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Abstract—In this paper, a variant of the particle swarm
optimisation (PSO) algorithm is introduced with heterogeneous
behaviour and a new dynamic multi-swarm topological structure.
The new topological structure enables the algorithm to have more
control over the interaction and information exchange between
the particles to reduce the loss of diversity and avoid premature
convergence. In the new algorithm, the population is initially
divided into two sub-populations, first sub-population is further
divided into sub-swarms that are formed using the introduced
topological structure. The particles of sub-swarms are guided
using heterogeneous behaviour by selecting various exemplars.
The second sub-population employs the classical PSO search
with local and global information to simulate a homogenous
behaviour. There is information flow between the two sub-
populations. The algorithm was tested on the CEC2005 and
CEC2017 test suites with comparison against various state-of-
the-art PSO variants and other state-of-the-art meta-heuristics.
The experimental results show that for the two test suites, the
proposed algorithm outperformed the majority of the state-of-
the-art algorithms on most problems.

Index Terms—particle swarm optimisation, swarm intelligence,
meta-heuristics

I. INTRODUCTION

The particle swarm optimisation algorithm, introduced by
Kennedy and Eberhard in 1995 [1] [2], is a search algorithm
designed to solve single-objective optimisation problems. The
PSO consists of a collection of agents, referred to as particles
that each represent a candidate solution for the given problem.
Due to its simplicity, the PSO algorithm has attracted the
interest of many researchers over the past few decades. As
a result, PSO became one of the predominant swarm algo-
rithms applied to various problems including task allocation
[3], image processing [4], feature selection [5] and robotic
applications [6]. However, the standard PSO algorithm’s ca-
pability to solve certain kinds of complex problems (e.g. high-
dimensional or with many local optima) is limited. The lack
of success in more complex problems is generally tied to two
main drawbacks of the PSO, namely loss of diversity and
premature convergence [7]. These two drawbacks are related
to one another as loss of diversity in a population diminishes
the swarm’s capability to focus on other solutions or attract
particles away from the local solution, hence resulting in
premature convergence. Because of the aforementioned issues,
numerous variants of the PSO were introduced to improve the
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canonical algorithm and solve problems in different domains.
In short, the focus of improvements of PSO variants can
be divided into four categories, namely: parameter tuning,
neighbourhood topology, learning strategy and hybridisation
with other methods. Shi and Eberhart [8] proposed a linearly
decreasing inertia weight parameter to control the balance
between exploration and exploitation, which became one of the
most widely used control mechanism for the w (inertia weight)
parameter. [9] introduced the use of constriction coefficients
to guarantee the convergence of the PSO, [10] introduced
time-varying c; and cp parameters and [11] proposed a fuzzy
logic approach to determine the inertia weight, acceleration
coefficients and the clamping values for velocity independently
for each particle. The neighbourhood topology of the PSO
algorithm can change the interaction between particles and
may have a significant impact on the swarm’s exploration and
exploitation behaviour. Generally, the neighbourhood topology
structure can be categorised as either a static or dynamic topol-
ogy. The classic static topology structure is gp.s; (global best)
and lp.s; local best. [12] introduced a variant of a PSO and
studied various topological structures including square struc-
tures, four clusters and pyramids. The study [13] introduced
a variant of PSO with a dynamic multi-swarm topological
structure that divides the overall swarm into smaller sub-
swarms. Similarly, [14] proposed a multi-swarm PSO with
mixed search behaviour to maintain swarm diversity and [15]
introduced increasing topology connectivity to enhance the
control of exploration and exploitation. This paper presents
a novel variant of the PSO, HIDMS-PSO, which builds on
and improves the DMS-PSO [16] by introducing a new topo-
logical structure for small-subswarms and learning exemplars
to enhance the search behaviour, and reduce loss of diversity
and premature convergence. The study [38] also employs the
concept of master-slave. It uses the symbiotic relationship
between the master and slave at swarm level to balance the
exploration and exploitation where a population consists of
one master swarm and several slave swarms. The study [39]
extends SRPSO and employs a directional update strategy and
uses the median of the personal best of random particles as
the personal best for the poorly performing particles. In our
approach, a portion of the population is assigned master-slave
roles at an individual level with a specific topological structure
(detailed in section 3), and further hierarchical ranks assigned



