evidence that they structure their
flights to specifically learn about the position of the land-
mark.

1 Introduction

1.1 Orientation flights in bees and wasps

When bees and wasps first leave their nests or a produc-
tive food source they perform a series of stereotypical flight
manoeuvres referred to as orientation flights (39; 1; 37; 45;
46; 2), or Turn Back and Look (TBL) flights (23; 24; 25)1.
Immediately following take off they turn to face the place
of interest and fly a series of arcs of increasing distance
roughly centred on the goal. It is known that disruption of
these flights affects the bees’ ability to successfully relocate
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1 Jander (18) characterises orientation flights as having twodistinct
phases. The first phase is generally near the nest and composed of small
slow movements and is followed by larger spirals around the nest. For
the remainder of this paper any reference to orientation flights will
relate to the small scale TBL behaviours that the bees perform on first
leaving their nest.

the goal and that as the bees become more familiar with their
visual environment they spend less time performing these
orienting behaviours until eventually they fly almost directly
away (24). Experienced bees will however re-initiate orien-
tation flights if they have trouble finding the goal (38; 41).

Many previous authors have made the observation that
the sideways arcing movements that are typical of these flights
would be suitable for measuring depth through motion par-
allax (4; 23; 25; 7; 8; 46; 47). Lehrer and Collett (25) inves-
tigated what depth cues bees learned during their approach
to a feeder and during their TBL flights when leaving. Bees
were trained to collect a reward from a feeder that was lo-
cated in a fixed position relative to a cylinder. In three ex-
perimental conditions, bees were able to view the cylinder:
only on their approach to the feeder; only on their depar-
ture; or, during both approach and departure. Probe tests
demonstrated that bees that viewed the cylinder only on ar-
rival learned its apparent size whereas bees that viewed the
cylinder on departure learned the absolute distance. Bees
that were able to view the cylinder on arrival and departure
learned both apparent size and absolute distance, with ab-
solute distance providing the primary cue during the initial
phase of learning and absolute size becoming more impor-
tant later on.

These observations beg the question of how visual in-
formation is used during these flights. The results discussed
above clearly implicate TBL flights in learning about the
absolute depth of landmarks. Here we investigate whether
flights are structured to optimally extract depth information
from the environment. Holding such metric information might
enable the development of a metric representation of the spa-
tial relationships between a discrete set of salient features
or landmarks within a geo-centric or world-based frame of
reference, a map. Whether or not insects solve spatial prob-
lems in this way has generated a great deal of controversy
over the years and is still regarded as an open question (26;
14; 15; 42; 43). Much of the debate centres on the cogni-
tive demands and the utility of learning such map-like rep-
resentations given the short lifespan and limited neural re-
sources available to insects. In contrast, we approach the is-
sue by examining whether the stereotypical arcing manoeu-
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vres observed during TBL flights are optimised for learning
the metric information required for a map-like representa-
tion of the world.

TBL flights potentially provide cues to depth in at least
two ways. Firstly, the movements produce patterns of optic
flow across the whole visual field that allow landmarks to
be ranked according to depth (4; 47). Alternatively, the posi-
tions of a discrete set of visual features or landmarks could
be learned without the direct use of optic flow. By tracking
the path of individual features across the retina and combin-
ing this information with information about ego-motion, an
estimate of the position of each of the features could gradu-
ally be built up. Each time a feature is viewed, the estimate
of its position could be updated and improved providing
an increasingly coherent spatial representation of the world.
Maintaining such a representation would allow the bee to
re-orient upon viewing familiar landmarks in the vicinity of
the goal. This is consistent with the observation that expe-
riencing a prominent landmark en route narrows the search
distribution of returning bees (33).

1.2 The Bayesian brain

There is growing evidence that many aspects of sensorimo-
tor behaviour in animals can be closely modelled in terms
of Bayesian inference and estimation, a framework that can
handle the inherent uncertainty and noise in the natural world.
For instance, many authors argue that a framework based
on Bayesian inference is highly suited to modelling and un-
derstanding vision, as it is capable of dealing with the com-
plexities and ambiguities of natural images while accounting
for fundamental perceptual tasks such as recognition (e.g.
(44; 22)). More specifically, Cheng et al. (5) review numer-
ous instances of integration of spatial cues in diverse species,
including insects, and show that the ways in which the cues
are combined closely follows a Bayesian interpretation of
perception. Courville et al. (9) show how a Bayesian ap-
proach provides a principled interpretation of conditioning
in animals in a changing world, specifically the finding that
surprising events provoke animals to learn faster. Kording
and Wolpert (19) show that action selection in human mo-
tor behaviour is close to that predicted by Bayesian deci-
sion theory, which defines optimal choice in a world charac-
terized by uncertainty. The success of such models has led
some to speculate that brains possess neural circuitry that
does something very close to estimating probability distri-
butions (20); indeed Rao has demonstrated that small recur-
rent networks of noisy integrate-and-fire neurons can per-
form approximate Bayesian inference (29). For further de-
tails of such approaches see the wide ranging review in (16).

The success of such Bayesian interpretations suggest that
if the bees in the study described here are learning the posi-
tion of the landmark as part of some metric representation
of the environment, it is reasonable to hypothesize that they
are doing so in a way that can be closely modelled in terms
of Bayesian estimation. If the flights are structured in such a

way as to learn positional information, a probabilistic anal-
ysis should reveal changes in uncertainty estimates associ-
ated with the landmarks. As described in the next section,
we have adapted SLAM, a powerful probabilistic framework
developed in mobile robotics, to provide quantitative tools to
study bee flights within a Bayesian framework. Because the
probabilistic robotics framework, which was specifically de-
veloped to deal with closed loop sensorimotor behaviour, is
so general, it can be readily adapted to the study of insect
behaviour.

