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Abstract

This paper provides a survey of the application of ge-
netic algorithms (GAs) to scheduling. Although it focuses
on manufacturing scheduling, particularly job-shop prob-
lems, it does outline work in other areas such as transport
scheduling and network routing. GA research in closely
related problems; such as bin packing and the TSP, are
also covered. Finally, it is shown how distributed parallel
GAs may allow practically beneficial recharacterisations of
highly complex general scheduling problems.

1 Introduction

Practical scheduling problems are numerous and varied.
However, many of them share two important characteristics
— they are very difficult, and good quality solutions bring
highly tangible benefits. In general, scheduling problems
are NP-hard [37], consequently there are no known algo-
rithms guaranteed to give an optimal solution and run in
polynomial time. This has lead to a long line of techniques
emanating from the fields of Al and OR that provide ap-
proximate solutions to fairly general classes of problems or
exact solutions to highly specific and restricted problems.
The former are the more common and tend to rely on the
use of heuristics, some form of stochastic optimisation tech-
nique, or a mixture of both. This paper will explore the role
of genetic algorithms (GAs) within this tradition by exam-
ining research past and present, and by attempting to draw
conclusions about their most effective use. Much of the
work referred to i1s concerned with manufacturing schedul-
ing. However, the techniques developed for that domain can
be adapted to other areas, such as the scheduling of commu-
nications networks or project planning, in a straightforward
way. It hardly needs saying that scheduling, in its numer-
ous guises, i1s an immensely important practical problem.
It comes as no surprise, then, that it 1s one of the most
popular applications for GA research. Of course scheduling
is not particularly glamorous or exciting in itself (for GA
applications to capture the imagination see e.g. [7]) but it is
an area that has brought forth much interesting GA work.
A detailed theoretical analysis of the scheduling problem
can be found in Garey and Johnson [37]; well know exam-
ples of traditional approaches are those described in Balas
[1], Lenstra [33], Carlier and Pinson [3]; general coverage of
the subject can be found in Muth and Thompson [38] and
French [17]; less traditional AT approaches are described in
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Ow and Smith [40],and Sycara et al. [46]. Other specific
techniques, especially with regard to their relationship with
genetic algorithms, will be introduced later in the text.
Because of the complexity of this class of problems, a num-
ber of simplifying assumptions have always been used in
practical applications. These assumptions are now implicit
in what have become the standard problem formulations.
Later on in this paper it will be shown that in some circum-
stances the traditional formulations are far more restrictive
than necessary, and further that GA-based techniques may
provide a less restrained route forward. However, for the
moment we will give the standard formulation of the Job-
Shop Scheduling Problem, the most general and most diffi-
cult of all traditional scheduling problems, and use it as a
formal reference throughout the paper.

1.1 The job-shop scheduling problem

Nearly all practical scheduling problems can be described
in terms of the job-shop scheduling problem. Usually as re-
stricted versions of this classic combinatorial optimisation
problem. The standard problem definition will be taken to
be the following. Consider a manufacturing environment in
which n jobs, or items, are to be processed by m machines.
Each job will have a set of constraints on the order in which
machines can be used and a given processing time on each
machine. The jobs may well be of different durations and
involve different subsets of the m machines. The job-shop
scheduling problem is to find the sequence of jobs on each
machine in order to minimise a given objective function.
The latter will be a function of such things as total elapsed
time, weighted mean completion time and weighted mean
lateness under the given due dates for each job. See French
[17] or Christophedes [5] for further details of typical objec-
tive functions.

More formally, we are given a set J of n jobs, a set M of m
machines, and a set O of K operations. For each operation
p € O there is one job j, € J to which it belongs, and one
machine m, € M on which it must be processed for a time
t, € N. There is also a binary temporal ordering relation —
on O that decomposes the set into partial ordering networks
corresponding to the jobs. That is, if x — y, then j, = j,
and there is no z, distinct from x and y, such that » — z
or z — y. Using the minimise makespan objective function,
i.e. minimising the elapsed time needed to finish processing
all jobs, the problem is to find a start time s, for each
operation p € O such that:

max(sp +1p)
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Job priorities can be handled by instead minimising a
weighted sum of processing times.

