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Abstract. A simple approach to route following is to scan the envi-
ronment and move in the direction that appears most familiar. In this
paper we investigate whether an approach such as this could provide
a model of visually guided route learning in ants. As a proxy for
familiarity we use the learning algorithm Adaboost [6] withsimple
Haar-like features to classify views as either part of a learned route
or not. We show the feasibility of our approach as a model of ant-like
route acquisition by learning a non-trivial route through areal-world
environment using a large gantry robot equipped with a panoramic
camera.

1 Introduction

Individual ant foragers show remarkable navigational performance,
rapidly learning long idiosyncratic routes through cluttered environ-
ments [2], guided by learnt visual landmark information [16, 10, 4,
14, 5]. Studies of such visual navigation have revealed how insects
combine simple strategies to produce robust behaviour and insect
navigation is now an established model system for investigations of
the sensory, cognitive and behavioural strategies that enable small-
brained animals to learn and utilise complex sequences of behaviour
in the real world.

One elegant use of visual landmark information that is part of the
insect’s navigational toolkit is view-based homing. Behavioural ex-
periments with ants [15, 5] and bees [1] have shown that individuals
store 2D retinotopic views of the world as seen from their goal lo-
cation. Subsequent search for that goal location can be driven by a
comparison of their current view of the world and the view stored
from the goal location. As this is an efficient and economicalway of
pin-pointing a location, it isn’t a great leap to imagine that knowledge
of the world over larger scales, such as routes, could be internalised
as a series of stored views that are linked together as a sequence.
Route behaviour in this framework would entail homing from one
stored view to another. However, recent studies with ants suggest
that guidance along routes might not be best served by chainsof
snapshots. Behavioural experiments suggest that routes can be per-
formed using simpler procedural rules where the rule governing a
path segment can be associated with the appropriate visually identi-
fied location [3]. Moreover, attempts to model route behaviours using
linked view-based homing have shown it to be a non-trivial problem
which requires the agent to robustly determine at which point a way-
point should be set during route construction, and decidingwhen a
waypoint has been reached during navigation [11]. Essentially, for
robust route navigation, an agent therefore needs place recognition
to determine where along the route it is [12]. In conjunctionwith
environmental noise, these problems make robust route navigation a
non-trivial aim.
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We begin our study of visually guided routes by drawing a line
under previous modelling which defines routes in terms of discrete
waypoints. Instead, we define a minimal route learning process in
which the route is learnt more holistically. Rather than learning and
homing to a set of positions, the agent instead learns a more gen-
eral mapping which associates the current viewnot with a particular
place but instead with a particular action. For an ant or robot that
can only translate in one direction relative to its body axisand has a
fixed viewing direction, the direction of movement is determined by
the viewing direction and visa versa. Thus, if the current retinotopic
view is similar to a remembered view, it is likely that the current
viewing direction is the also the correct direction to move in. Hav-
ing constraints on movement direction and viewing direction means
that a single view can define not only a location but a direction that
should be taken at that place. Crucially however, we do not attempt
to learn every view along the route, but instead use them to learn a
classifier that can be applied to any view to determine how likely it
is that it is part of the route. We suggest this approach is a powerful
platform for investigating efficient encoding of route guidance infor-
mation and how this depends on the visual ecology within which an
agent navigates.

This tight coupling of sensation and action allows us to reframe
the problem of navigation in terms of a search for the views that are
associated with a route. By visually scanning the environment and
moving in the direction that is most similar to the views encountered
during learning an ant or robot should be able to reliably retrace a
given route. Both desert ants and wood ants perform scanningbe-
haviours that would support this approach. When released inan un-
expected but familiar place the desert ant melophorus bagoti scan
the environment by turning rapidly on the spot. More than onescan
maybe performed with short straight runs of a few centimetres sepa-
rating them before the ant finally sets off in a seemingly purposeful
manner. Wood ants exhibit a second form of scanning behaviour. In-
stead of walking in a straight line, wood ants instead tend toweave a
somewhat sinuous path. This has the effect of producing scans of the
world centred on the overall direction of movement.

We propose that if ants are able to somehow recognise familiar
views, then they can recapitulate routes by simply scanningthe en-
vironment and moving in the direction that is deemed most simi-
lar to the views experienced during learning. Ants could of course
simply remember the complete set of views that were experienced
during learning, however this approach would result in an extremely
high memory load. Instead we propose an approach that involves
implicitly modelling the distribution of the views experienced dur-
ing learning by using a classifier to determine whether a given view
comes from part of the learned route or not. Using a classifierpro-
vides us with a more compact way of storing the information required
to recognise familiar views. Crucially, the approach we employ also
provides a measure of the expected uncertainty of the classification



(as will be explained later). Here we test the idea of using the fa-
miliarity of views as a means of navigation by training a classifier
to determine whether a given view is part of the route or not and
then using the learned classifier to dictate the direction ofmovement
during route following.