1.3 Probabilistic Robotics and SLAM

Over the past fifteen years or so, approaches based on proba-
bilistic inference have become prominent in mobile robotics,
particularly in map building and navigation. The mapping
problem involves a period of exploration during which a
robot builds a map of its environment that can then be used
for accurate navigation. A related problem is that of localisa-
tion - the ability of a robot to determine where it is, relative
to a map, from its sensor readings. Most work in this area has
concentrated on the Simultaneous Localisation and Mapping
(SLAM) problem (31; 12; 13), also sometimes known as the
concurrent mapping and localisation problem (34). This re-
quires a mobile robot, when placed at an unknown spot in an
unknown environment, to incrementally construct a consis-
tent map of the environment at the same time as determining
its location in the map. A great deal of progress has been
made and for certain types of environments good solutions
to the problem have been found (13; 27; 10). Nearly all these
solutions rely on probabilistic models of the robot and its
environment, and employ probabilistic inference in building
maps from the robot’s sensor readings.

The success of the probabilistic approach stems from the
fact that the mapping problem is inherently uncertain and
robot sensors are noisy, as is robot movement. The proba-
bilistic approaches embrace these characteristics of the prob-
lem rather than ignoring them or trying to hide them. The
overall approach is to use recursive Bayesian methods to
build up estimates of unknown probability density functions
over time using incoming sensor measurements and a math-
ematical process model as outlined below. In probabilistic
terms the SLAM problem requires the following probability
distribution to be computed for every timet.

P(xt , |Z
t
,U t

,x0) (1)

Where the vectorxt represents the system state describing
both the robot (robot position and orientation etc.) and perti-
nent information about the environment (usually landmark
locations, but more complex metric relationships describ-
ing various aspects of the geometrical layout of the envi-
ronment are also sometimes used),Zt andU t represent all
sensor readings,zt , and motor controls,ut , from timet = 0
until the present:Zt = {z0,z1, ...zt},U t = {u0,u1, ...ut}. Thus
equation 1 is the conditional probability density of the sys-
tem state, given the recorded sensor inputs and the motor
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controls, along with the initial position of the robot,x0. Us-
ing Bayes Theorem it is possible to recast this distribution in
terms of the following recursive equation (35):

P(xt |Z
t
,U t

,x0) = ηP(zt |xt)
∫

P(xt |xt−1,ut) · · ·

P(xt−1|Z
t−1

,U t−1
,x0)dxt−1 (2)

Where η is a normalising constant. This equation in-
volves a probabilistic motion model,P(xt |xt−1,ut), which
assumes a Markov process in whichxt depends only on the
previous position,xt−1, and the applied motor control,ut ,
as well as a probabilistic sensor observation model,P(zt |xt),
which describes the probability of making sensor observa-
tions when the robot location and the map are known. So-
lutions to the SLAM problem involve finding appropriate
representations for the motion and sensor observation mod-
els such that the various probability densities can be calcu-
lated via efficient recursive procedures. The most common
approaches use an Extended Kalman Filter (EKF) (17) or a
more general particle filter (28).

1.4 Outline of the paper

In this paper we use the SLAM framework in a different way.
By running a SLAM simulation with the recorded flight tra-
jectories as the movements that are made and using a model
of a bee’s visual system as a sensor observation model to-
gether with a very general probabilistic motion model, we
can examine which parts of the local environment would be
mapped most effectively. Here probabilistic SLAM becomes
a tool for analysing noisy behavioural data to investigate
whether the structure of TBL flights is consistent with bees
learning a metric representation. To use this approach we
simulate the learning of a map given particular flight struc-
tures. The uncertainty values associated with entries in the
map provide a direct measure of the efficacy of the flight,
or parts of the flight, for learning about that position in the
map. Note that this analysis does not depend on bees using
such maps. It simply provides a method for analysing the
informational content of the bee’s movements.

We have recorded trajectories of bumblebees performing
orientation flights on leaving their nest in the presence of a
single conspicuous landmark in order to examine what the
bees might be attending to and learning. We analyse these
flights in terms of generated optic flow and their potential
for learning metric information about the positions of visual
features. If bees are attempting to learn metric information
about the landmark, we would expect the structure of the
flights to show some bias towards learning about the depth
structure of the world at or near to the position of the land-
mark.

In the next section we describe the SLAM approach to
learning and how we acquired the flight data to which we
have applied our analyses. Finally we report our results and
conclude with a discussion of their implications.

2 Methods

2.1 A probabilistic solution to the SLAM problem

The essence of the SLAM approach for a visually guided
agent is to estimate the current state of the system (i.e. po-
sitions etc. of the agent and all landmarks in the world) us-
ing a two-step procedure which importantly also attempts to
quantify the uncertainty of each estimate. Firstly the state
estimate, together with a covariance matrix that reflects the
uncertainty in the estimate, is propagated forward in time
using a process or movement model that defines how the
agent’s state (position, velocity etc.) changes in response to
a control input. Following this, a (noisy) measurement of
all visible objects is made and used to update the state and
covariance estimates once again. Here, both update steps are
implemented through an Extended Kalman Filter (EKF), the
most common approach for non-linear state estimation.

