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Abstract In this paper we provide an analysis of orientatiothe goal and that as the bees become more familiar with their
flights in bumblebees, employing a novel technique basedwsual environment they spend less time performing these
Simultaneous Localisation and Mapping (SLAM) a probasrienting behaviours until eventually they fly almost directly
bilistic approach from autonomous robotics. We use SLAlway (24). Experienced bees will however re-initiate orien-
to determine what bumblebees might learn about the lo¢ation flights if they have trouble finding the goal (38; 41).
tions of objects in the world through the arcing behaviours Many previous authors have made the observation that
that are typical of these flights. Our results indicate thatevhthe sideways arcing movements that are typical of these flights
the bees are clearly influenced by the presence of a conspigguld be suitable for measuring depth through motion par-
ous landmark, there is little evidence that they structure thaifax (4; 23; 25; 7; 8; 46; 47). Lehrer and Collett (25) inves-
flights to specifically learn about the position of the landigated what depth cues bees learned during their approach
mark. to a feeder and during their TBL flights when leaving. Bees
were trained to collect a reward from a feeder that was lo-
cated in a fixed position relative to a cylinder. In three ex-

1 Introduction perimental conditions, bees were able to view the cylinder:
only on their approach to the feeder; only on their depar-
1.1 Orientation flights in bees and wasps ture; or, during both approach and departure. Probe tests

demonstrated that bees that viewed the cylinder only on ar-
When bees and wasps first leave their nests or a prodtigal learned its apparent size whereas bees that viewed the
tive food source they perform a series of stereotypical flighylinder on departure learned the absolute distance. Bees
manoeuvres referred to as orientation flights (39; 1; 37; 4bat were able to view the cylinder on arrival and departure
46; 2), or Turn Back and Look (TBL) flights (23; 24; 25) learned both apparent size and absolute distance, with ab-
Immediately following take off they turn to face the placesolute distance providing the primary cue during the initial
of interest and fly a series of arcs of increasing distanpbase of learning and absolute size becoming more impor-
roughly centred on the goal. It is known that disruption dé&nt later on.
these flights affects the bees’ ability to successfully relcat These observations beg the question of how visual in-
formation is used during these flights. The results discussed
above clearly implicate TBL flights in learning about the
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over the years and is still regarded as an open question (26;
1 Jander (18) characterises orientation flights as havinglfetinct  14; 15; 42; 43). Much of the debate centres on the cogni-
EE,"C‘VS?“S(;VTQSQL?;‘;Z%SE 'fso?lgcvzggqaegg‘gg}f;tsa;gﬁmﬂ tive demands and the utility of learning such map-like rep-
the remainder of this paper any reference to orientatiomt8igvill resentatlons. given the short lifespan and limited neural re-
relate to the small scale TBL behaviours that the bees paréorfirst - Sources available to insects. In contrast, we approach the is-

leaving their nest. sue by examining whether the stereotypical arcing manoeu-



vres observed during TBL flights are optimised for learningay as to learn positional information, a probabilistic anal-
the metric information required for a map-like representgsis should reveal changes in uncertainty estimates associ-
tion of the world. ated with the landmarks. As described in the next section,
TBL flights potentially provide cues to depth in at leastve have adapted SLAM, a powerful probabilistic framework
two ways. Firstly, the movements produce patterns of optieveloped in mobile robotics, to provide quantitative tools t
flow across the whole visual field that allow landmarks tstudy bee flights within a Bayesian framework. Because the
be ranked according to depth (4; 47). Alternatively, the pogiobabilistic robotics framework, which was specifically de-
tions of a discrete set of visual features or landmarks cowéloped to deal with closed loop sensorimotor behaviour, is
be learned without the direct use of optic flow. By trackingo general, it can be readily adapted to the study of insect
the path of individual features across the retina and comblyehaviour.
ing this information with information about ego-motion, an
estimate of the position of each of the features could gradu-
ally be built up. Each time a feature is viewed, the estimate3 Probabilistic Robotics and SLAM
of its position could be updated and improved providing
an increasingly coherent spatial representation of the worldver the past fifteen years or so, approaches based on proba-
Maintaining such a representation would allow the bee hilistic inference have become prominent in mobile robotics,
re-orient upon viewing familiar landmarks in the vicinity ofparticularly in map building and navigation. The mapping
the goal. This is consistent with the observation that experoblem involves a period of exploration during which a
riencing a prominent landmark en route narrows the seandbot builds a map of its environment that can then be used
distribution of returning bees (33). for accurate navigation. A related problem is that of localisa-
tion - the ability of a robot to determine where it is, relative
to a map, from its sensor readings. Most work in this area has
concentrated on the Simultaneous Localisation and Mapping
(SLAM) problem (31; 12; 13), also sometimes known as the
pfgneurrent mapping and localisation problem (34). This re-
rrgéjires a mobile robot, when placed at an unknown spot in an
of Bayesian inference and estimation, a framework that c Hknown efn\r/]lronm_e nt, to mcrerrr:entally c.onstrch a consis-
handle the inherent uncertainty and noise in the natural wo. ?(T;[ map oft eﬁnwronmznt att g Sallmt;l time as er:ermtl)mng
For instance, many authors argue that a framework baétéggg?r'%nfg: (t:e?t;?r?%pegLefa;nv?r%n?nepr:?s,géiisd sacljutigﬁg
on Bayesian inference is highly suited to modelling and u 5 the problem have been found (13; 27: 10). Nearly all these