Our results implemented on a real robot indicate that this isin-
deed a feasible navigational strategy allowing the learning of com-
plex routes through cluttered environments such as might beexperi-
enced by a navigating ant.

2 Methods

Figure 1. The gantry robot used in all of the experiments.

To test our hypothesis we need to sample the world from an ant’s
view point. To do this we used a large volume Cartesian XYZ robot
to sample panoramic images along a pre-specified ground-level tra-
jectory through a cluttered environment [see Figures 1, 2 and 4].

Figure 2. The environment viewed from above showing the learnt route
(dotted line) through a cluttered environment. The scale bar indicates 1m.

In order to train a classifier it is necessary to generate positive
and negative training examples of the input to be classified.In our

case this means collecting views that are part of the route and views
that are not part of the route. The positive examples are simply
the forward facing views experienced along the route. The nega-
tive views consisted of views from the route taken facing to the left
and right of the direction of movement at an angle of±45◦ relative
to the route heading. A small amount of normally distributednoise
(s.d. = 0.1radians) was added to each of the sampling directions.
This approach is inspired by the observation that ants tend not to
move in a straight line on a route but instead proceed in a sinous
manner that results in some views that do not relate to the overall
direction of travel and some that do [see Figure 3].
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Figure 3. By weaving back and forth during locomotion it is possible to
sample both the on-route and off-route views need to train a classifier.

Panoramic images were unwrapped and downsampled before per-
forming feature extraction using simple Haar-like features [Figure 5].
Examples of the unwrapped panoramic images are given in figure 4
which shows an unwrapped image (top) and a heavily downsampled
version of the same image (middle) together with the representation
of the downsampled image in terms of the activations of a set of 100
Haar-like feature detectors (bottom).

Classifying images is a difficult task due to the high dimensional-
ity of the input if we adopt a pixel by pixel representation. In order
to make learning tractable we need to project this high dimensional
space into a lower dimensional space that retains enough of the nec-
essary structure to allow successful classification of the input. As a
first step in reducing the dimensionality of the input we downsample
the images to a resolution of ten degrees per pixel [Figure 4 mid-
dle]. To further reduce the dimensionality of the input we use simple
Haar-like features [Figure 5] to construct a lower dimensional repre-
sentation of each image. Each feature produces a single realvalued
output for a given image so we can can control the dimensionality of
the input to our navigational algorithm by defining the number of fea-
tures that we use. In the current work we chose to use one hundred
features selected from a randomly initialised pool of ten thousand.
Finally we use the thresholded outputs of the features as simple clas-
sifiers. This leaves us with the problem of selecting the features from
our pool of ten thousand and determining how to combine theirout-
puts to form a reliable classification. Thankfully, boosting provides
us with an approach that achieves both of these requirements.

2.1 Boosting

Boosting is a supervised learning technique for constructing astrong
classifierfrom a set ofweak classifiersgiven a training set of labelled
positive and negative examples. Aweak classifieris a classifier that
performs only slightly better than chance. Conversely, astrong clas-
sifier is one that performs arbitrarily well. Astrong classifieris con-
structed from a linear weighted combination of the outputs of weak
classifiers.

There exist many variants of boosting algorithms. Adaboost[6],
the approach we use in this paper is one of the most commonly
used. The basic algorithm works as follows. At each iteration, the
training data are resampled or reweighted according to a distribu-
tion of weights that indicate the current importance of eachexample
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Figure 4. High (top) and low (middle) resolution panoramic images of a
typical view from the workspace. The downsampled image is encoded using

a set of one hundred Haar-like basis functions (bottom) thatare fixed in
space relative to the direction of view.

Figure 5. Examples of the six classes of Haar-like features that were used
to represent the images. Each feature is defined in terms of a position a size

and a class.

in the dataset. Aweak classifieris then learned using this resam-
pled/reweighted dataset and is added to thestrong classifier. The rel-
ative contribution of each of theweak classifiersto the finalstrong
classifier is determined by performance on the sampled data. Fi-
nally, the weights of incorrectly classified examples are increased
and correctly classified examples decreased, thereby encouraging the
nextweak classifierto focus more on the examples that were incor-
rectly classified at the last iteration.Weak classifiersare added until
the overall classification performance exceeds some threshold or the
maximum number ofweak learnersis reached.