The process and sensor models are therefore crucial and
their accuracy determines how the uncertainty in the system
evolves. In the first stage, uncertainty in the agent’s position
will increase, due to inaccuracies and noise in the process
model while state and covariance estimates of object posi-
tions are unchanged as they are unaffected by agent move-
ment. In contrast, the measurement phase acts to reduce the
uncertainty in the entire state estimate, with reduction in un-
certainty being determined by the accuracy of the measure-
ments.

2.1.1 The State and Covariance

The state ˆx of the system is a vector containing both the state
of the agent ˆxv and the positions of all tracked features ˆyi. In
our current implementation we chose to track a single fea-
ture in each of our simulations. By changing the position of
this one feature we are able to examine how the recorded
flight trajectories affect learning of all possible fictive ob-
ject positions within a region of interest (ROI) defined as the
area viewed by the camera. The state vector is paired with a
covariance matrix,P, partitioned as follows:

x̂ =







x̂v
ŷ1
ŷ2
:






, P =







Pxx Pxy1 Pxy2 ..

Py1x Py1y1 Py1y2 ..

Py2x Py2y1 Py2y2 ..

: : :






(3)

WherePi j represents the covariance between the state vari-
ablesi and j. The choice of representation and the frame of
reference of the state are both arbitrary.
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2.1.2 The Process Model

The state and covariance are updated following a movement
of duration∆ t using the following equations:

x̂(t+1) = f (x̂(t),ut ,∆ tt) (4)

P(t+1) =
∂ f
∂x

P(t)
∂ f
∂x

T

+Qt (5)

where,f is a differentiable state transition function, that maps
the state estimate, ˆxt , and control inputs,ut , at timet, into a
subsequent state ˆxt+1. A matrix describing the process noise
Qt , together with the Jacobian of the state transition function
( ∂ f

∂x ) is used to update the covariance matrixP.
The process noise is intended to account for any un-

modelled movements and is given by:

Qt =
∂ f
∂ut

Ut
∂ f
∂xt

T

(6)

whereUt is the diagonal covariance matrix ofut .

2.1.3 The Measurement Model

As with the process model, in the EKF framework the mea-
surement model need not be linear but must be differen-
tiable. The measurement model provides a model of the sen-
sor array and allows the prediction of the expected sensor
activations given the current state estimate. For example, as-
suming a very simple ray tracing model of the visual sys-
tem whereby a measurement can be made if there is a di-
rect line of sight to the measured feature. Then the measure-
ment model provides a prediction of the direction to the fea-
ture given the current estimates of the agent’s position and
orientation and the position of the feature. In the case of a
simple ray tracing model of vision, this calculation involves
straightforward trigonometry.

As well as a point prediction of the measurementhi, the
measurement model allows us to calculate the innovation co-
variance matrixSi. The innovation covariance matrixSi rep-
resents the expected uncertainty in measurementhi and is
given by:

Si =
∂hi

∂xv
Pxx

∂hi

∂xv

T

+
∂hi

∂xv
Pxyi

∂hi

∂yi

T

+

∂hi

∂yi
Pyix

∂hi

∂xv

T

+
∂hi

∂yi
Pyiyi

∂hi

∂yi

T

+R (7)

where, ∂hi
∂xv

and ∂hi
∂yi

are the Jacobian matrices of the mea-
surement model with respect toxv andyi respectively,Pxx,
Pxyi, Pyix andPyiyi are sub-matrices ofP, andR is the mea-
surement noise covariance that describes the accuracy of the
measurements.

The accuracy with which measurements can be inferred
is limited by the accuracy with which estimates of the bee’s

position and orientation can be made using the video record-
ings. Therefore in this instance the measurement noise re-
flects both the limited acuity of the bee’s visual system and
the limited accuracy with which positional information about
the bee can be determined from the video data.

2.1.4 Updating the State

Following a measurementzi, the Kalman gain,W , is calcu-
lated and used to update the state and covariance estimates
using:

W = P
∂hi

∂x

T

S−1 (8)

x̂t+1 = x̂t +W (zi −hi) (9)

Pt+1 = Pt −WSW T (10)

3 The probabilistic framework applied to orientation
flights

As we stated earlier we do not suggest that bees necessarily
form the sort of maps that are used in SLAM. However the
approach provides a tool to quantify the information about
the environment that a bee might extract on a given flight. By
replacing the measurement model that describes a camera’s
optics with one that describes the optics of a bee, and sim-
ilarly, replacing the process model with a motor model that
describes the bee’s movements we can construct a closed-
loop system for investigating active vision. The SLAM sim-
ulation using simple models of the bees’ sensory and motor
capabilities was run in parallel with the transcribed video
data.

For clarity, it is worth restating that in our simulations
we only ever track a single feature and that the position of
this feature need not coincide with the true position of the
landmark. By changing the position of a fictive feature and
inferring where on the bee’s retina its image would fall we
are able to examine how the recorded flight trajectories af-
fect learning. In the uncertainty maps of figures 5 and 7 each
pixel represents the final uncertainty in the positional esti-
mate of a fictive landmark at that pixel location following
the simulated flight, given that the landmark was visible.