derstanding vision, as itis capable of dealing with the co olutions rely on probabilistic models of the robot and its
plexities and ambiguities of natural images while accougntir? . y P o . L
environment, and employ probabilistic inference in building

for fundamental perceptual tasks such as recognition (eg. s from the robot's sensor readinas
(44; 22)). More specifically, Cheng et al. (5) review numer- P gs-.

ous instances of integration of spatial cues in diverse sp;ec'&g-rhe success of the probabilistic approach stems from the

1.2 The Bayesian brain

There is growing evidence that many aspects of sensori
tor behaviour in animals can be closely modelled in ter

including insects, and show that the ways in which the cu t that the mapping problem is inherently uncertain and

e combined closely alous a Bayesian rprtaon (125 5572 S 0% 8 1900, ovement The b,
perception. Courville et al. (9) show how a Bayesian a PP P

proach provides a principled interpretation of conditionin
in animals in a changing world, specifically the finding th??

surprising events provoke animals to learn faster. Kordi er time using incoming sensor measurements and a math-
and Wolpert (19) show that action selection in human mg- ~_ 9 9 . e
matical process model as outlined below. In probabilistic

tor behaviour is close to that predicted by Bayesian de%—

m rather than ignoring them or trying to hide them. The
g/erall approach is to use recursive Bayesian methods to
ild up estimates of unknown probability density functions

sion theory, which defines optimal choice in a world chara rms the SLAM problem requires the following probability

terized by uncertainty. The success of such models has %Inbutlon to be computed for every time

some to speculate that brains possess neural circuitry thaf |7t Ut xo) 1)

does something very close to estimating probability distri-

butions (20); indeed Rao has demonstrated that small rediMhere the vectok; represents the system state describing

rent networks of noisy integrate-and-fire neurons can pémth the robot (robot position and orientation etc.) and perti-

form approximate Bayesian inference (29). For further daent information about the environment (usually landmark

tails of such approaches see the wide ranging review in (1@cations, but more complex metric relationships describ-
The success of such Bayesian interpretations suggest thgtvarious aspects of the geometrical layout of the envi-

if the bees in the study described here are learning the posiiment are also sometimes usegf) andU! represent all

tion of the landmark as part of some metric representatisansor readingg;, and motor controls, from timet =0

of the environment, it is reasonable to hypothesize that thetil the presenZ! = {29,z ...z },U' = {ug, uy, ...t }. Thus

are doing so in a way that can be closely modelled in terraguation 1 is the conditional probability density of the sys-

of Bayesian estimation. If the flights are structured in suchi@m state, given the recorded sensor inputs and the motor



controls, along with the initial position of the roba. Us- 2 Methods
ing Bayes Theorem it is possible to recast this distribution in

terms of the following recursive equation (35): 2.1 A probabilistic solution to the SLAM problem

P(x|Zt Ut x0) = nP(zIx /P s |5 The essence (_)f the SLAM approach for a visually g_uided
(4]Z,U%x0) = nP(z[x) [ POt -1, ) agent is to estimate the current state of the system (i.e. po-
P(x_1]|Z"71, UL xo)dxe_1 (2) sitions etc. of the agent and all landmarks in the world) us-

ing a two-step procedure which importantly also attempts to

Wheren is a normalising constant. This equation inguantify the uncertainty of each estimate. Firstly the state
volves a probabilistic motion modeR(x;|x;—1,ut), which estimate, together with a covariance matrix that reflects the
assumes a Markov process in whighdepends only on the uncertainty in the estimate, is propagated forward in time
previous positionx;—1, and the applied motor contraly, using a process or movement model that defines how the
as well as a probabilistic sensor observation mdelg,|x;), agent’s state (position, velocity etc.) changes in respamse t
which describes the probability of making sensor observa-control input. Following this, a (noisy) measurement of
tions when the robot location and the map are known. Salt visible objects is made and used to update the state and
lutions to the SLAM problem involve finding appropriatecovariance estimates once again. Here, both update steps are
representations for the motion and sensor observation matdplemented through an Extended Kalman Filter (EKF), the
els such that the various probability densities can be calenest common approach for non-linear state estimation.

|ated Via ef‘fiCient I’ecurSive procedures. The most common The process and sensor mode's are therefore Crucial and
approaches use an Extended Kalman Filter (EKF) (17) ofifsir accuracy determines how the uncertainty in the system
more general particle filter (28). evolves. In the first stage, uncertainty in the agent's position
will increase, due to inaccuracies and noise in the process
. model while state and covariance estimates of object posi-
1.4 Outline of the paper tions are unchanged as they are unaffected by agent move-
ment. In contrast, the measurement phase acts to reduce the
In this paper we use the SLAM framework in a different wayincertainty in the entire state estimate, with reduction in un-