In fact this is the definition of the deterministic job-shop
scheduling problem, where all processing times are known
exactly and there are no restrictions on when jobs may start.
In reality many scheduling problems are not so well defined.
The environment may be highly dynamic with new jobs of
varying priorities coming in at unpredictable intervals, ma-
chines breaking down, or job priorities changing. Processing
times and the like may be inherently uncertain. The impor-
tance of the dynamic and stochastic facets of the problem
will vary from application to application, but in many their
full consideration is crucial. A great deal of research in
scheduling is limited to the deterministic case; the dynamic
stochastic problem proving very difficult to handle. This
issue will be returned to later: it is an area where GAs may
have something to offer.

1.2 Scope of paper

The major part of this paper, contained in section 2, will
review applications of GAs to scheduling and closely related
problems. As well as manufacturing examples; this will in-
clude a discussion of various approaches to pure sequencing
problems as exemplified by the TSP, and some work relat-
ing to network routing applications, which have a strong
bearing on computer and communications process schedul-
ing. Section 3 draws conclusions about the applicability of
GAs to this class of problems.

A basic knowledge of genetic algorithms is assumed
throughout. Accessible introductions can be found in the

books by Davis [10] and by Goldberg [19].

2 Survey of GA approaches to
scheduling and sequencing prob-
lems

2.1 Early work

One of the earliest published works on the application of
GAs to scheduling is that by Davis [9]. While his paper
merely outlines a basic scheme applied to a highly simpli-
fied toy problem in flow-shop scheduling (all jobs involve
the same processing operations applied in the same or-
der), it contains some interesting and worthwhile material.
Davis points out that many real-life scheduling problems
involve layers of ill defined constraints that are very diffi-
cult, if not impossible, to represent within the formal frame-
works demanded by OR techniques. Alternative knowledge-
based approaches developed by Fox, Smith and colleagues
[35] were able to handle many types of constraints but
worked in a deterministic way which often led to highly
sub-optimal solutions. Davis conjectured that a GA might
be designed that could handle the constraints but by virtue
of its stochastic nature would avoid poor local minima.

Very often the key to GA success with practical problems
lies in the development of a suitable combination of geno-
type encoding and genetic operators. Clearly a schedule
genotype could simply be a list specifying the order and
duration of the operations to be performed by each ma-
chine. But simple crossover applied to such strings would
nearly always result in illegal offspring with some opera-
tions missing, others represented twice, and the flow-shop
orderings on the jobs violated. Davis’s solution was to use
a less literal genotype that was amenable to crossover but
required a decoding phase to turn it into a legal solution to
the problem. The genotype was a list of preference lists, one
for each machine. A preference list consisted of an integer
that specified the time the machine should start processing,
followed by a permutation of the jobs available and the ele-
ments “wait” and “idle”. The decoding routine was a simu-
lation of the flow shop’s operations. Whenever it had to be
decided which operation a machine should perform next,
the first available job from its preference list was chosen.
The element “idle” forced the machine to remain idle; giv-
ing preference to other machines. The element “wait” pre-
vented the machine from processing further along its pref-
erence list. The genetic operators employed were as follows:
a crossover that exchanged preference lists for selected ma-
chines; a scramble operation that randomly reordered mem-
bers of a preference list; and run-idle, a heuristic operator
that inserted “idle” as the second element of the preference
list of a machine that had to wait more than an hour for
jobs to become available. Each operator was applied proba-
bilistically. The evaluation function used summed the costs
of running the flow-shop for five hours with the schedule
represented by an individual. Penalty costs were added if
jobs were not completed during this interval.

As Davis acknowledges, his model would have to be vastly
extended to be used on a realistic problem. He envisaged
a methodology based on the close study of deterministic
scheduling heuristics to develop more sophisticated encod-
ings and operators. However, his use of domain specific
operators and symbolic genotypes, and his implicit call to
build GA solutions that make use of existing methods and
are able to improve on their performance by providing extra
robustness, are important practical contributions that are
all to often ignored.