For the sensor model we assume that the bee is able to
observe a given feature if it falls within the field of view
and there is a direct line of sight to it. We further assume
that the measurement noise and therefore the visual acuity is
fixed. For the majority of our analyses we assume a function-
ally uniform retina, meaning that measurements are treated
equally irrespective of where on the retina they are made.
In a later analysis we look at the effect of restricting the in-
put to the frontal retina. The motor model that we employ
assumes that we do not have access to the control input. In-
stead it is assumed that all forces and torques that act on
the bee are small and normally distributed around zero (11)
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Fig. 1 A An example of how the estimated uncertainty in a SLAM based simulation of a real flight evolves during the course of a flight.
Uncertainty in the landmark positional estimate and the estimate of the uncertainty in the bee’s position are represented by ellipses and shown
at several instances throughout a sample orientation flight. All distances are measured in mm and the timestep was 0.02 seconds. The nest (open
square) is at (0,0) and the landmark (filled circle) is at (125,0). B The bottom panel shows the evolution in uncertainty over thecourse of the
flight shown inA. The top line shows how the uncertainty of the whole system develops, the middle line shows the uncertainty in the estimate of
the landmark position and the bottom line shows the bee’s positional uncertainty.

so at each time-step the velocity is assumed to remain con-
stant while the covariance of the state estimate increases.
This very simple and general motor model is sufficient to
implement SLAM and allow our analysis of the orientation
flights.

Setting the correct level for the process and measurement
noise is key to the successful implementation of probabilistic
SLAM. The measurement noise should represent as closely
as possible the true accuracy of the measurements that are
made of the world and the process noise should reflect, again
as closely as is possible, the accuracy of the process model.
Setting these values too high will result in slow convergence
of the map estimates resulting in poor performance. Setting
them too low can result in catastrophic failure as the system
converges too quickly to an incorrect solution.

In order to set the value of the process noise covariance,
Q, we assumed a zero mean impulse model and measured
the squared difference between the model predictions and

the observed movements. The variance of the measurement
noise, R, needs to be able to account for both the limited
visual acuity of the bees (≈5 degrees (32)) and the limited
accuracy with which it is possible to determine the position
and orientation of the bees from the video recordings (± 5
degrees). R was therefore set to approximately 5 degrees.

One aspect of the SLAM problem that we do not address
is the issue of initialising the map estimates. In a standard
SLAM implementation operating in the real world deciding
when and how to initialise a new feature into the map is a
non-trivial problem. Since it is not possible to determine the
distance to a feature given a single view of it, it is difficult to
initialise the map entry to a sensible value. Most approaches
have a separate initialisation procedure whereby a feature
will be tracked for a few frames prior to the feature actually
being added to the map. In our simulations we choose to
initialise the map estimates at their correct value and to set
the uncertainty in the landmark estimate to be high (100)
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and the uncertainty in the bee estimate to be low (1.0). This
is intended to reflect that the bee knows the position of itself
relative to the nest when it exits the nest but does not know
the position of the landmark.

Using this probabilistic framework we can follow orien-
tation flights, tracking how the structure of a flight reduces
the uncertainty in the bee’s estimate of its own position and
of visual features within the environment. In figure 1A, these
uncertainties are represented as ellipses around the landmark
and the bee’s positions. As the flight proceeds the uncer-
tainty in the positional estimate of the bee increases while
the uncertainty in the landmark positional estimate decreases
as measurements of the landmark are made. This can be
seen betweent = 0.78 andt = 1.5s, following measurements
of the landmark which collapse the uncertainty perpendicu-
lar to the direction of viewing, and betweent = 2.96 and
t = 3.7s, where the bee moves perpendicularly to the line of
sight to the landmark, reducing uncertainty in the direction
parallel to the line of sight.

3.1 Measuring uncertainty

As figure 1B shows, the total uncertainty in the system, mea-
sured in terms of the entropy,H, of the covariance matrixP;

H =
1
2

log(2πd |P|) (11)

is divided between the bee and the landmark estimates, where
d is the dimension of the state estimate and|P| is the deter-
minant of the covariance matrix.

The goal in a standard robotics implementation of SLAM
is to reduce the uncertainty in the whole system. However,
for our purposes, the total uncertainty might not be appro-
priate. We therefore look at how both the landmark’s and the
observer’s uncertainties evolve during the course of a flight
in order to determine the correct measure to use in our anal-
yses.

The bee’s positional uncertainty increases monotonically
and smoothly during the flight (bottom line figure 1B). The
only deviation from this pattern occurs towards the later por-
tions of the flight when close inspection reveals occasional
small reductions in uncertainty. The increase in uncertainty
reflects any noise effects or inaccuracies in our process/motor
model and the small reductions in uncertainty relate to sec-
tions of the flight when the bee is able to re-orient itself rel-
ative to the landmark.

The estimated landmark uncertainty shows a different
pattern, starting high and reducing at a fairly constant rate.
The reduction in the landmark uncertainty due to each mea-
surement is determined by four things, namely the prior level
of uncertainty in the landmark estimate, the level of uncer-
tainty of the bee’s positional estimate, the accuracy of the
measurement (determined by the measurement noise), and
finally on the movements that are executed by the bee. The
initial rapid reduction in uncertainty is mainly due to the bee
being very certain of its own position and to the relatively
large movement across the retina of the landmark due to

its close proximity. As the flight progresses the reductions
in uncertainty become smaller. This is due to the increased
uncertainty in the bee’s own positional estimate and to the
smaller relative movements that occur at greater distances.