By running a SLAM simulation with the recorded flight tracertainty being determined by the accuracy of the measure-
jectories as the movements that are made and using a mefghts.

of a bee’s visual system as a sensor observation model to-

gether with a very general probabilistic motion model, we

can examine which parts of the local environment would be

mapped most effectively. Here probabilistic SLAM becomesq 1 The Qate and Covariance
a tool for analysing noisy behavioural data to investigate

whether the structure of TBL flights is consistent with beelsne statecdf the system is a vector containing both the state

Ie_arning a metric _representation_. To use_this ap_proach Yfthe agenk, and the positions of all tracked featungslfi
simulate the learning of a map given particular flight strug

. : X . 272 our current implementation we chose to track a single fea-
tures. The uncertainty values associated with entries in

X ; . N #ffe in each of our simulations. By changing the position of
map provide a direct measure of the efficacy of the ﬂ'gh[his one feature we are able to examine how the recorded

or parts of the flight, for learning about that position in thf’fi ht trajectories affect learning of all possible fictive ob-

map. Note that this analysis does not depend on bees uﬁé positions within a region of interest (ROI) defined as the

fsquh m?ps. Ilt Slr?p')t/ pfrtoa/ldl;es ‘,”‘ method fotr analysing t ffea viewed by the camera. The state vector is paired with a
informational content ot th€ bees movements. .covariance matrixP, partitioned as follows:

We have recorded trajectories of bumblebees performing
orientation flights on leaving their nest in the presence of a
single conspicuous landmark in order to examine what the
bees might be attending to and learning. We analyse these

flights in terms of generated optic flow and their potential Xy Bx Pyr  Byz -
for learning metric information about the positions of visug) _ | Y1 p_ | Bax Ry Rayz - 3)

features. If bees are attempting to learn metric information | Y2 |’ Rex Razy1 Rayz -
about the landmark, we would expect the structure of the : oo :
flights to show some bias towards learning about the depth
structure of the world at or near to the position of the land-
mark.

In the next section we describe the SLAM approach to
learning and how we acquired the flight data to which wé&/hereR; represents the covariance between the state vari-
have applied our analyses. Finally we report our results aablesi and j. The choice of representation and the frame of
conclude with a discussion of their implications. reference of the state are both arbitrary.



2.1.2 The Process Model position and orientation can be made using the video record-
ings. Therefore in this instance the measurement noise re-

The state and covariance are updated following a moveméatts both the limited acuity of the bee’s visual system and

of durationAt using the following equations: the limited accuracy with which positional information about
the bee can be determined from the video data.

Xiv1) = F(Xe), U, At)

of _ afT
Pts1) = &F’m& +Q (5)  Following a measurement, the Kalman gainyV, is calcu-

. ] ] N ) lated and used to update the state and covariance estimates
where,f is a differentiable state transition function, that mapging:

the state estimatey, ‘and control inputsy, at timet, into a

2.1.4 Updating the State

subsequent state,7. A matrix describing the process noise oh'
Q:, together with the Jacobian of the state transition functid = PW S 8)
(g—i) is used to update the covariance maRix R R

The process noise is intended to account for any uk+1 =% +W(z —hj) 9)
modelled movements and is given by: -

. Bi1=R-WSN (20)
of of

Q= 0utUt % (6)

3 The probabilistic framework applied to orientation

wherel; is the diagonal covariance matrix af flights

2.1.3 The Measurement Model As we stated earlier we do not suggest that bees necessarily

form the sort of maps that are used in SLAM. However the
g proach provides a tool to quantify the information about
e environment that a bee might extract on a given flight. By
placing the measurement model that describes a camera’s

L . : tics with one that describes the optics of a bee, and sim-
activations given the current state estimate. For example, ly, replacing the process model with a motor model that
suming a very simple ray tracing model of the visual sygrscripes the bee's movements we can construct a closed-
tem whereby a measurement can be made if there is algeBp system for investigating active vision. The SLAM sim-
rect line of sight to the measured feature. Then the measytg;iion using simple models of the bees’ sensory and motor
ment model provides a prediction of the direction to the fez apijities was run in parallel with the transcribed video
ture given the current estimates of the agent's position ta
orientation and the position of the feature. In the case o

. . s ! L a For clarity, it is worth restating that in our simulations
simple ray tracing model of vision, this calculation involve§,e o1y ever track a single feature and that the position of
straightforward trigonometry.