to slave particles (as shown in Fig. 2 and Fig. 3) in each unit.
The topological structure is supported by the communication
model to restrict arbitrary communication among particles to
allow hierarchal, one and two-way communication within and
among other particles to avoid particles focusing on a single
best-solution. In the present study, two movement strategies
are introduced, namely, inward and outward strategy (detailed
in section 3). The inward strategy guides particles towards
a local solution while the outward strategy guides particles
away from the self’s unit. Both strategies combined allows the
exploitation of the local solution and exploration of solutions
discovered by other units. Also, the master-slave roles, the
communication model and the heterogeneous behaviour of
particles further assist escaping from local optima and main-
taining population diversity for extended periods. Comparative
analysis on demanding test suites shows that the proposed
algorithm HIDMS-PSO is able to outperform state-of-the-art
meta-heuristics and PSO variants.

II. RELATED STUDIES

This section provides the necessary background information
about the canonical PSO and DMS-PSO algorithms.

A. Canonical PSO

In the canonical PSO, particles are initially randomly dis-
tributed in the search space. Throughout the search process,
particles learn and retain certain information about the en-
vironment, namely its position, velocity and personal best
position found. At each iteration, the position of the particle is
updated by adding together its current position and velocity.
The velocity has the most significant influence on the next
position of the particle, and is calculated using two pieces
of information: namely the particle’s personal best-known
position and the best position found within the swarm. The
velocity and position calculation of the canonical PSO is as
follows:
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Where w, c¢; and cy are control parameters, namely the
inertia weight and acceleration coefficients, vl(t) is the ith
particle’s velocity, ppest iS the personal best position, gpest
is the globally best known solution and xgt) is the current
position of the " particle. Here, r; and r, are random
variables in the range of [0,1].

B. DMS-PSO

DMS-PSO [16] is a variant of the PSO algorithm with a
dynamic topological structure. DMS-PSO searches by initially
segregating the population into many relatively small sub-
swarms and each sub-swarm searches based on their best
historical information with no communication with other sub-
swarms during the search; essentially a co-evolutionary PSO
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Fig. 1. Search phases of the DMS-PSO algorithm.

with sub-swarms searching in parallel. PSO’s general ten-
dency to converge rapidly result in sub-swarms converging
to local optima. To overcome this issue, DMS-PSO employs
a regrouping strategy that takes place at specific intervals to
continue searching using a new configuration of small swarms,
and by employing a regrouping strategy, viable information is
then exchanged between the swarms at every R generations.
Fig. 1 shows the search phases of the DMS-PSO algorithm,
assuming a population of 9 particles, randomly divided into
3 sub-swarms. Subsequently, each particle searches within its
sub-swarm to find a better solution. The position of particles
for the DMS-PSO algorithm is updated using Egs. (2) and (3).
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III. PROPOSED METHOD: HIDMS-PSO

The present study aims to improve the performance of
the DMS-PSO algorithm by introducing a new dynamic
topological structure and heterogeneous particle behaviour.
The homogenous and heterogenous sub-populations allocated
enhance the exploration and exploitation capabilities without
impeding one another.

1) Proposed Topological Structure: The new structure is
composed of sub-swarm like entities called units. Each unit has
a fixed population of 4 particles, with a single master particle
(Pmaster) selected randomly and 3 slave particles with distinct
types (pliave) - (P1ave)- Master and slave particles retain their
roles throughout the search process. The distinction in type
between the slave particles is intended to allow heterogeneous
behaviour, restrict information flow to avoid premature conver-
gence and depletion of diversity. Fig. 2 exhibits the structure
of a single unit.

2) Communication Model: Information flow and interaction
between particles play a significant role in maintaining the
swarm diversity and particle’s guidance. In the present study,
instead of a global or arbitrary exchange of information, the



1
Psiave

One-way communication ——®

Two-way communication <<----2»

Fig. 3. The visual depiction of the communication model between 3 units.

unit structure hierarchy between particles and the assumed
distinction between the slave particles is used to restrict and
control the flow information between the particles. The com-
munication model proposed in this study can be summarised
using the following rules:

1) Particles of the ith unit do not directly communicate
with the particles of the jth unit. Communication is
established via the slave particles only.

2) Master particles can only exchange information with one
of their slaves.