The psuedocode for Adaboost is as follows:

SetT = maximum number of weak classifiers
Given:(x1, y1), . . . , (xm, ym)
wherexi ∈ X, yi ∈ Y = {−1,+1}
InitializeW1(i) =

1
m
, i = 1, . . . ,m

For t = 1, . . . , T :
Find the classifierht : X → {−1,+1} that minimizes the error
with respect to the distributionWt

Chooseαt = 1
2
ln 1−ǫt

ǫt
where ǫt is the weighted error rate

of classifierht with respect to the reweighted data.

Update Wt+1(i) = Wt(i) exp(−αt·yi·ht(xi))
Zt

where Zt is a
normalization factor that ensures thatW represents a probability
distribution over the training data

Output the final classifierH(x) = sign
(
∑T

t=1
αtht(x)

)

Following Viola and Jones [13] we implement adaboost using sin-
gle Haar-like features [Figure 5] as the basis of ourweak classi-
fiers. The Haar-like features consist of randomly chosen rectangular
patches of the image which are then subdivided in one of four ways.
The value of aone rectangle featureis simply the mean intensity
value of the patch. The value of atwo rectangle featureis the dif-
ference between the mean intensity of two rectangular regions. The
regions have the same size and shape and are located next to each
other either horizontally or vertically. The value of athree rectangle
featureis given by the mean intensities of two outer rectangles sub-
tracted from the mean intensity of a central rectangle, again oriented
either horizontally or vertically. Lastly, afour rectangle featurecom-
putes the difference between diagonal pairs of rectangles.A weak
classifierhj(x) thus consists of a Haar featurefj , a thresholdθj and
a paritypj that determines whether the output of the feature detector
fj should be greater than or less than the thresholdθj .

hj(x) = pjfj(x) < pjθj

By providing a pool of feature detectors, each defining a weak
learner, adaboost is able to perform feature selection. At each itera-
tion a single feature detector is chosen that best aids in classification.
This allows adaboost to pick out and use only those features that are
most useful for the current classification problem.

Key to our use of a boosted classifier is the fact that it is possible
to obtain a confidence value associated with any given classification
made using the trained classifier. This confidence value is related to
the margin and is given by:

conf =
∥

∥

∑T

t=1
αtht(x)

∥

∥



Which is simply the degree to which the the combined weak clas-
sifiers differ from zero, prior to the sign being taken.

By applying the classifier to views in different directions we can
attempt to determine which of the views are from the learned route.
By weighting each of the viewing directions that produce positive
classifications by their associated confidence values we candeter-
mine a direction to move that is most likely to keep us on the learned
route.

2.2 Data collection

All experiments reported here were performed on a gantry robot -
a large volume XYZ Cartesian robot. The gantry axis configuration
provides an operating volume of 3000 mm X 2000 mm X 2000 mm.
The sensor end of the Z-axis can be placed anywhere within this
volume with sub-millimetre accuracy. For the experiments presented
here a catadioptric camera system (VCAM 360) is mounted on the
Z-axis to produce panoramic images. A panoramic mirror projects a
360◦ image of the environment onto a downward facing CCD video
camera. The image is transformed from a circular reflection into a
panoramic image that is used for subsequent processing.

The gantry workspace was populated with a variety of objectscon-
sisting of foam blocks, piles of fabric, paper rolls and a random selec-
tion of toys. Objects were placed in such a way that it was possible to
move the sensor head along a route through this visual clutter. Routes
could be made more or less challenging by varying the degree of clut-
ter and the straightness of the routes. In order to go beyond what is
possible with a snapshot type model, the beginning and end points of
all routes were chosen so that it would not be possible to perform the
route using this approach. This is achieved by making sure that the
end point of the route could not be viewed from the starting position.

2.3 Route learning through classification

Haar-like features were extracted from the set of training images and
used to train a boosted classifier. During testing the camerawas po-
sitioned at the start of the route facing in the correct direction. From
this position images were sampled in a range of directions from
−60◦ to +60◦ in steps of5◦ relative to the current heading. Fea-
tures were extracted from all of these images and used as input to
the classifier. All of the viewing directions that produced apositive
classification contributed to to a weighted average with theweighting
controlled by the confidence interval of the individual classifications.
The weighted average was then used to determined the direction of
travel and a5cm step was made in this direction. The process was
then iterated until success or failure.