A I int predicti f1h th this feature need not coincide with the true position of the
S Well as a point prediction of the measur_emhm '€ Jandmark. By changing the position of a fictive feature and
measurement model allows us to calculate the innovation (Fﬁ’ferring where on the bee’s retina its image would fall we
variance matrix§. The innovation covariance matr& rep-

s th ted ainty i meand | are able to examine how the recorded flight trajectories af-
resents the expected uncertainty in measuremeand IS - ¢ ¢ learning. In the uncertainty maps of figures 5 and 7 each

As with the process model, in the EKF framework the me
surement model need not be linear but must be differ
tiable. The measurement model provides a model of the sg
sor array and allows the prediction of the expected sen

given by: pixel represents the final uncertainty in the positional esti-
mate of a fictive landmark at that pixel location following
ohi _ on'" on_ onT the simulated flight, given that the landmark was visible.
S= % *ax + % wa + For the sensor model we assume that the bee is able to
v e v . observe a given feature if it falls within the field of view
ohip ohi ohip ohit o (7y @and there is a direct line of sight to it. We further assume
ay, Mox,  ay, " oy, that the measurement noise and therefore the visual acuity is

h oh ) ) fixed. For the majority of our analyses we assume a function-
where, 5 and 5ot are the Jacobian matrices of the meaylly uniform retina, meaning that measurements are treated
surement model with respect ¥ andy; respectivelyRx, equally irrespective of where on the retina they are made.
Pyi, Rix andRjyi are sub-matrices d?, andR is the mea- In a later analysis we look at the effect of restricting the in-
surement noise covariance that describes the accuracy offibeto the frontal retina. The motor model that we employ
measurements. assumes that we do not have access to the control input. In-
The accuracy with which measurements can be inferrsttad it is assumed that all forces and torques that act on
is limited by the accuracy with which estimates of the beetbe bee are small and normally distributed around zero (11)
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Fig. 1 A An example of how the estimated uncertainty in a SLAM basetukition of a real flight evolves during the course of a flight.
Uncertainty in the landmark positional estimate and therege of the uncertainty in the bee’s position are represkhy ellipses and shown
at several instances throughout a sample orientation fightlistances are measured in mm and the timestep was 0c@2ds. The nest (open
square) is at (0,0) and the landmark (filled circle) is at (023 The bottom panel shows the evolution in uncertainty overcthase of the
flight shown inA. The top line shows how the uncertainty of the whole systeweldes, the middle line shows the uncertainty in the estnoét
the landmark position and the bottom line shows the bee'gipoal uncertainty.

S0 at each time-step the velocity is assumed to remain ctime observed movements. The variance of the measurement
stant while the covariance of the state estimate increasasise, R, needs to be able to account for both the limited
This very simple and general motor model is sufficient tasual acuity of the beesy(6 degrees (32)) and the limited
implement SLAM and allow our analysis of the orientatiomccuracy with which it is possible to determine the position
flights. and orientation of the bees from the video recording(

Setting the correct level for the process and measuremg@ggrees). R was therefore set to approximately 5 degrees.

noise is key to the successful implementation of probalalisti  ope aspect of the SLAM problem that we do not address
SLAM. The measurement noise should represent as closgl¥he issue of initialising the map estimates. In a standard
as possible the true accuracy of the measurements thatgram implementation operating in the real world deciding
made of the world and the process noise should reflect, aggifen and how to initialise a new feature into the map is a
as closely as is possible, the accuracy of the process moggh-trivial problem. Since it is not possible to determine the
Setting these values too high will result in slow convergenggstance to a feature given a single view of it, it is difficult to
of the map estimates resulting in poor performance. Settiftialise the map entry to a sensible value. Most approaches
them too low can result in catastrophic failure as the syst{aive a separate initialisation procedure whereby a feature
converges too quickly to an incorrect solution. will be tracked for a few frames prior to the feature actually
In order to set the value of the process noise covarianbejng added to the map. In our simulations we choose to
Q, we assumed a zero mean impulse model and measungihlise the map estimates at their correct value and to set
the squared difference between the model predictions ahd uncertainty in the landmark estimate to be high (100)



and the uncertainty in the bee estimate to be low (1.0). This close proximity. As the flight progresses the reductions
is intended to reflect that the bee knows the position of itséif uncertainty become smaller. This is due to the increased
relative to the nest when it exits the nest but does not knawmcertainty in the bee’s own positional estimate and to the
the position of the landmark. smaller relative movements that occur at greater distances.
Using this probabilistic framework we can follow orien-  If bees do map salient visual features in a way that can
tation flights, tracking how the structure of a flight reducdse modelled using SLAM, and use such maps to re-orient
the uncertainty in the bee’s estimate of its own position amghen features come back into view, then it is the estimated
of visual features within the environment. In figure 1A, thedandmark uncertainty that is the correct measure of learn-
uncertainties are represented as ellipses around the landniagkefficacy to use in our analyses. The reasoning is as fol-
and the bee’s positions. As the flight proceeds the unctows. Following a learning flight the bee leaves the imme-
tainty in the positional estimate of the bee increases whiate nest locale for its foraging flight. During this flight its
the uncertainty in the landmark positional estimate decreagesitional uncertainty will increase due to inaccuracies in
as measurements of the landmark are made. This caneltimating ego-motion. In contrast the map entries for any
seen between= 0.78 and = 1.5s, following measurements landmarks learned during the learning flight will remain un-
of the landmark which collapse the uncertainty perpendicchanged while out of view. If the learning was effective then
lar to the direction of viewing, and betweén= 2.96 and the estimated uncertainty will be highly correlated with the
t = 3.7s, where the bee moves perpendicularly to the line atcuracy of the map entry. In this way the uncertainty in a
sight to the landmark, reducing uncertainty in the directidandmark estimate should give a measure of how effectively
parallel to the line of sight. the bee has been able to learn the position of the landmark
and consequently how well the bee will be able to re-orient
_ _ when the landmark comes back into view. Given this rea-
3.1 Measuring uncertainty soning, it is the uncertainty in the landmark estimate that
proves relevant for our analyses, since this measure reflects
As figure 1B shows, the total uncertainty in the system, megow suitable a given set of movements were for learning the
sured in terms of the entrop, of the covariance matri®; position of a particular landmark. It is this measure of un-
1 certainty in the positional estimate of the landmark we use
H= §|09(2"d IP) (11) throughout the rest of this paper.