3) Slave particles can only communicate with the slaves of
the same type; hence they cannot communicate with the
slaves within their unit.

3) Search Behaviour: The search process of the proposed
algorithm initiates by separating the population into two
equal sub-populations as heterogenous and homogenous sub-
populations. The first segment of the population is used to
form N of the units shown in Fig. 2. Each unit exhibits
heterogeneous behaviour (detailed later) while the second sub-
population exhibits homogeneous behaviour by conducting a
PSO search using the update equations 1 and 2. The sub-
population dedicated to forming units exhibits two different
search behaviour using an inward-oriented strategy and an
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outward-oriented strategy. The inward-oriented behaviour em-
phasis is on guiding particles’ movement using the information
obtained from members of the unit the particle belongs to. On
the contrary, the outward-oriented behaviour guides particles
based on the information obtained from other units. In the
proposed algorithm, the particle of the heterogenous sub-
population randomly selects one of the strategies, although
a more precise method may be designed to improve switching
between the two strategies. It’s worth noting that the second
sub-population is completely segregated from the units and
performs an independent search based on classical PSO update
equations while the first segment of the population (units)
employs heterogeneous search behaviour. For both movement
strategies briefly mentioned above, the selection of an exem-
plar is determined based on a single factor, that is the type of
the particle (i.e. master, slave or slave type).

a) Inward-oriented strategy: The inward-oriented strat-
egy uses information from members of the unit to guide its
members. For master particles of the Nth unit, this strategy al-
lows particles to update their velocities by randomly selecting
one of the equations Egs. 4-6:
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Where 1% is the most dissimilar slave particle (positional
dissimilarity) in the unit N. Movement towards the most
dissimilar slave particle boosts the diversity of the master
particle, hence the whole unit, as slave particles of a unit are
highly influenced by the master particle’s position. The global
Dpest can come from either of the two main sub-populations.
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Where 2%¢%t is the slave particle with the lowest cost in
unit V. Local exploration is performed by guiding the master



particle towards the best slave particle.
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On the contrary, for the slave particles, the only option

provided for this strategy is to move towards the unit master
and ppest, as shown in Eq. 7.

o) = w(t) ol + ey <pbest - xfﬁ) + cara (xm - x,ﬁ”)
(7
Where ., is the master particle of the N*" unit.

b) Outward-oriented strategy: As oppose to inward-
oriented movement, outward-oriented movement allows par-
ticles to learn from other units while maintaining hierarchical
structure. The master particle can randomly select one of the
following equations to guide its behaviour:
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Where £%%9 is the average position of particle’s own unit
members and z7'%5'*" is the position of the master particles
of the N unit. Similar to the slave particle’s movement in
the inward-oriented strategy, in this case, the slave particles
employ a single update equation to move towards a random

slave of the same type that belongs to another unit, using:
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By combining both strategies and allowing a portion of the
population to employ classical position update using Eqs .1
and 2, the overall swarm is divided into homogenous (first
segment) and heterogeneous (second segment) groups and the
heterogeneous population is further divided into N number
units for efficient exploration and exploitation. The exem-
plars employed in the inward-oriented strategy allows master
particles to perform exploration based on several different
guidances and the slave particles are guided to exploit the
master’s best-known position. This strategy essentially allows
each unit to explore and exploit local solutions simultaneously.
Similarly, the outward-oriented strategy facilitates particles of
a unit to learn from other units’ members and the overall
knowledge which results maintains their diversity at a certain
level and allows members of units to explore more promising
regions at time t to escape from potential local optima. As

a result, the combination of homogenous and heterogeneous
populations favours maintaining the balance of exploration
and exploitation while inward and outward learning strategies
allow particles to initiate single-timed fluctuations in their
behaviour that enhances individual unit’s diversity and escape
from local minima. [17] introduced a non-uniform mutation
operator to further improve the loss of population diversity and
enhance the exploration capability in the swarm. The present
study employs a similar approach by introducing a partial
mutation on particles using a non-uniform mutation with
relatively small fixed mutation probability of Pm=0.1. The
mutation takes place on different dimensions of each particle
selected randomly at specific intervals to search tiny areas
surrounding particles’ position. The number of dimensions and
which dimensions to mutate are determined randomly for each
particle at specific intervals (see the pseudocode).