3 Results

To test our approach a classifier was trained using a set of images
gathered during a single traversal of the route shown in figure 2. The
training data consisted of 171 views from 57 positions alongthe pre-
specified route, 57 forward facing views and 57 views to both the left
and right resulting in 57 positive and 114 negative views. A boosted
classifier with 100 weak classifiers was trained on this dataset. Per-
formance was then assessed by starting the robot in a series of dif-
ferent positions close to the original starting position. Figure 6 (top)
shows the performance of the approach when starting at the same
point as during the training run. Figure 6 (bottom) shows tensepa-
rate runs with starting positions at varying distances fromthe original
start point.

The three leftmost starts fail due to the path exiting the permis-
sible workspace of the robot. The fourth leftmost start fails having
successfully negotiated the first corner suggesting that the previous
three starts would also have failed had they not stopped due to leav-
ing the workspace. The remaining six starts including the original
start position (position five) all successfully recapitulate the original
route.
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Figure 6. Performance of the algorithm. Top) Training data were collected
along the route indicated by the linked stars and the resultant learned route is
indicated by the dots. Note the symbols on the two routes do not indicate the

points at which images were taken although for the training route they do
indicate the waypoints that defined the route. Bottom) Ten example runs of

the navigation algorithm. The ten starting positions are centred on the
original starting position. Six out of ten trials are successful. Black regions

indicate areas of the workspace that the were defined as out ofbounds due to
potential damage to the camera from collisions with objects.

In order to get an understanding of how the algorithm would per-
form across the entire environment. We moved the panoramic cam-
era across a grid covering the entire workspace. At each location we
scanned in all directions and used the classifier to determine a pre-
ferred direction of movement, together with a confidence in its pre-
diction. The results of this analysis are shown in figure 7 with con-
fidence indicated by the length of the arrows. Contrary to what we
would expect from the performance observed during route follow-
ing, when input is sampled from all directions at all positions many
views are clearly erroneously classified as being associated with the
route as evidenced by the arrows (or lack of them) in Figure 7 that
are not consistent with the left to right route on which the classifier
was trained.

How can we reconcile this result with the successful performance
during our initial experiments? In our route following experiments
we did not perform a full360◦ scan as we did in constructing the map
in Figure 7, but instead limited the scan to forward facing directions.
If we construct a map similar to that in Figure 7 but for each point
also provide a heading, then we can apply the navigation algorithm
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Figure 7. Map of predictions of the route direction based on the route
classification algorithm for full360◦ scans of the environment sampled

across the permissible workspace. Confidence values are represented by the
size of the arrows. The dotted line shows the successful route, going from

left to right, followed in the first experiment. Black regions indicate areas of
the workspace that the were defined as out of bounds due to potential

damage to the camera from collisions with objects.
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Figure 8. Map of predictions of the route direction based on the route
classification algorithm for±60

◦ scans of the environment centred on a
heading parallel to the route heading of the nearest sectionof the original
route. Confidence values are represented by the size of the arrows. The

dotted line shows the successful route, going from left to right, followed in
the first experiment. Black regions indicate areas of the workspace that the
were defined as out of bounds due to potential damage to the camera from

collisions with objects.

exactly as it is used in the first experiment. We determine a heading
for each point in space to be the route heading of the nearest section
of the route. Figure 8 shows the preferred direction of movement
together with confidence values again indicated by the length of the
arrows. Note the area where the route failed in the 4th run of the first
experiment has zero confidence indicated by the lack of an arrow
which explains why the algorithm fails at this point. The algorithm
appears to define a corridor along which successful route following
is possible with confidence values decreasing the further away from
the learned route that the agent strays.

4 Discussion

It is important to note that we are not primarily attempting an en-
gineering solution to the problem of visual navigation. Instead we
are trying to gain insight into how ants might learn and use visual
information to guide their routes. This is an important point since it
means that while successful route following using this approach is
a minimum requirement, of potentially greater interest arethe limi-
tations and modes of failure that we observe. We have therefore not
attempted to improve the overall navigational performanceof the ap-
proach at the expense of the conceptual simplicity that it represents.

The idea that routes can be learnt using a set of Stimulus-Response
(S-R) relations is not new. Equally, it has been observed by various
authors that it is possible to orient rotationally by comparing views
in different directions to a reference view, effectively resulting in a
visual compass [17, 9]. However, combining aspects of thesetwo
approaches, as we have done, constitutes a novel approach. Firstly,
by parameterising the S-R relationship using a boosted classifier, we
not only provide a compact representation of the problem, wealso
obtain a more robust solution by being less reliant on determining an
exact match between the learnt stimulus and the current view. Sec-
ondly, by using the classifier to determine view familiaritywe are
performing recognition rather than recall which is a fundamentally
easier problem. In using familiarity rather than similarity to a partic-
ular reference view, we can go beyond a simple visual compassand
instead construct a method for learning entire routes.