During the early 1980s Fourman experimented with GA
methods for tackling layout problems in VLSI [15], prob-
lems very closely related to scheduling — indeed they can
easily be characterised within an identical mathematical
framework. He addresses a symbolic layout problem in
which rectangular blocks of fixed sizes, connected by fixed
width lines, and subject to various topological and geomet-
ric constraints, had to be arranged so as to minimise the to-
tal area while violating as few design rules as possible. His
genotypes were lists of symbols representing geometric and
topological constraints on the positioning of the blocks and
connecting lines which were used to determine a layout by
feeding them through a deterministic procedure. Standard



crossover, inversion and mutation were readily adapted to
operate on these lists. The results obtained were promis-
ing but not outstanding. Fourman made some interesting
suggestions about using a refined version of the GA sys-
tems in which the designer could intervene in the selection
process by providing ‘hints’ based on hard to formalise de-
sign knowledge. This sort of approach might lead to the
semi-automation of complex design tasks not amenable to
other optimisation techniques, because of these unformaliz-
able aspects.

At about the same time Smith and Davis devised a hy-
brid algorithm, based on a GA, for bin packing [43], that is
packing a set of regularly shaped boxes into a fixed space
according to some packing density criteria. The work was
similar in spirit to Davis’s scheduling research described
earlier. Again the problem is closely related to scheduling
— 1t is essentially identical to sequencing jobs on a single
machine. The genotypes used were simple integer lists de-
termining the order in which the boxes were presented to
a deterministic algorithm that went on to do the packing.
By combining the GA with the bin-packing algorithm in
this way, rather than attempting to explicitly represent the
whole layout on the genotype, they produced high quality
solutions two orders of magnitude faster than with dynamic
programming methods.

As mentioned earlier, in a domain as complex as scheduling
there is almost always a need to use heuristics at some level
or other, irrespective of which solution technique is being
used. However, it 1s extremely difficult to devise robust
and powerful heuristics. Hilliard et al. [22] did some work
in attempting to use GA-based classifier machine learning
system to learn general scheduling heuristics which might
then greatly increase the power of appropriate determinis-
tic search methods. A classifier system employs a set of
syntactically simple production rules in conjunction with a
reinforcement credit assignment algorithm (to update the
strength or worth of rules) and a GA to discover new rules.
Full details can be found in Holland and Reitman’s semi-
nal paper [24] or Goldberg’s book [19]. Hilliard’s system
was able to discover the classic “sort the jobs by increasing
duration” heuristic for the simple one operation per job,
no ordering constraints, single machine job-shop scheduling
problem. It was not entirely successful on more complex
problems but showed promise and points the way to an in-
teresting line of research.

2.2 General sequencing applications

Before going on to describe later developments, it is worth-
while summarizing results in the more general application
of GAs to sequencing problems, mainly the TSP, a pure se-
quencing problem which has a close affinity with scheduling
problems, particularly flow-shop scheduling. The task is to
find the shortest route through a set of cities, visiting each
once only and returning to the starting point. An obvious
genotype is a permutation of a list of integers represent-

ing the cities. Using this representation, simple crossover
would produce illegal tours most of the time, with some
cities from the parents represented twice and some not at
all. Early efforts by Goldberg [18] and Grefenstette [30]
overcame this problem by correcting the offspring tours so
that the duplicate cities were replaced by the omitted cities
or otherwise eliminated. Reasonable results for small prob-
lems were found like this. Among others, Suh [45] later
made improvements by incorporating heuristics.

Whitley et al. produced better results by developing a rep-
resentation and recombination operator that manipulated
edges (links between cities) rather than the cities themselves
[48]. Their edge recombination operator uses an ‘edge map’
to construct an offspring that inherits as much information
as possible from the parent structures. This map stores all
the connections from the two parents that lead into and
out of a city. An offspring is started by choosing at ran-
dom one of the two initial cities from its parents. A tour
is then built up by adding a city at a time while favouring
those cities with the fewest unused edges (to avoid a city be-
coming isolated). Candidate ‘next’ cities will be taken from
those connected to the ‘current’ city in either of the parents
(this is the information the edge map holds). This is a good
example of using a problem-appropriate representation and
recombination operator within the logical framework of the
GA. Whitley and his co-workers went on to use this work to
develop a prototype production line scheduling system for
a Hewlett-Packard board assembly facility [49]. They pro-
duced two models: a FIFO system in which the sequence of
jobs for the first machine was optimised and then remained
the same down the line; and a hybrid system in which the
initial sequence of jobs was again optimised, but this time
greedy heuristics were used to reorder jobs between subse-
quent machines. The FIFO and hybrid systems produced
very similar results, although the FIFO system was compu-
tationally more efficient and converged in fewer generations.
However, the published results were for highly structured
problems for which better solutions could be constructed
by hand. Nevertheless, the results looked promising and
comparisons with other algorithms on a range of problems
would be very instructive.