c) Parameters: As mentioned in the previous sections,
the PSO algorithm has 3 parameters namely, acceleration
coefficients ¢, co, and inertia weight w. In the literature,
many studies propose optimum parameter settings for different
problem sets and control methods are introduced to maintain
the optimum control of the exploration and exploitation bal-
ance. In the present study, c¢; and cy are set as time-varying
acceleration coefficients introduced in [26] which improves the
global exploration during the early stage and encourages con-
vergence during later stages of the search process. The inertia
weight parameter is controlled by nonlinearly decreasing using
the sigmoid function [17]. The sigmoid function’s smooth,
monotone and continuous properties facilitate a good balance
of linearity and non-linearity [17]. Similar to the regrouping
strategy employed in the DMS-PSO, the present study employs
a related parameter. However, the introduced mechanism does
not intent to regroup and exchange information but rather
reshape the units while maintaining the master-slave structure.
The intention is to further improve the diversity of the smaller
groups within the overall swarm by stochastically switching
particles of each unit while maintaining their hierarchies.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the experimental design and results.
The first subsection describes the experimental setup, bench-
mark suites, and statistical analysis and the latter presents the
results of the two experiments conducted on the CEC2005 and
CEC2017 benchmark suites.

1) Experimental Setup: The present study conducted two
experiments to examine the performance of the proposed
method, namely using the CEC2005 and CEC2017 benchmark
test suites. In the first experiment, the proposed method was
compared with 9 state-of-the-art PSO variants, namely, inertia
weight PSO [34], HCLDMS-PSO [17], FDR-PSO [28], DMS-
PSO [16], HPSO-TVAC [29], MNHPSO-JTVAC [30], CLPSO
[31], SRPSO [32] and HCLPSO [33] on the CEC2005 test
suite. The population size was set to 40 for all methods
[17]. In the second experiment, the proposed method was
compared with the results of 2 inertia weight PSO algorithms
with different parametric settings, state-of-the-art DMS-PSO



and other state-of-the-art meta-heuristics (including the bat
algorithm (BA) [18], grey wolf optimizer (GWO) [19], but-
terfly optimization algorithm (BOA) [20], whale optimization
algorithm (WOA) [21], moth flame optimization (MFO) [22],
artificial bee colony (ABC) [24], flower pollination algorithm
(FPA) [27], cuckoo search algorithm (CS) [23] and invasive
weed optimisation (IWQO) [37] algorithm on the CEC2017
special session on real-parameter single objective optimisation
benchmark suite [25]. The CEC2017 test suite consists of 30
test functions, and for all problems, the lower and upper bound
range was [—100,100]%. The population size of the PSO!,
PSO?, DMS-PSO and the proposed method was set to 40.
The population size for the other nine meta-heuristics was set
to 100 [17]. For detailed parameter values on the comparative
methods and details of the test suites, refer to [17] [32] and
the original studies. For both experiments, each problem was
tested 30 times, 300,000 function evaluations for 30 dimen-
sional and 500,000 function evaluations for 50-dimensional
problems on both test suites. Table I and Table II displays the
mean errors obtained for the CEC2005 test suite for 30 and
50 dimensional problems and Table III and Table IV displays
the mean errors obtained for the CEC2017 test suite for 30
and 50 dimensional problems. Table V and Table VI shows
the average and final ranks of the mean performances for both
test suites. The Wilcoxon signed-rank test conducted on the
final ranks obtained for the CEC2005 problems reveals that
the result is significant between all comparison methods and
the proposed algorithm except HCLDMS-PSO and HCLPSO
at p < 0.05 for problem size of 30 and 50 dimensions.
The Wilcoxon signed-rank test conducted on the final ranks
obtained for the CEC2017 problems reveals that the result is
significant between the proposed algorithm and all comparison
methods except DMS-PSO for problem size of 30 dimensions.
The result is significant between the proposed algorithm and
all comparison methods for a problem size of 50 dimensions at
p < 0.05. Due to length restriction of this paper, experimental
results are partially included. An external supplementary ma-
terial is provided for complete results of experiments that can
be accessed from users.sussex.ac.uk/fv47/HIDMSPSO.pdf.