is divided between the bee and the landmark estimates, where
d is the dimension of the state estimate aR[is the deter-
minant of the covariance matrix. 3.2 Acquiring behavioural data

The goal in a standard robotics implementation of SLAM
is to reduce the uncertainty in the whole system. Howevde data consist of 37 separate recordings of bees exiting an
for our purposes, the total uncertainty might not be apprimconspicuous nest entrance that is positioned on a feature-
priate. We therefore look at how both the landmark’s and thess but textured 1&bnh x 150cm board containing a single
observer's uncertainties evolve during the course of a fligtenspicuous landmark in the form of a small black cylinder.
in order to determine the correct measure to use in our andleamcorder (Sony HDR HC7E) was suspended from scaf-
yses. folding oriented along a WSW and ENE axis 2 m above the

The bee’s positional uncertainty increases monotonicatble (figure 2A). A separate tape-deck or second camcorder
and smoothly during the flight (bottom line figure 1B). Théed by the camcorder above the nest-hole served as a data
only deviation from this pattern occurs towards the later paiecorder. The camcorder recorded at 25 frames per second.
tions of the flight when close inspection reveals occasiorfalames were split to avoid interlacing and to improve the
small reductions in uncertainty. The increase in uncertairtigmporal resolution to 20 ms. The information from digital
reflects any noise effects orinaccuracies in our process/mdapes was transferred to a hard drive using Adobe Premiere
model and the small reductions in uncertainty relate to seero.
tions of the flight when the bee is able to re-orient itself rel- Orientation flights are performed over the first 5-10 de-
ative to the landmark. partures of a foraging bee from its nest. We recorded the arc-

The estimated landmark uncertainty shows a differeimg behaviours that the bees performed up to the point when
pattern, starting high and reducing at a fairly constant ratbey flew out of the camera’s field of view. The field of view
The reduction in the landmark uncertainty due to each magas 1020« 698 pixels corresponding to an approximate ROI
surement is determined by four things, namely the prior levaf 1000 mm by 700 mm. Results figures throughout use this
of uncertainty in the landmark estimate, the level of unceROI. Software written in MatLab extracted a bee’s horizon-
tainty of the bee’s positional estimate, the accuracy of th& coordinates in terms of the centre of mass of the bee’s
measurement (determined by the measurement noise), enage. The program also determined the compass orienta-
finally on the movements that are executed by the bee. Tian in which the bee faced. The orientation of the body axis
initial rapid reduction in uncertainty is mainly due to the beis given by the major axis of the bee’s image with the head
being very certain of its own position and to the relativelgnd identified from both the shape of the image and the di-
large movement across the retina of the landmark duereztion of movement between frames. The program allowed
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Fig. 2 A: A commercially available bumblebee hive is positioned undath a featureless but textured &8R150cm board containing a single
conspicuous landmark in the form of a small black cylindéie Bees enter and exit through an inconspicuous entrartds fiasitioned a small
distance from the landmark. A camera was positioned on agffamd pointed down on the board in order to record the positichorientation
of the bees during the initial phase of their foraging trigisAn example of a bumblebee flight recorded with this set-uge Bl and stick icons
represent the head position and body axis of the bee at 2Qersais. The black circle represents the position of the Bameter landmark.
All distances are measured in mm. The nest (open squarejdsDatand the landmark (open circle) is at (1250)The upper and lower traces
represent the bee’s distance away from the nest entrandbehbde’s speed respectively. These parameters were esddéshods) to determine
the end of the first phase of bees’ flights (red markeiB)iD Density plots showing the distribution of bee positionsoasrall 37 flights for the
first (top) and second (bottom) phases. The scale indidagesverall number of time-steps for which a bee was presengizen position in the
ROI. The nest (open square) is at (0,0) and the landmarks (@pees) were at approximately (125,0). All distancesraeasured in mm.