If bees do map salient visual features in a way that can
be modelled using SLAM, and use such maps to re-orient
when features come back into view, then it is the estimated
landmark uncertainty that is the correct measure of learn-
ing efficacy to use in our analyses. The reasoning is as fol-
lows. Following a learning flight the bee leaves the imme-
diate nest locale for its foraging flight. During this flight its
positional uncertainty will increase due to inaccuracies in
estimating ego-motion. In contrast the map entries for any
landmarks learned during the learning flight will remain un-
changed while out of view. If the learning was effective then
the estimated uncertainty will be highly correlated with the
accuracy of the map entry. In this way the uncertainty in a
landmark estimate should give a measure of how effectively
the bee has been able to learn the position of the landmark
and consequently how well the bee will be able to re-orient
when the landmark comes back into view. Given this rea-
soning, it is the uncertainty in the landmark estimate that
proves relevant for our analyses, since this measure reflects
how suitable a given set of movements were for learning the
position of a particular landmark. It is this measure of un-
certainty in the positional estimate of the landmark we use
throughout the rest of this paper.

3.2 Acquiring behavioural data

The data consist of 37 separate recordings of bees exiting an
inconspicuous nest entrance that is positioned on a feature-
less but textured 180cm×150cm board containing a single
conspicuous landmark in the form of a small black cylinder.
A camcorder (Sony HDR HC7E) was suspended from scaf-
folding oriented along a WSW and ENE axis 2 m above the
table (figure 2A). A separate tape-deck or second camcorder
fed by the camcorder above the nest-hole served as a data
recorder. The camcorder recorded at 25 frames per second.
Frames were split to avoid interlacing and to improve the
temporal resolution to 20 ms. The information from digital
tapes was transferred to a hard drive using Adobe Premiere
Pro.

Orientation flights are performed over the first 5-10 de-
partures of a foraging bee from its nest. We recorded the arc-
ing behaviours that the bees performed up to the point when
they flew out of the camera’s field of view. The field of view
was 1020×698 pixels corresponding to an approximate ROI
of 1000 mm by 700 mm. Results figures throughout use this
ROI. Software written in MatLab extracted a bee’s horizon-
tal coordinates in terms of the centre of mass of the bee’s
image. The program also determined the compass orienta-
tion in which the bee faced. The orientation of the body axis
is given by the major axis of the bee’s image with the head
end identified from both the shape of the image and the di-
rection of movement between frames. The program allowed
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Fig. 2 A: A commercially available bumblebee hive is positioned underneath a featureless but textured 180cmx150cm board containing a single
conspicuous landmark in the form of a small black cylinder. The bees enter and exit through an inconspicuous entrance that is positioned a small
distance from the landmark. A camera was positioned on a frame and pointed down on the board in order to record the positionand orientation
of the bees during the initial phase of their foraging trips.B: An example of a bumblebee flight recorded with this set-up. The ball and stick icons
represent the head position and body axis of the bee at 20ms intervals. The black circle represents the position of the 5cmdiameter landmark.
All distances are measured in mm. The nest (open square) is at(0,0) and the landmark (open circle) is at (125,0).C: The upper and lower traces
represent the bee’s distance away from the nest entrance andthe bee’s speed respectively. These parameters were used (see Methods) to determine
the end of the first phase of bees’ flights (red markers inB).D Density plots showing the distribution of bee positions across all 37 flights for the
first (top) and second (bottom) phases. The scale indicates the overall number of time-steps for which a bee was present ata given position in the
ROI. The nest (open square) is at (0,0) and the landmarks (open circles) were at approximately (125,0). All distances aremeasured in mm.

the computed values to be checked and when necessary ad-
justed by hand. The accuracy of the positional data was±
1mm and the orientation data was± 5 degrees. A typical
example of a flight is shown in figure 2B. We only have hor-
izontal positional information as height was not monitored,
however we observed that the bees fly close to the table for
most of each learning flight. Height is only gained towards
the end of the recorded flight segments.

Most orientation flights follow a similar pattern. An ini-
tial phase where bees are very close to the nest entrance and
moving slowly is followed by the bee moving away from
the nest entrance and commencing the characteristic arcing
behaviour. To ensure our results were not dominated by the
initial phase where the bee is very close to the nest, we per-
formed our analyses on the whole flights and on each phase
separately. As there were some occasions when the bee con-
tinued the first phase behaviour of slow flight close to the
nest after a brief foray away from the nest, we could not
simply decide the phases based on distance to the nest. We
therefore defined the end of the first phase as the point where
the distance from the nest multiplied by the squared veloc-
ity exceeded 500. This ad hoc approach divided the flights
into distinct behavioural sections, in which the second phase
was not dominated by the bee adopting positions close to
the nest. Figure 2C shows the velocity and distance traces
for the flight shown in figure 2B. The first phase is marked
by red icons in 2B and a grey area in 2C.

3.3 Which parts of the world do the bees view?

For our analyses we need to know the extent of the bum-
blebees’ horizontal visual field. For each frame of the video
we took the bee’s position and horizontal body axis orien-
tation and used this to infer which parts of the environment
were in view, which were being occluded by the bee’s own
body, and which parts were being viewed binocularly. Mea-
surements are not available for the frontal binocular region
and for the posterior occluded region in bumblebees and we
have taken values based on the honeybee (30) adjusted for
the larger body of the bumblebee. We therefore use a value
of 30◦ for the frontal binocular region and 55◦ for the poste-
rior occluded region.

Each pixel in the image was scored according to the fol-
lowing criteria; 0 points for occlusion and 1 point for being
in view and 2 points for pixel positions that were viewed
binocularly2. A running total was maintained for each pixel
over the course of a flight. The final totals were used to
create a 2D frequency histogram that showed which parts
of the environment were viewed most often. We performed
similar analyses using only the frontal 20◦ as the region
in view and also without treating binocular regions differ-
ently. These analyses produced qualitatively similar results
to those presented and are therefore not reported here.