A. Results

Experimental results for the CEC2005 test suite for prob-
lems of 30 dimensions reveal that for problems F1-F7, F11,
F12, F14, F18-20 and F22, the SRPSO acquired the best per-
formance. For these problems, the second-best performances
were attained (in problem order) by HPSO-TVAC, HIDMS-
PSO, MNHPSO-JTVAC, DMS-PSO, HCLPSO, HCLDMS-
PSO, HIDMS-PSO, DMS-PSO, HIDMS-PSO, HCLDMS-PSO
(for F18-F20) and HCLPSO. For problem F8, HIDMS-PSO
achieved the best, and the DMS-PSO achieved the second-
best performance. CLPSO exhibited the best performance
for problems F9 and F15 followed by HCLPSO for the
second-best performance, and CLPSO attained the best per-
formance for F13, whereas the SRPSO exhibited the second-
best performance. For problems F10, F17, F21 and F24, the
HCLDMS-PSO showed the best mean performance, for the

same problem set the second-best performance was achieved
by SRPSO, HCLPSO, CLPSO and MNHPSO-JTVAC. The
second experiment conducted on the CEC2005 test suite for
the problem size of 50 dimensions reveals that the SRPSO
algorithm exhibited a similar performance pattern by achieving
the best performance for problems F1-F7, F11, F12, F14, F18-
F20, F22-F24. For the same problem set, the second best per-
formance was achieved by (in the same order) HPSO-TVAC,
HIDMS-PSO, MNHPSO-JTVAC, DMS-PSO (for F4 and F5),
HIDMS-PSO (for F6 and F7), DMS-PSO, HIDMS-PSO,
HCLDMS-PSO (for F14 and F18), HCLPSO (for F19, F20
and F22), HIDMS-PSO and HCLDMS-PSO. For problems F9,
F15 and F21, CLPSO exhibited the best mean performance
followed by HCLPSO and HCLDMS-PSO for the second-
best performance. HCLPSO attained the best performance for
problems F13, F17 and F25 and SRPSO and HIDMS-PSO
exhibited the second-best performance for the same problem
set. For problems F10 and F16, HCLDMS-PSO showed the
best mean performance while the SRPSO attains the second-
best performance in both cases. For problem F§8, HIDMS-
PSO outperformed comparison methods, and the DMS-PSO
achieved the second-best performance. Table I and Table II
display the results for the CEC2005 experiment, and Table V
shows the average and final ranks for this experiment. For the
problem size of 30 dimensions, the SRPSO attained the top
rank, followed by the second rank achieved by the HCLDMS-
PSO algorithm. The proposed method achieved the 3rd rank
among the nine state-of-the-art PSO variants by outranking
(in their rank order) HCLPSO, DMS-PSO, MNHPSO-JTVAC,
HPSO-TVAC, CLPSO, PSO and FDR-PSO. For the problem
size of 50 dimensions, again, the top rank is attained by
SRPSO followed by the second rank achieved by the HIDMS-
PSO. Experimental results for the CEC017 test suite for the
size of 30 dimensions reveal that for problems F3, F7, F8,
F12 and F21, HIDMS-PSO achieved the best performance.
For the same problem set, DMS-PSO attained the second-best
performance (for problems F3, F7, F8) and the CS algorithm
(for F12 and F21). For problems F5, F9, F11, Fl16, F17,
F20, F22-F24 and F27-F30, DMS-PSO exhibited the best
mean performance, and HIDMS-PSO achieved the second-best
performance for all problems except F30, where ABC attained
the second-best performance instead. For problems F1, F4,
F10, F25 and F26 ABC exhibited the best mean performance,
for the same problem set the second-best performance is
observed by DMS-PSO, HIDMS-PSO (for F4, F10, F26) and
CS. The CS algorithm outperformed comparison methods for
problems F13-F15, F18 and F19. The ABC algorithm achieved
the second-best performance (for F13, FI15 and F19) and
HIDMS-PSO (for F14 and F18). For problem F6, the HIDMS-
PSO, DMS-PSO and ABC algorithms achieved the same best
performance, and the GWO algorithms attained the second-
best performance. The second experiment conducted on the
CEC2017 test suite for the problem size of 50 dimensions
reveal that HIDMS-PSO achieved the best mean performance
for problems F3, F4, F5, F6, F7, F8, F9, Fl11, F12, F21,
F23, F24 and F30, for the same problem set the second-best