Fox and McMahon recently published an insightful paper
on genetic encodings and operators for sequencing prob-
lems [16]. They introduced a bit string representation for
sequences based on a boolean matrix representation of or-
dering relationships. This scheme can be used for partial
orderings as well as the total ordering required for the TSP.
A sequence of N elements is represented by a N x N ma-
trix where each row and each column is uniquely identi-
fied with one of the elements. Matrix element [X,Y] con-
tains a 1 iff. symbol X occurs before symbol Y in the
sequence. In the n-city TSP case, any matrix representing
a sequence must obey three constraints. It must contain ex-
actly n(n — 1)/2 ones (each city represented exactly once);
if [¢, 7] is one and [j, k] is one then [i, k] must also be one
(transitive nature of ordering relation); it must not contain



any cycles: [i,i] = 0 Vi. They introduced two new recombi-
nation operators that worked on this representation. Their
wntersection operator was designed to pass on the common
characteristics of two parents to the child. The child was
formed as follows: first, create the matrix which is the log-
ical AND of the two parent matrices, this will contain all
common successor/predecessor relationships; second, add
to this a subset of all the ones that are unique to one of the
parents; finally convert this underconstrained matrix to a
legal sequence by an analysis of the row and column sums.
All of these operations are made easy by the matrix repre-
sentation, and results in an offspring that strongly favours
both parents. Their unton operator is close to traditional
crossover but avoids breaking the three basic constraints. It
involves four steps: first, partition the set of symbols into
two distinct set, S1 and S2; second, construct the matrix
containing the bits from the first parent pertaining to S1,
and the matrix containing the bits from the second par-
ent pertaining to S2; third perform the logical OR of these
two matrices; finally convert this underconstrained matrix
to represent a sequence as with the intersection operator.
This results in a legal sequence with unique attributes from
both parents.

Fox and McMahon compared these operators with Whit-
ley’s edge recombination and Goldberg’s PMX operator
(both mentioned above) among others. They were tested
on a 30 city TSP. The operators performed very simi-
larly in terms of quality of solution found. However, the
union and intersection operators produced very good so-
lutions in far fewer generations than the other operators
although they were significantly more computationally ex-
pensive. Although their analysis of encodings for sequenc-
ing is certainly instructive, this kind of direct application
of GAs remains unproven. Algorithms exist that are ca-
pable of finding very good solutions to TSP problems of
several thousand cities. In practical terms, algorithms are
only useful if they can find solutions of better quality, or
more quickly, or more reliably, than with other techniques,
or are able to tackle problems previously unmanageable.
Gorges-Schleuter has produced good results for large TSP
problems by incorporating local hill-climbing heuristics into
a parallel GA [20]. The advantages of parallel GAs will be
briefly discussed later.

2.3 Later developments in scheduling with
sequential GAs

Cleveland and Smith investigated the use of GAs in schedul-
ing a multi-stage flow line with non-standard characteris-
tics [6]. Interestingly, as well as being one of the pioneers of
GA-based machine learning techniques [44], Smith has had
much involvement in some influential Al work on heuristic-
based scheduling [40, 35]. They investigated a variety of
problem formulations and recombination operators, draw-
ing on some of the earlier TSP and scheduling work de-
scribed above. The problem they addressed is combina-

torially complex so previous progress had only been made
through the use of heuristics. Their intention was to exam-
ine GAs as an alternative approach. They studied three ba-
sic models: a pure sequencing version, which assumed that
all jobs were available for release at the start of the schedul-
ing horizon, and that work-in-progress cost are negligible;
a model that included consideration of actual release times;
and a model that also included work-in-progress costs.

In the first version of the problem a comparative analy-
sis of the use of various recombination operators indicated
that a number were able to find very good solutions within
about 100 generations. Significantly, they found that the
GA was able to handle a non-deterministic version of the
problem without any apparent loss in performance. The
various (GAs tested did not perform particularly well on the
second model. However, when the more realistic objective
function of the third model was used the pure sequencing
GAs performed badly whereas GAs employing “schedule-
based” representations (in this case Davis’s preference lists
and a simple bit string representation of the release times
of the various jobs) found significantly better solutions.
These results for a complex realistic problem are promis-
ing and suggestive. However, further studies on the use
of domain knowledge and performance in non-deterministic
cases are needed. Careful comparisons with other methods
are also required.