X Position (mm)

Time (sec)

the computed values to be checked and when necessary3a#-Which parts of the world do the bees view?

justed by hand. The accuracy of the positional data #vas

1mm and the orientation data was5 degrees. A typical For our analyses we need to know the extent of the bum-

example of a flight is shown in figure 2B. We only have hoblebees’ horizontal visual field. For each frame of the video

izontal positional information as height was not monitoredye took the bee’s position and horizontal body axis orien-

however we observed that the bees fly close to the table fation and used this to infer which parts of the environment

most of each learning flight. Height is only gained towardsere in view, which were being occluded by the bee’s own

the end of the recorded flight segments. body, and which parts were being viewed binocularly. Mea-

surements are not available for the frontal binocular region

Most orientation flights follow a similar pattern. An inj-and for the posterior occluded region in bumblebees and we

tial phase where bees are very close to the nest entrance @@ taken values based on the honeybee (30) adjusted for
moving slowly is followed by the bee moving away fronfhe larger body of the bumblebee. We therefore use a value
the nest entrance and commencing the characteristic archg0” for the frontal binocular region and S%or the poste-
behaviour. To ensure our results were not dominated by fi¢f occluded region. .

initial phase where the bee is very close to the nest, we per- Each pixel in the image was scored according to the fol-
formed our analyses on the whole flights and on each ph44ing criteria; 0 paints for occlusion and 1 point for being
separately. As there were some occasions when the bee ¢@r/eW ang 2 points for pixel positions that were viewed
tinued the first phase behaviour of slow flight close to tHdnocularly®. A running total was maintained for each pixel
nest after a brief foray away from the nest, we could n8Ver the course of a fI|g_ht. The final totals were _used to
simply decide the phases based on distance to the nest.4f@@te a 2D frequency histogram that showed which parts
therefore defined the end of the first phase as the point whefdhe environment were viewed most often. We performed
the distance from the nest multiplied by the squared velogMilar analyses using only the frontal 2@s the region

ity exceeded 500. This ad hoc approach divided the flighfsView and also without treating binocular regions differ-
into distinct behavioural sections, in which the second pha@ntly. These analyses produced qualitatively similar result
was not dominated by the bee adopting positions closelfpthose presented and are therefore not reported here.

the neStI Figure 2C.Sh.OWS the VeIOCIt.y and d'St"?me traCezsln a noiseless system there is no benefit to making multiple-me
for the flight shown in figure 2B. The first phase is markeglirements of the same point in space, the situation charuyesvar

by red icons in 2B and a grey area in 2C. when we consider noisy measurements.




3.4 What optic flow is generated by flights? often, the results are qualitatively similar for both flight pbss
(figure 3 B,C). The major difference comes from the in-
From the bee’s position and velocity we can infer the opteased arc lengths later in the flights when views tend to
flow that would be generated by a visual feature at a givée more focussed on the region between nest and landmark.
position. For each time-step (t) we calculated the change in The bees flights are thus structured so that the area be-
retinal position, from time t-1, for hypothetical visual featween nest and landmark is viewed most often. If however,
tures at every position within our ROI. Since any optic flowiewing this area were all the bees were trying to achieve
produced by the bee’s own rotations will be uniform acrogben it is unlikely that we would see any other structure in
the entire retina it will provide no cues to depth. High spedtie data. We next examine the optic flow generated by the
and high magnification recordings show that wasps segfiights.
gate translational and rotational movements during orienta- Figure 4 shows two different measures of optic flow, total
tion flights. They punctuate spells of translation when thegyagnitude and overall consistency, for movements with and
hold a constant body orientation with brief saccadic turngithout rotations. When translational and rotational move-
(49). With this in mind we calculated both the total optienents are considered together the two measures of optic flow
flow and the optic flow that resulted from purely translgsroduce broadly similar distributions (figure 4A,B). We ob-
tional movements. We then considered two different wagsrve a clear bias towards the area containing the landmark,
of measuring the optic flow that would be produced by eadmdicating that this region produces both a consistently per-
point in space, given the recorded flight trajectories. We firseptible and large optic flow signal. However, when we con-
considered which points in the world consistently generatsitier only translationally induced optic flow as might be pro-
perceptible optic flow. As a measure of consistency we kedpced during the translational phase of a body saccade, the
a cumulative score for each position representing the totalo measures produce qualitatively different distributions
number of frames where a landmark at that location wouffigure 4C,D). Measuring the magnitude of the signal results
generate optic flow less than 100ded. This upper bound in a symmetrical distribution centred on a region midway
is set by the blur velocity of the bee visual system, whidbetween the nest and the landmark (figure 4C). In contrast,
is dependent on the spatial and temporal resolution of threasuring the consistency of the signal results in a mini-
compound eye (21). We set no lower bound on what comum at the nest position, with regions behind the landmark
stitutes behaviourally relevant optic flow since any signabnsistently generating perceptible flow.
that can be measured should provide some information. We Considering the implications of these results for how
also measured the total magnitude of optic flow by summingell each flight is structured for learning the landmark posi-
the optic flow signal across all time-steps in which the option begs the questions of what optic flow bees use, how they
flow was less than 100dsg?. This resulted in four different use it and how it might be extracted. Zeil et al. observed that
measures of optic flow. wasps seem to keep the image of the area around the nest as
stationary as possible during their learning flights (48). This
is broadly consistent with figure 4 A and B. In a subsequent
paper Voss and Zeil (40) show how behavioural routines that
combine rotations and translations could facilitate the ex-
traction of depth information by performing movements that
produce informative patterns of optic flow. The patterns of