performance is attained by DMS-PSO (for F3, F5, F6, F7,
F8, F9, F21, F23, F24 and F30), and CS (for F4, F11 and
F12). The CS algorithm attained the best mean performance
for problems F13-15, F18 and F19. For the same problem set,
the second-best performance is observed by HIDMS-PSO (for
F13, F15 and F18), (for F14 and F19) IWO and DMS-PSO.
For problems F25 and F28, the CS algorithm, for F26 and F29
DMS-PSO and problem F27, the ABC algorithm exhibited the
best performance. HIDMS-PSO achieved the second-best per-
formance for the same problem set. The DMS-PSO algorithm
attained the best mean performance for problems F1, F10, F16,
F17, F20 and F22 and HIDMS-PSO achieved the second-best
performance for problems F1, F16 F20, F22, along with GWO
for problems F10 and F17. Table III and Table IV display the
results for the CEC2017 experiment, and Table VI shows the
average and final ranks for this experiment. Calculation of the
average and final ranks indicate that the proposed algorithm,
HIDMS-PSO, achieved the best performance and the top rank
for the CEC2017 test suite for a problem size of 30 and 50
dimensions and the DMS-PSO algorithm ranks second for both
30 and 50-dimensional problems.

V. CONCLUSIONS

The present study proposed the HIDMS-PSO algorithm, a
novel variant of PSO with a new topological structure. The
algorithm divides the population to establish a heterogeneous
and a homogenous population with distinct behaviours. The
new topological structure is used to control the interaction and
the flow of information between the particles. The units and
the topological structure combined significantly contributed
to guiding the particles by either using inward or outward-
oriented strategies to perform better exploration/exploitation,
and to improve loss of diversity and premature convergence.
The algorithm was tested on the CEC2005 and CEC2017
test suites at 30 and 50 dimensions with state-of-the-art
PSO variants and meta-heuristics. The proposed algorithm’s
comparative performance was very strong on both test suites,
including being ranked top for the CEC2017 suites at both
30 and 50 dimensions, indicating its potential as a powerful
search method. The present work can be extended by applying
the HIDMS-PSO algorithm to complex practical problems, or
it can be further improved to compete with more complex
algorithms.
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Algorithm 1: HIDMS-PSO

population size n, C=0.15, Wmaz=0.99, wy,in=0.2;
c1 =2.5—(1: Tmaa *2/Tmaz);
c2=05—(1: T?mu. * 2/Tma?);
_ Wmaz+(Wmin—Wmaz) .

R =)}
for 1=1:Tynaz do '
for i=1:n do
if mod(t, Tz *0.1)==0 then

| vertically shuffle slave particles
end
if mod(t, Tynaz *0.05)==0 then
if t < Tyao then

| B = round(d*U(0.1,1));

else

| B = round(d*0.1);
end
for j=1:n do

for each particle

end
end
if flx;) >= avg then

else

end

if randi([0 1])==0 (inward-strategy) then
if it" particle is a master then
behaviour = randi([1 3]);

if behaviour == 1 then

end
if behaviour == 2 then

end
if behaviour == 3 then

end
else
| update v;,z; using Egs. 7 and 2
end
else
if it" particle is a master then
behaviour = randi([1 3]);
if behaviour == 1 then

end
if behaviour == 2 then

end
if behaviour == 3 then

end

else

end
end

Evaluate the fitness of x;
Update the ppest and gpest

end
end

select 8 number of random dimensions to mutate

| w=wi(t)+C;if w> 099, w=0.99 end;

‘ w =wi(t) - C;if w < 0.20, w = 0.20 end;

| update v; and x; using Eqgs. 4 and 2
| update v; and x; using Egs. 5 and 2

| update v; and x; using Eqs. 6 and 2

| update v;,z; using Eqs. 8 and 2
| update v;,z; using Egs. 9 and 2
| update v;,z; using Egs. 10 and 2
| update v;,z; using the Egs. 11 and 2

perform partial non-uniform mutation on the z;



TABLE I

THE MEAN ERROR RESULTS OBTAINED IN CEC2005 TEST SUITE FOR PROBLEM SIZE OF 30 DIMENSIONS.