The late eighties saw an explosion in the number of GA
researchers. Consequently there has been a fair volume
of very recent work on scheduling. Some of this will be
outlined now, before going on to more advanced tech-
niques. Gabbert et al. successfully applied a GA to trans-
port (train) scheduling and routing [13]. Unlike other ap-
proaches, they were able to use modifiable complex cost
models, avoiding most of the standard simplifications. They
are confident of being able to scale-up their prototype sys-
tems. This seems to be a good example of exploiting the
strengths of GAs to handle those aspects of a problem that
make it unamenable to more traditional techniques.

Wren and Wren have done some very interesting prelimi-
nary work on applying GAs to the hard practical problem
of bus driver scheduling [50]. Using a straightforward ge-
netic representation of the problem, but with an involved
and insightful recombination operator, they were able to
find solutions as good as those produced by the best OR
techniques. The work stemmed from a desire to find better
solutions to the problem, not from a wish to study GAs.
There may be a lesson in that. Their paper points out that
GAs have largely being ignored by the OR community, and
vet here is a significant result from one of the leading re-
searchers on this particular problem.

Another significant and recent result, also coming from the
OR community, is that of Dorndorf and Pesch [11]. They
use a GA to find optimal sequences of local decisions rules
to be used with OR search algorithms. For a range of static
deterministic job-shop scheduling problems their hybrid al-
gorithm was able to find shorter makespans (total elapsed



time) quicker than Adams, Balas and Zawack’s shifting bot-
tleneck procedure [29] and Laarhoven, Aarts and Lenstra’s
simulated annealing approach [41]. These two techniques
were generally regarded as the best available. Dorndorf and
Pesch’s work is related to earlier research, involving Pesch,
on incorporating powerful local search into a GA for the
TSP [12].

Mansour and Fox developed a hybrid GA, making use of
local hill-climbing and problem specific knowledge, for task
allocation in multicomputers [36]. They found significantly
better solutions than with a range of other techniques, al-
though the GA was computationally more expensive.
Nakano [39] tackled job-shop scheduling with a genetic en-
coding similar to that employed by Fox and McMahon (de-
scribed above) and closely related to Husbands’ arbitrator
strings [26]. He used simple crossover with a fairly involved
genetic repair mechanism to ensure legal offspring. On a
set of classic benchmark problems, including the infamous
10 x 10 and 20 x 5 problems [38] he was able to find solu-
tions which compared very favourably with state-of-the art
branch and bound techniques. However, no comparative
results on computational resources needed were given, and
the genetic repair method, as described, appears computa-
tionally expensive.

Syswerda describes a GA-based system for scheduling the
use of laboratory equipment [47]. He employed a GA to
find an initial sequence of tasks to feed to a fairly sophisti-
cated deterministic schedule builder such that near optimal
schedules result. His genotype was simply a list represent-
ing a task permutation. He used various mutation opera-
tors: select two tasks at random, place the second before
the first; select two tasks at random, interchange their posi-
tions; scramble a randomly chosen sub-list of the genotype.
He experimented with order and position based crossovers
as well as Whitley’s edge recombination operator. This hy-
brid approach, where the GA works in tandem with a deter-
ministic search method, produced good results fast enough
that it could take in the dynamic aspects of the problem
and allowed rescheduling.

Reeves has done some preliminary experiments on applying
GAs to stochastic flow-shop problems [42]. Over a range of
different problem instances his algorithm consistently out-
performed two other techniques from the OR literature.
Ling was able to find good solutions to a large college
timetabling problem by first using a heuristic-based algo-
rithm to build a reasonable timetable, but with some con-
straints violated, and then applying a GA to convert this
into a solution with no constraints broken [34].

Bruns has recently had some success with a slight twist on
the hybrid GA theme [2]. His genotypes are direct symbolic
representations of a production schedule, but his genetic
operators are highly specialised, incorporating a good deal
of domain knowledge.