d ith . d . £ th . .(?ﬁtic flow produced by our flights are dependent on which
In accordance with previous descriptions of the orientatige g ,re we use. This highlights the difficulty of interpreting

flights of flying insects, bumblebees in _this set of ﬂight?{)tic flow: Is high or low optic flow useful? Determining and
tended to face the landmark and nest whilst gradually bagkgyifiing what constitutes behaviourally relevant optic flow

ing away from them performing arcs of increasing radiuzn g the difficulty in deciding how to measure its informa-
Consequently, the area of the environment viewed most Enal content provides motivation for our use of probabilis-
ten is a triangular region emanating from the nest roughb g Ay

symmetrical about the landmark (figure 3). The results for

three typical flights, having short, medium, and long dura-

tions, and summary data for all flights show the same genefa2 Analysis of Flight Structure using Probabilistic SLAM
structure. Additionally, we observed that orientation flights

seemed to be composed of two phases (figure 2 C,D).There are two important features of our probabilistic SLAM
an initial phase, the bees remained close to the nest, moweatlel. Firstly, as the agent learns the position of a visual
slowly often rotating as if to scan the entire visual fieldeature in the environment it also maintains an estimate of
During the second phase bees flew a series of arcs, whle uncertainty of this estimate. This uncertainty value can
both speed and distance from the nest gradually increpsevide a quantitative measure of the utility of a particular
ing. As these phases could be functionally distinct, here aflight structure for learning the position of a visual landmark.
throughout we have augmented our analysis of the entif¢he learning is effective then uncertainty should be highly
flights by also examining these phases independently. Whemrelated with accuracy and so the uncertainty in a land-
considering which parts of the environment are viewed mastark estimate should give a measure of how accurately the

4 Results

4.1 Visual Consequences of Flight Structure
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black circle.B-D. Combined data for 37 flights showing first phase, second plradentire flight, respectively (see methods for descripbio
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bee will be able to re-orient when the landmark comes balgarned given the recorded flights and our assumptions about
into view. Our analysis involved, for all flights, running thehe bees’ sensor and motor capabilities. Again, we see no
model multiple times to simulate how learning would havebservable bias towards the position of the landmark. This
progressed for all possible landmark positions. Comparisanalysis therefore also argues against the hypothesis that the
of the final uncertainty values for different fictive landmarkees are attempting to specifically learn about the position
positions, tells us where in the environment a visual landf the landmark by structuring their flight to extract depth
mark would be learnt most accurately for a given flight.  information in an optimal or even near-optimal way.

The second key feature of our approach is that by using To help us interpret the uncertainty maps of figure 5
a closed-loop model, we capture the sensory consequences

of movements. The impact that particular movements h also looked at the uncertainty maps that would be pro-

- L pa part . ficed by artificial flights. The artificial flights were gen-
on positional estimates is automatically incorporated. ated by taking a recorded flight and changing the view-
dq not need to make assumptlon§ about which MOVEMEINS Girection and direction of movements, while maintain-
might be useful to the agent but instead only consider t the same speed profile. Figure 6 shows the uncertainty
effects of a flight structure on uncertainty reduction. Th'n%aps generated for three illustrative artificial trajectories,
means that we do not need to classify movements as, for n

stance. peering or bivoting. we simolv consider the wtilit straight flight, and nest or landmark centred spirals. To
» PEering or pivoting, Nply cons Y %ssess the impact of viewing direction we simulated three
that movement in terms of reducing positional uncertain

(eg see Figure 1) Xoking directions for each trajectory: in the direction of
' movement and fixating the nest or landmark. There are sev-
Figure 5 shows a SLAM analysis of the three exaneral points of note. Firstly, the starting position has a strong
ple flights together with an analysis of the combined dabafluence on the final uncertainty map. In the straight flight
from all flights in out dataset. We did not normalise the indivhen the agent faces forward (top left), despite the fact that
vidual uncertainty maps prior to combining them since thibe start is viewed less often than the end of the flight, the
would have biased our results in favour of the shorter flightsinimum is clearly at the start of the trajectory. The two
during which the arcing behaviours were less prominemther straight flights (top middle and right) show the more
Moreover, the uncertainty maps for individual flights had subtle effect of changing the viewing direction. It is possible
similar range of values so we simply calculated the meaminduce an asymmetry in the map by varying the viewing
value across all flights for each position within our ROI. Thdirection, however the minimum clearly remains centred on
SLAM analysis suggests that the region around the nest #me starting position. Secondly, it is possible to shift theifoc
trance would be the region that would be most effectivebf the uncertainty map. When the spiral flight is landmark
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Fig. 6 SLAM analysis of artificial flights showing the effects of wilng direction and flight structure. The top row shows a gtiaflight, the
middle row a spiral centred on the nest, and the bottom rowralsgentred on the landmark. The left column shows the tesfutach flight
when facing the direction of movement, the middle columnmvfaeing the nest, and the right column when facing the lanmidn#l distances
are measured in mm. The nest (open square) is at (0,0) anartheark (open circle) is at (125,0).