HCLDMS-PSO SRPSO HCLPSO MNHPSO-JTVAC CLPSO DMS-PSO HPSO-TVAC FDR PSO HIDMS-PSO*

F1 3.3E-12 0.0E+00 1.3E+01 5.9E-14 2.9E-06 2.6E+01 5.5E-14 5.0E+02 4.7E+03 1.4E-12

F2 3.5E+01 0.0E+00 2.2E+01 9.3E-03 8.2E+03 5.0E+01 4.8E-02 1.4E+03 6.5E+03 1.1E-03

F3 2.9E+06 4.5E+01 3.7E+06 9.8E+05 3.5E+07 3.9E+06 1.7E+06 1.6E+07 2.8E+07 1.1E+06

F4 2.2E+03 3.0E+01 2.1E+03 3.6E+03 1.9E+04 3.3E+02 3.0E+03 2.8E+03 8.4E+03 1.7E+03

F5 2.8E+03 1.8E+03 2.4E+03 5.4E+03 5.8E+03 3.1E+03 5.5E+03 3.6E+03 1.0E+04 3.0E+03

F6 6.3E+01 4.0E+01 2.9E+05 9.9E+01 2.5E+02 2.0E+05 1.1E+02 2.4E+06 5.6E+08 7.0E+01

F7 4.7E+03 7.6E-02 4.7E+03 4.7E+03 4.7E+03 4.7E+03 4.7E+03 4.7E+03 5.5E+03 4.7E+03

F8 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01

Fo 3.7E+01 3.8E+01 4.0E+00 2.5E+01 6.3E-04 7.2E+01 3.6E+01 2.7E+02 8.5E+01 5.0E+01

F10 3.5E+01 5.2E+01 6.7E+01 1.0E+02 1.8E+02 6.3E+01 1.0E+02 2.0E+02 1.4E+02 6.5E+01
TABLE II
THE MEAN ERROR RESULTS OBTAINED IN CEC2005 TEST SUITE FOR PROBLEM SIZE OF 50 DIMENSIONS.
HCLDMS-PSO SRPSO HCLPSO MNHPSO-JTVAC CLPSO DMS-PSO HPSO-TVAC FDR PSO HIDMS-PSO*