Juliff [31] has developed an interesting multi-chromosome
GA for multi-dimension scheduling problems (she uses pal-
let loading as an example). Key dimensions of the solution

(e.g. in her example: layer order, pallet type, and pallet
order) are represented on different chromosomes. She has
found this method to be superior to a single chromosome
representation.

Fang et al. [14] found that a variant of Grefenstette’s ordi-
nal representation for the TSP [30] worked very efficiently
for standard job-shop problems.

2.4 Parallel GAs

From the very earliest days of its development the GA’s po-
tential for parallelisation, with all its attendant benefits of
efficiency, has been noted. The availability of hardware has
recently allowed significant progress in this direction. The
standard sequential GA uses global population statistics to
control selection, so the processing bottleneck is evaluation.
The earliest parallel models simply parallelised this phase
of the sequential algorithm, see, for instance, the paper
by Grefenstette [21]. Recently more sophisticated paral-
lel GAs have started to appear in which population can be
viewed as being spread out geographically, usually over a
2D toroidal grid. All interactions, e.g. selection and mat-
ing, are local, being confined to small (possibly overlapping)
neighbourhoods. By doing away with global calculations,
this allows the development of fine-grained highly parallel
asynchronous algorithms. There is mounting evidence to
suggest that such systems are more robust and faster (in
terms of solutions evaluated) than other implementations,
e.g. see the articles by Collins & Jefferson [8] and Husbands
[25]. Highly parallel models can also result in powerful new
ways of approaching optimisation problems at the concep-
tual level, as the following two sections illustrate.

2.5 Parasites and Sorting Networks

Danny Hillis was the first to significantly extend the parallel
GA paradigm by showing how to develop a more powerful
optimisation system by making use of coevolution [23]. He
has found that locally controlled selection is more robust
than the simple global variety. Specifically, in his experi-
ments individuals evolve on a 2D toroidal grid with the =
and y displacements of an individual from potential mates
being a binomial approximation of a Gaussian distribution.
After a pair mate, the two offspring they produce replace
them, in the same locations, so the genetic material remains
spatially local.

An interesting complex optimisation problem that he has
tackled using GAs, is the problem of finding minimal sort-
ing networks for a given number of elements. A sorting net-
work represents a sorting algorithm in which comparisons
and exchanges take place in some predetermined order, see
Knuth [32] for further details. Finding good networks is of
significant practical interest, bearing on the development of
optimal sorting algorithms, switching circuits and, partic-
ularly pertinent to this paper, network routing algorithms.
A sorting network is represented in Figure 1. The horizon-



tal lines correspond to the elements to be sorted. The un-
sorted input is on the left and the sorted output is on the
right. In between, comparison-exchanges of elements are
indicated by arrows pointing from one element to another.
A comparison-exchange of the ¢th and jth elements is indi-
cated by an arrow from the ith to the jth line. Elements are
exchanged if the element at the head of the arrow is strictly
less than the element at the tail. The network shown in the
figure 1s random.

Figure 1: A sorting network.

The genotype of each individual consisted of a pair of bit
string chromosomes Each chromosome can be thought of as
sixty eight-bit genes. Fach gene consisted of two four-bit
numbers representing elements to be compared and possibly
exchanged. The phenotype (sorting network) is generated
by traversing the chromosomes in a fixed order. If a pair
of chromosomes have the same gene (comparison-exchange
elements) at a particular site, then only that comparison-
exchange pair i1s generated in the sorting network. If the
genes are different, then both pairs are generated. In this
way the network can contain between sixty and one hun-
dred and twenty comparison-exchanges. The phenotypes
were scored according to how well they sorted. The mea-
sure used was the percentage of correct sorts performed on
a sample of test cases. The best results were produced when
the test cases were coevolved along with the sorters, rather
than being randomly generated. This is analogous to the
biological evolution of a host-parasite system. In this ex-
tended model there are two independent gene pools, each
evolving according to local selection and mating. One popu-
lation, the hosts, represents sorting networks, the other, the
parasites, represents test cases. Interaction of the popula-
tions is via their fitness functions. The sorting networks are
scored according to the test cases provided by the parasites
in their immediate vicinity. The parasites are scored accord-
ing to the number of tests the network fails on. The best
result found was a network requiring sixty one exchanges,
only one more than the best known. Significantly, by using
an advanced distributed approach Hillis was able to tackle
a highly complex problem to which previous solutions had
been hand-crafted over many years.