2 In a noiseless system there is no benefit to making multiple mea-
surements of the same point in space, the situation changes however
when we consider noisy measurements.
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3.4 What optic flow is generated by flights?

From the bee’s position and velocity we can infer the optic
flow that would be generated by a visual feature at a given
position. For each time-step (t) we calculated the change in
retinal position, from time t-1, for hypothetical visual fea-
tures at every position within our ROI. Since any optic flow
produced by the bee’s own rotations will be uniform across
the entire retina it will provide no cues to depth. High speed
and high magnification recordings show that wasps segre-
gate translational and rotational movements during orienta-
tion flights. They punctuate spells of translation when they
hold a constant body orientation with brief saccadic turns
(49). With this in mind we calculated both the total optic
flow and the optic flow that resulted from purely transla-
tional movements. We then considered two different ways
of measuring the optic flow that would be produced by each
point in space, given the recorded flight trajectories. We first
considered which points in the world consistently generated
perceptible optic flow. As a measure of consistency we keep
a cumulative score for each position representing the total
number of frames where a landmark at that location would
generate optic flow less than 100degs−1. This upper bound
is set by the blur velocity of the bee visual system, which
is dependent on the spatial and temporal resolution of the
compound eye (21). We set no lower bound on what con-
stitutes behaviourally relevant optic flow since any signal
that can be measured should provide some information. We
also measured the total magnitude of optic flow by summing
the optic flow signal across all time-steps in which the optic
flow was less than 100degs−1. This resulted in four different
measures of optic flow.

4 Results

4.1 Visual Consequences of Flight Structure

In accordance with previous descriptions of the orientation
flights of flying insects, bumblebees in this set of flights
tended to face the landmark and nest whilst gradually back-
ing away from them performing arcs of increasing radius.
Consequently, the area of the environment viewed most of-
ten is a triangular region emanating from the nest roughly
symmetrical about the landmark (figure 3). The results for
three typical flights, having short, medium, and long dura-
tions, and summary data for all flights show the same general
structure. Additionally, we observed that orientation flights
seemed to be composed of two phases (figure 2 C,D). In
an initial phase, the bees remained close to the nest, moved
slowly often rotating as if to scan the entire visual field.
During the second phase bees flew a series of arcs, with
both speed and distance from the nest gradually increas-
ing. As these phases could be functionally distinct, here and
throughout we have augmented our analysis of the entire
flights by also examining these phases independently. When
considering which parts of the environment are viewed most

often, the results are qualitatively similar for both flight phases
(figure 3 B,C). The major difference comes from the in-
creased arc lengths later in the flights when views tend to
be more focussed on the region between nest and landmark.

The bees flights are thus structured so that the area be-
tween nest and landmark is viewed most often. If however,
viewing this area were all the bees were trying to achieve
then it is unlikely that we would see any other structure in
the data. We next examine the optic flow generated by the
flights.

Figure 4 shows two different measures of optic flow, total
magnitude and overall consistency, for movements with and
without rotations. When translational and rotational move-
ments are considered together the two measures of optic flow
produce broadly similar distributions (figure 4A,B). We ob-
serve a clear bias towards the area containing the landmark,
indicating that this region produces both a consistently per-
ceptible and large optic flow signal. However, when we con-
sider only translationally induced optic flow as might be pro-
duced during the translational phase of a body saccade, the
two measures produce qualitatively different distributions
(figure 4C,D). Measuring the magnitude of the signal results
in a symmetrical distribution centred on a region midway
between the nest and the landmark (figure 4C). In contrast,
measuring the consistency of the signal results in a mini-
mum at the nest position, with regions behind the landmark
consistently generating perceptible flow.

Considering the implications of these results for how
well each flight is structured for learning the landmark posi-
tion begs the questions of what optic flow bees use, how they
use it and how it might be extracted. Zeil et al. observed that
wasps seem to keep the image of the area around the nest as
stationary as possible during their learning flights (48). This
is broadly consistent with figure 4 A and B. In a subsequent
paper Voss and Zeil (40) show how behavioural routines that
combine rotations and translations could facilitate the ex-
traction of depth information by performing movements that
produce informative patterns of optic flow. The patterns of
optic flow produced by our flights are dependent on which
measure we use. This highlights the difficulty of interpreting
optic flow: Is high or low optic flow useful? Determining and
justifying what constitutes behaviourally relevant optic flow
and the difficulty in deciding how to measure its informa-
tional content provides motivation for our use of probabilis-
tic SLAM.

4.2 Analysis of Flight Structure using Probabilistic SLAM

There are two important features of our probabilistic SLAM
model. Firstly, as the agent learns the position of a visual
feature in the environment it also maintains an estimate of
the uncertainty of this estimate. This uncertainty value can
provide a quantitative measure of the utility of a particular
flight structure for learning the position of a visual landmark.
If the learning is effective then uncertainty should be highly
correlated with accuracy and so the uncertainty in a land-
mark estimate should give a measure of how accurately the



9

 

 

−200

0

200

0

50

100

150

200

 

Y
 P

o
si

ti
o
n
 (

m
m

)

 

0

100

200

300

 

 

0

200

400

600

800

A

T
o
ta

l 
#
 T

im
es

te
p
s

  
  
  
  
in

 V
ie

w

B

 

 

−200 0 200

−200

0

200

0

50

100

150

X Position (mm)

 

C
 

−200 0 200

100

200

300

D

 

 

−200 0 200
100

200

300

400

500

A
v
er

ag
e 

#
 T

im
es

te
p
s

  
  
  
  
  
  
in

 V
ie

w

Fig. 3 A. Density plots of the frequency with which each location in the environment is viewed during single short, medium and longorientation
flights (left to right, respectively). Bee position and orientation are shown every 20ms as ball and stick. All distances are measured in mm. The
nest (open square) is at (0,0) and the landmark (open circle)is at (125,0). Lighter regions are viewed most often. Scalesvary due to sample size
differences.B-D. Combined data for 37 flights showing first phase, second phaseand entire flight, respectively (see methods for description of
phases). Landmark positions (black circles) varied slightly between recordings. Again lighter regions are viewed most often.