F1 6.9E-07 0.0E+00 8.0E+00 1.2E-13 4.7E-02 1.8E+02 1.0E-13 1.3E+03 1.4E+04 2.5E-09

F2 2.8E+03 3.8E-03 2.0E+03 9.6E+01 4.0E+04 1.9E+03 1.9E+02 1.1E+04 3.0E+04 2.8E+01

F3 1.1E+07 5.3E+03 1.4E+07 2.9E+06 1.5E+08 1.3E+07 4.4E+06 7.2E+07 1.6E+08 3.8E+06

F4 2.2E+04 2.2E+03 2.5E+04 2.7E+04 6.6E+04 1.0E+04 3.1E+04 2.6E+04 5.6E+04 2.5E+04

F5 7.5E+03 3.7E+03 6.3E+03 1.4E+04 1.5E+04 5.6E+03 1.6E+04 8.2E+03 1.4E+04 6.8E+03

Fo6 2.4E+02 5.0E+01 1.8E+05 1.3E+02 6.8E+03 1.9E+06 1.7E+02 9.9E+06 3.1E+09 1.2E+02

F7 6.2E+03 5.4E-01 6.2E+03 6.2E+03 6.2E+03 6.2E+03 6.2E+03 6.2E+03 8.1E+03 6.2E+03

F8 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01 2.1E+01

F9 1.1E+02 9.0E+01 1.8E+01 8.3E+01 1.2E+00 1.5E+02 1.1E+02 5.6E+02 1.9E+02 1.2E+02

F10 9.5E+01 1.0E+02 1.2E+02 1.6E+02 4.5E+02 1.5E+02 1.9E+02 4.3E+02 3.0E+02 1.3E+02
TABLE III
THE MEAN ERROR RESULTS OBTAINED IN CEC2017 TEST SUITE FOR PROBLEM SIZE OF 30 DIMENSIONS.
BA GWO BOA WOA MFO ABC FPA CS IWO PSO1 PSO2 DMS-PSO HIDMS-PSO*
F1 7.3E+10 1.1E+09 3.0E+10 2.1E+06 8.1E+09 1.3E+02 1.1E+11 1.9E+04 3.0E+03 1.3E+11 1.3E+11 2.3E+03 4.7E+03
F3 2.2E+05 2.9E+04 6.7E+04 1.6E+05 7. 7TE+04 1.2E+05 1.8E+06 4.5E+04 6.4E+03 3.9E+08 3.9E+08 2.2E+03 2.3E-10
F4 2.1E+04 1.5E+02 2.5E+03 1.5E+02 5.1E+02 3.4E+01 3.6E+04 7.5E+01 8.8E+01 4.4E+04 4 4E+04 6.2E+01 6.1E+01
F5 5.1E+02 8.7E+01 3.3E+02 2.7E+02 1.8E+02 8.8E+01 6.2E+02 1.4E+02 4.1E+02 6.8E+02 6.8E+02 4.6E+01 5.2E+01
F6 1.1E+02 4.0E+00 6.4E+01 6.6E+01 2.5E+01 0.0E+00 1.3E+02 5.0E+01 7.2E+01 1.4E+02 1.4E+02 0.0E+00 0.0E+00
F7 1.5E+03 1.6E+02 5.1E+02 5.1E+02 3.5E+02 1.0E+02 2.5E+03 1.6E+02 2.0E+03 2.7E+03 2.7E+03 9.3E+01 8.7E+01
F8 4.3E+02 7.7E+01 2.9E+02 1.9E+02 1.7E+02 8.9E+01 5.6E+02 1.3E+02 3.5E+02 6.1E+02 6.1E+02 4.8E+01 4.8E+01
F9 2.1E+04 5.4E+02 6.9E+03 7.7E+03 5.1E+03 8.2E+02 3.1E+04 4.6E+03 7.6E+03 3.8E+04 3.8E+04 1.2E-01 2.6E+00
F10 8.8E+03 2.8E+03 7.7E+03 4.8E+03 4.1E+03 2.3E+03 9.1E+03 3.7E+03 4.7E+03 9.6E+03 9.6E+03 2.9E+03 2.7E+03
TABLE IV
THE MEAN ERROR RESULTS OBTAINED IN CEC2017 TEST SUITE FOR PROBLEM SIZE OF 50 DIMENSIONS.
BA GWO BOA WOA MFO ABC FPA CS IWO PSO1 PSO2 DMS-PSO HIDMS-PSO*

F1 1.7E+11 4.6E+09 4.3E+10 7.1E+06 3.2E+10 9.2E+08 2.3E+11 1.4E+05 6.9E+03 1.3E+09 1.2E+10 3.6E+03 5.4E+03
F3 8.2E+07 7.0E+04 2.2E+05 7.8E+04 1.7E+05 6.6E+05 1.9E+08 1.6E+05 2.6E+04 9.6E+03 5.8E+04 3.0E+02 2.0E-04
F4 6.3E+04 4.3E+02 9.9E+03 2.8E+02 2.6E+03 1.2E+03 9.0E+04 7.7E+01 1.2E+02 2.5E+02 9.3E+02 1.4E+02 7.0E+01
F5 9.5E+02 1.7E+02 6.2E+02 4.2E+02 4.2E+02 5.0E+02 1.1E+03 2.9E+02 7.4E+02 2.3E+02 2.0E+02 1.3E+02 1.1E+02
F6 1.3E+02 1.1E+01 7.9E+01 7.6E+01 4.5E+01 3.0E+01 1.4E+02 6.2E+01 7.8E+01 2.0E+01 1.2E+01 5.3E-01 1.2E-01
F7 3.3E+03 3.0E+02 1.1E+03 9.9E+02 9.0E+02 5.7E+02 4.7E+03 3.4E+02 3.5E+03 2.8E+02 2.7E+02 2.0E+02 1.7E+02
F8 9.7E+02 2.0E+02 6.5E+02 4.1E+02 3.8E+02 5.0E+02 1.1E+03 2.8E+02 7.2E+02 2.3E+02 2.0E+02 1.3E+02 1.1E+02
F9 7.5E+04 3.7E+03 2.8E+04 1.9E+04 1.5E+04 3.0E+04 9.2E+04 1.6E+04 2.0E+04 5.8E+03 3.6E+03 2.1E+02 5.6E+01
F10 1.6E+04 5.6E+03 1.4E+04 9.1E+03 7.9E+03 1.5E+04 1.6E+04 7.0E+03 7.7E+03 6.5E+03 6.1E+03 5.1E+03 5.6E+03
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