2.6 Symbiosis and Emergent Scheduling

The underlying structure of many combinatorial optimisa-
tion problems of practical interest i1s highly parallel. How-
ever, traditional approaches to these problems tend to use
mathematical characterisations that obscure this. By con-
trast, the use of biologically inspired models casts fresh light
on a problem and may lead to a more general characteri-
sation which clearly indicates how to exploit parallelism
and gain better solutions. This section describes a model
based on simulated coevolution that has been applied to a
highly generalised version of the job-shop scheduling prob-
lem, far more general than any of the models presented so
far. Whereas Hillis’s model i1s analogous to a host-parasite
ecology, this model is closer to a symbiotic ecology. That
18, a number of separate species interacting in ways that
are to their mutual advantage. Full details can be found in
[28, 26, 27].

In the standard model of manufacturing planning, process
planning directly proceeds scheduling. A process plan is a
detailed set of instructions on how to manufacture each part
(process each job). This is when decisions are made about
the appropriate machines for each operation and any con-
straints on the order in which operations can be performed
(see Chang & Wysk for further details [4]). Very often
completed process plans are presented as the raw data for
the scheduler. Scheduling is essentially seen as the task of
finding an optimal way of interleaving a number of fixed,
or maybe slightly flexible, plans which are to be executed
concurrently and which must share resources. However, in
many manufacturing environments there are a vast number
of legal plans for each component. These vary in the order-
ings between operations, the machines used, the tools used
on any given machine and the orientation of the work-piece
on any given machine. They will also vary enormously in
their costs. Instead of just generating a reasonable plan to
send off to the scheduler, it is desirable to generate a near
optimal one. Clearly this cannot be done in 1solation from
the scheduling: a number of separately optimal plans for
different components might well interact to cause serious
bottle-necks. Because of the complexity of the overall op-
timisation problem, that is simultaneously optimising the
individual plans and the schedule, and for the reasons out-
lined in the introduction, up until now very little work has
been done on it. However, recasting the problem to fit an
‘ecosystem’ model of coevolving organisms has provided a
promising new direction.

Husbands’ model involves a number of different populations
coevolving on a 2D grid with local selection in force. The
genotype of each specie represents a feasible process plan
for a particular component to be manufactured in the ma-
chine shop. Separate populations evolve under the pressure
of selection to find near-optimal process plans for each of
the components. However, their fitness functions take into
account the use of shared resources in their common world
(a model of the machine shop). This means that without



the need for an explicit scheduling stage, a low cost schedule
will emerge at the same time as the plans are being opti-
mised. The data provided by a plan space generator, whose
operation is described in [26], is used to randomly generate
populations of structures representing possible plans, one
population for each component to be manufactured. An
important part of this model is a population of Arbitrators,
again initially randomly generated. The Arbitrators’ job is
to resolve conflicts between members of the other popula-
tions; their fitness depends on how well they achieve this.
Conflicts arise when plans from different populations de-
mand the same resource (e.g. machine) at the same time.
There is a single representative of each population in each
cell on the grid. Each genotype is costed according to its
use of resources and its interactions with the other plans
in its cell. Combined with local selection, this allows for a
coherent coevolution and has resulted in good results for a
number of large test problems, including ones involving a
noisy dynamic workshop [27].

3 Conclusions

There is a growing tradition in applying GAs to a wide
variety of scheduling problems. Much of the early work
was concerned with using the GA to tackle the whole prob-
lem (in practice often the TSP). While this produced some
useful insights into genetic coding schemes and operators, it
was of little immediate practical value. Very often the main
concern of the researchers involved was to gain a deeper un-
derstanding of the workings of GAs rather than to solve real
problem. More recently GAs have been used in tandem with
other methods to tackle complex realistic problem. Results
from this area of investigation are extremely encouraging.
Highly parallel distributed GAs have provided completely
new ways of looking at generalised scheduling problems and
show promise in handling dynamic and stochastic problems.
In conclusion, if a proven well understood deterministic
technique exists for the problem you wish to tackle, then
you should use it. However, if your problem is uncertain
and contains aspects difficult to formalise and is not served
well by traditional methods, then a GA used with subtlety,
insight, and quite possibly in conjunction with other tech-
niques, may provide a good route forward.
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