X Position (mm)

Y
 P

o
si

ti
o
n
 (

m
m

)

 

 

−200

0

200

130

140

150

 

 

150

160

170

 

 

−200 0 200

−200

0

200

150

200

250

 

 

−200 0 200
250

300

350

400

450

A
v
er

ag
e 

T
o
ta

l 
M

ag
n
it

u
d
e 

(R
ad

/s
ec

)

 A
v
er

ag
e 

#
 T

im
es

te
p
s

P
ro

d
u
ci

n
g
 O

p
ti

c 
F

lo
w

W
it

h
 R

o
ta

ti
o
n
s

T
ra

n
sl

at
io

n
s 

O
n
ly

Magnitude Consistency

A B

C D

Fig. 4 Four different measures of optic flow. Combined data for 37 flights.A,B. Magnitude and consistency of optic flow for combined rotational
and translational movements.C,D. Magnitude and consistency of optic flow for purely translational movements (see text for details). All distances
are measured in mm. The nest (open square) is at (0,0) and the landmark (open circle) is at (125,0). Landmark positions varied slightly between
recordings.



10

 

 

−200

−100

0

100

200

5

6

7

8

9

Y
 P

o
si

ti
o

n
 (

m
m

)

A

 

 

5

6

7

8

9

 

 

5

6

7

8

9

 

 

−200 0 200

−200

−100

0

100

200

5

6

7

8

9

X Position (mm)

B

 

 

−200 0 200
5

6

7

8

9

C

 

 

−200 0 200
5

6

7

8

9

D

F
in

al
 U

n
ce

rt
ai

n
ty

A
v

er
ag

e 
F

in
al

 U
n

ce
rt

ai
n

ty
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bee will be able to re-orient when the landmark comes back
into view. Our analysis involved, for all flights, running the
model multiple times to simulate how learning would have
progressed for all possible landmark positions. Comparison
of the final uncertainty values for different fictive landmark
positions, tells us where in the environment a visual land-
mark would be learnt most accurately for a given flight.

The second key feature of our approach is that by using
a closed-loop model, we capture the sensory consequences
of movements. The impact that particular movements have
on positional estimates is automatically incorporated. We
do not need to make assumptions about which movements
might be useful to the agent but instead only consider the
effects of a flight structure on uncertainty reduction. This
means that we do not need to classify movements as, for in-
stance, peering or pivoting, we simply consider the utility of
that movement in terms of reducing positional uncertainty
(eg see Figure 1).

Figure 5 shows a SLAM analysis of the three exam-
ple flights together with an analysis of the combined data
from all flights in out dataset. We did not normalise the indi-
vidual uncertainty maps prior to combining them since this
would have biased our results in favour of the shorter flights
during which the arcing behaviours were less prominent.
Moreover, the uncertainty maps for individual flights had a
similar range of values so we simply calculated the mean
value across all flights for each position within our ROI. The
SLAM analysis suggests that the region around the nest en-
trance would be the region that would be most effectively

learned given the recorded flights and our assumptions about
the bees’ sensor and motor capabilities. Again, we see no
observable bias towards the position of the landmark. This
analysis therefore also argues against the hypothesis that the
bees are attempting to specifically learn about the position
of the landmark by structuring their flight to extract depth
information in an optimal or even near-optimal way.

To help us interpret the uncertainty maps of figure 5
we also looked at the uncertainty maps that would be pro-
duced by artificial flights. The artificial flights were gen-
erated by taking a recorded flight and changing the view-
ing direction and direction of movements, while maintain-
ing the same speed profile. Figure 6 shows the uncertainty
maps generated for three illustrative artificial trajectories,
a straight flight, and nest or landmark centred spirals. To
assess the impact of viewing direction we simulated three
looking directions for each trajectory: in the direction of
movement and fixating the nest or landmark. There are sev-
eral points of note. Firstly, the starting position has a strong
influence on the final uncertainty map. In the straight flight
when the agent faces forward (top left), despite the fact that
the start is viewed less often than the end of the flight, the
minimum is clearly at the start of the trajectory. The two
other straight flights (top middle and right) show the more
subtle effect of changing the viewing direction. It is possible
to induce an asymmetry in the map by varying the viewing
direction, however the minimum clearly remains centred on
the starting position. Secondly, it is possible to shift the focus
of the uncertainty map. When the spiral flight is landmark
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Fig. 6 SLAM analysis of artificial flights showing the effects of viewing direction and flight structure. The top row shows a straight flight, the
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are measured in mm. The nest (open square) is at (0,0) and the landmark (open circle) is at (125,0).

rather than nest-centred, the uncertainty distribution changes
and the region containing low uncertainties is clearly biased
toward the landmark. Overall, it is evident that the path of
the flight has a much stronger influence on the final uncer-
tainty maps than viewing direction and it would be straight-
forward to design a flight where the landmark location was
learnt most accurately.