We have shown that it is possible to learn a non-trivial route
through an environment using a simple view classification strat-
egy based on positive and negative views collected during a single
episode of learning. The route was designed to include high degrees
of occlusion and variable depth structure such that a singlesnapshot
taken at the route end-point could not underpin successful navigation
through simple image matching. By considering the tight coupling
of sensation and action that is present in ants and some robots we
were able to reframe the problem of route navigation in termsof a
search for simple directional views using a classifier that provides a
compact way of storing the information required to recognise famil-
iar views and crucially a measure of the expected uncertainty of the
classification.

By embodying the view classifier on a physical platform and con-
straining the required spatial behaviour to routes, we wereable to
explore other areas for parsimony. The positive and negative views
used by the classifier were collected by simulating a single sinuous
path. Consequently, we observed that although spatial knowledge
was fragile when the robot was placed at all points in the environment
(Figure 7), as long as the agent has some context provided by the
likely current direction of travel (Figure 8) the agent can recapitulate
a learned route through a visually cluttered world and produce sensi-
ble headings from points off the original learned route. This provides
an interesting example of where a simple interaction between a be-



havioural strategy and learnt information provides robustbehaviour
and without that interaction the agent would require a much more
comprehensive survey of the environment. Interestingly, this type of
interaction has been observed in ants where directional information
from path integration has been shown to increase the precision of
visual landmark use [7].

Our ultimate goal with this project is to understand likely and vi-
able mechanisms used by insects for navigation. Therefore it is use-
ful to summarise our framework with respect to some of the desirable
properties of insect route behaviour: (i) Route knowledge should be
procedural, i.e. an agent should be able to produce the correct be-
haviour for a given place independently of the prior sequence of vis-
ited places. By constraining vision and motion we produced asimple
procedural mechanism for visually setting heading which isinde-
pendent of the sequence of prior visited places. Although asnoted
above, some degree of hysteresis can be useful to compensatefor a
sparse set of positive and negative views acquired during training; An
interaction which merits further study. (ii) Route knowledge should
consist of a broad corridor of familiar places rather than a fragile nar-
row ridge and agents need to produce sensible behaviour whenthey
are outside the route corridor. In our pilot-study we can satisfy this
criteria as the estimates of heading produced from close off-route lo-
cations are sensible. Then as one moves further from the route the
uncertainty in recalled headings increases which would be auseful
signal to commence a systematic search for the route; a behaviour
seen in ants when they are lost [8].

Our results suggest that it may be possible for ants and possibly
other animals (including humans) to learn routes without the need
for recall of the specific views encountered during learning. Instead,
recognition together with the simple procedural rule of heading in
the direction that appears most familiar may well provide sufficient
information to allow successful navigation along routes.

5 Future Work

The ultimate test of our model of route acquisition in ants would
require the comparison of the performance our approach withthat
of an ant in the same environment. There are obvious difficulties in
achieving this, however as a first step towards this goal we intend to
implement the algorithm on a mobile robot that can then be trained
using images collected along an actual foraging route used by ants.
It is hoped that by careful manipulation of prominent visualfeatures
along the route it will be possible to determine whether or not the
approach provides a useful model of real behaviour.

In addition to this there are two main aspects of our approachthat
we are keen to explore further. These are: (i) How we represent an
image. (ii) How we sample the environment to generate positive and
negative examples for training a classifier.

In the current set of experiments we chose to represent viewsus-
ing the outputs of a set of Haar-like features. This choice was mainly
motivated by the success of this approach when applied to a face de-
tection task [13] where processing speed was a key factor. Since we
are less concerned with how fast our code runs we intend to look at
the result of employing a more comprehensive feature set consist-
ing of Gabor filters at different positions, scales and orientations. By
providing a pool of Gabor filters and learning routes in a variety of
different ant-like environments we hope to determine whether there
is any consistency in the filters that are selected by Adaboost, i.e.
whether there is a general purpose set of filters that will work in a
variety of different environments.

Next, we want to look at different ways of generating negative

training examples. Potentially any views that are not actually part of
the route might be used to define negative instances for the purpose
of training. We intend to explore how different, behaviourally plausi-
ble, sampling strategies effect the performance of the algorithm. For
instance, in the current experiments we only provided negative views
to the left and right of the current heading and found that this resulted
in classification errors for views from the route facing backwards rel-
ative to the learned route direction. By including a wider range of
negative views during learning it should be possible to improve the
robustness of the approach.
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