rather than nest-centred, the uncertainty distribution changdsen we look in more detail we see that a smaller field of
and the region containing low uncertainties is clearly biasgtw induces asymmetries in the resulting uncertainty map.
toward the landmark. Overall, it is evident that the path dfhis asymmetry is made clearer in figurB Which shows
the flight has a much stronger influence on the final uncehe final uncertainty for fictive landmarks along a circle cen-
tainty maps than viewing direction and it would be straightred on the nest [shown in white in figuré]7 For narrow
forward to design a flight where the landmark location wdglds of view, +10°and +45°, there is a clear asymmetry
learnt most accurately. with a minimum centred on the true bearing to the landmark
from the nest. For wider fields of view the reverse pattern is
found, with the minimum at a bearing of 18felative to the
true bearing to the landmark from the nest. The difference
in the mean uncertainty (figureCy for fictive landmarks at
. . . 0°.and 180 bearings is very small but significantly differ-
e o APt 65, 0.05) or l felds of view: The sligh decrease
varying the field of view ben}\/ee&loo up to a full 360 in uncertainty for the position opposite to the true landmark
gsition is due to the bee backing away from the landmark

to investigate what effect this has on the uncertainty ma Rd therefore flying closer to this point. The asymmetry that

in our SLAM simulations. Figure 7 shows a summary . -

X ; ) . . . e see for narrower fields of view is probably due to the bees
:]hopj[éei:lilrfztfci)rrrg;/eedc'gfere(;t t?g?%g Z:‘e\\/';"ev-l\—lhtﬁg'rj;ézﬁgi;omaintaining the landmark in the frontal part of their visual
. P t13(eld as they back away from the nest.
is always lowest for the area centred on the nest. However,

4.3 Varying the field of view
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5 Discussion The first hypothesis is clearly compatible with our data
although it fails to explain the arcing behaviour that is g ty
ical of these flights. It is not clear to us how we could test the

Orientation fliahts h b dtoaidl .. _second hypothesis with our current approach. We therefore

rulan ation Flg 'S tave e.?” prcl)gobse thota;h eﬁ.mr']?g IN S§¥5ve open the possibility that the structure and function of
eral ways. For instance, 1t could be that the Tlight SImply, o flights is related to learning snapshots. Our approach can
keeps the bee in the vicinity of the nest, thus enabling it wever be applied to examining a third hypothesis, namely

sample the visual environment in this region many times. A+ o arcin t : L

L . i’ L g structure of the flights is optimised for mea-
seconq hypothesis is that the flights famhtate_the actiarsi o ring the distance to conspicuous landmarks in the imme-
of 2D images of the world (snapshots), possibly at the en Ste vicinity of the nest (4; 23: 24; 47: 8)
of the arcs (6; 7). e e R
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The aim of our study was to determine to what degree In this paper we have introduced an approach derived
the structure of orientation flights is consistent with bedsom probabilistic SLAM to analyse bee orientation flights
learning a metric representation of their environment. Tnd investigate whether they are structured to efficiently learn
do this we asked whether the flights were, in some wele positions of the landmarks that are available in a given
defined way, optimised for learning the position of a sirterrain. Our analysis focussed on the accuracy with which
gle conspicuous landmark. The key analyses assessed whiittive objects at different locations would be localised. We
parts of the world consistently generate optic flow and whichowed that our flights are not optimised to learn about the
parts would be learnt effectively through a map-based fgassition of a prominent landmark, but are more suited to
ture tracking framework. learn about objects near the nest. One of the benefits of this

Our analysis of optic flow proved problematic. It is noftPProach is that we can vary the parameters of the sensor

clear how we can relate any of our measures of optic flow &84 motor models to investigate different aspects of.a Sys-
the accuracy with which a bee might learn the position of @M i @ closed-loop. This also allows the incorporation of

landmark, thus motivating our use of SLAM. new information ab_out the motor patterns and sensory capa-

bilities of bees or, indeed, other species, as and when they

The SLAM analysis of flights shows little or no bias tohecome available. We contend that this approach provides a

wards the actual landmark position. Instead, for our flighbwerful new tool for the study of active spatial learning.
paths, positions of fictive landmarks near the nest entrance

were consistently learnt more accurately than those near the
actual landmark position. We conclude therefore that altho@%cknowledgements
bees are clearly influenced by the landmark, in that they

prefe_rentially maintain it in their fielq of vi_ew, the focus ofg; o cial support came from the EPSRC and BBSRC under
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ing. That there appears to be only a very subtle bias towards

the position of the landmark argues against the hypothesis
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the position of the landmark. When we restrict the field of
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