4.3 Varying the field of view

Anecdotal evidence suggests that during visuo-motor behaviour
the frontal retina is important. In a final analysis we look at
varying the field of view between±10◦ up to a full 360◦

to investigate what effect this has on the uncertainty maps
in our SLAM simulations. Figure 7 shows a summary of
the results for five different fields of view. The first thing to
note is that irrespective of the field of view the uncertainty
is always lowest for the area centred on the nest. However,

when we look in more detail we see that a smaller field of
view induces asymmetries in the resulting uncertainty map.
This asymmetry is made clearer in figure 7B which shows
the final uncertainty for fictive landmarks along a circle cen-
tred on the nest [shown in white in figure 7A]. For narrow
fields of view,±10◦and±45◦, there is a clear asymmetry
with a minimum centred on the true bearing to the landmark
from the nest. For wider fields of view the reverse pattern is
found, with the minimum at a bearing of 180◦ relative to the
true bearing to the landmark from the nest. The difference
in the mean uncertainty (figure 7C) for fictive landmarks at
0◦ and 180◦ bearings is very small but significantly differ-
ent (t-test,P<0.05) for all fields of view. The slight decrease
in uncertainty for the position opposite to the true landmark
position is due to the bee backing away from the landmark
and therefore flying closer to this point. The asymmetry that
we see for narrower fields of view is probably due to the bees
maintaining the landmark in the frontal part of their visual
field as they back away from the nest.
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5 Discussion

Orientation flights have been proposed to aid learning in sev-
eral ways. For instance, it could be that the flight simply
keeps the bee in the vicinity of the nest, thus enabling it to
sample the visual environment in this region many times. A
second hypothesis is that the flights facilitate the acquisition
of 2D images of the world (snapshots), possibly at the ends
of the arcs (6; 7).

The first hypothesis is clearly compatible with our data
although it fails to explain the arcing behaviour that is so typ-
ical of these flights. It is not clear to us how we could test the
second hypothesis with our current approach. We therefore
leave open the possibility that the structure and function of
the flights is related to learning snapshots. Our approach can
however be applied to examining a third hypothesis, namely
that the arcing structure of the flights is optimised for mea-
suring the distance to conspicuous landmarks in the imme-
diate vicinity of the nest (4; 23; 24; 47; 8).
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The aim of our study was to determine to what degree
the structure of orientation flights is consistent with bees
learning a metric representation of their environment. To
do this we asked whether the flights were, in some well
defined way, optimised for learning the position of a sin-
gle conspicuous landmark. The key analyses assessed which
parts of the world consistently generate optic flow and which
parts would be learnt effectively through a map-based fea-
ture tracking framework.

Our analysis of optic flow proved problematic. It is not
clear how we can relate any of our measures of optic flow to
the accuracy with which a bee might learn the position of a
landmark, thus motivating our use of SLAM.

The SLAM analysis of flights shows little or no bias to-
wards the actual landmark position. Instead, for our flight
paths, positions of fictive landmarks near the nest entrance
were consistently learnt more accurately than those near the
actual landmark position. We conclude therefore that although
bees are clearly influenced by the landmark, in that they
preferentially maintain it in their field of view, the focus of
learning appears to be only very slightly influenced by the
landmark position.

That learning is centred on the nest is perhaps unsurpris-
ing. That there appears to be only a very subtle bias towards
the position of the landmark argues against the hypothesis
that the flights are specifically structured so as to learn about
the position of the landmark. When we restrict the field of
view of the simulated bee (figure 7) the actual landmark po-
sition now has a lower uncertainty than other positions at the
same distance from the nest. While the difference in uncer-
tainty is consistent, it is small and we do not yet know if
bees preferentially use their frontal field for landmark guid-
ance and so it is hard to assess the behavioural significance
of this result. Moreover, even in the case of the highly re-
stricted field of view, positions close to the nest have by far
the lowest uncertainty.

Learning flights in ground-nesting bees and wasps are
known to have a distinct 3D structure, with the insects gain-
ing height and horizontal distance from the nest at roughly
the same rate (46; 48). However, for the flights we observed,
the bees maintained a fairly constant height throughout the
portion of the flight that we were able to record. Given a
3D trajectory, a SLAM analysis could equally well be per-
formed in three dimensions. If we included height we would
expect to see a similar pattern of results to the ones we report
here, although we might expect to see higher uncertainty in
the height estimate due to the lower variation in movements
in this dimension. Interestingly, bees with a nest on a vertical
surface exhibit a more oscillatory vertical component during
their orientation flights. Rudolf Jander observed Euglossine
bees performing almost circular orientation flights outside
their arboreal nest entrance (18). It would be interesting to
apply a SLAM analysis in 3D to these flights to see whether
learning was focussed on the nest in the third dimension in
the same way as we have observed for movements in the
horizontal plane.

In this paper we have introduced an approach derived
from probabilistic SLAM to analyse bee orientation flights
and investigate whether they are structured to efficiently learn
the positions of the landmarks that are available in a given
terrain. Our analysis focussed on the accuracy with which
fictive objects at different locations would be localised. We
showed that our flights are not optimised to learn about the
position of a prominent landmark, but are more suited to
learn about objects near the nest. One of the benefits of this
approach is that we can vary the parameters of the sensor
and motor models to investigate different aspects of a sys-
tem in a closed-loop. This also allows the incorporation of
new information about the motor patterns and sensory capa-
bilities of bees or, indeed, other species, as and when they
become available. We contend that this approach provides a
powerful new tool for the study of active spatial learning.
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