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Abstract

GasNet artificial neural networks can be used as complex
neurocontrollers involving virtual chemical neuromodulation
as well as synaptic interaction. The aim of this paper is to fur-
ther explore the role of space in GasNet models on a delayed-
response robot task. Comparative results demonstrate that the
use of spatial constraints is not a prerequisite for a good per-
formance of the original model in terms of speed of evolution.

Introduction
Evolutionary robotics allows us to explore complex dynam-
ical neural processes and architectures that connect to in-
teresting issues in neuroscience (Nolfi and Floreano, 2004).
The GasNet models can be considered as examples of such
complex neurocontrollers involving chemical neuromodula-
tion as well as synaptic interaction (Husbands, 1998). A re-
cently devised non-spatial GasNet model named NSGasNet
(Vargas et al., 2007) follows the same principles and had al-
ready been successfully applied as a robot controller where
the task did not require the controller to have a non-reactive
response (Moioli et al., 2008). This work attempts to further
explore this novel model in a delayed-response robot task,
in addition to compare it with the original GasNet model in
terms of evolvability. In essence, our aim is to investigate
whether the space embedding present in the original GasNet
is the main explanation for its success when applied to more
elaborate robot tasks.

We will present a comparison which follows the investiga-
tion started by Vargas and collaborators (Vargas et al., 2007).
In that work, the NSGasNet model has proven to have higher
evolvability with respect to the original model on a central
pattern generator task (CPG).

However, it is unclear whether the conclusions obtained
for the CPG task will carry over to more complex situations,
especially to cases involving an embodied agent. For this
reason, we decided to perform a comparative study on a
well-researched delayed-response task involving a T-Maze
(Husbands, 1998; Jakobi, 1993, 1997; Ulbricht, 1996).

Our results corroborate the fact that the use of spatial em-
bedding is not a prerequisite for better performance either

in terms of speed of evolution or in robustness. This might
also indicate that the success demonstrated by GasNet mod-
els so far (Husbands et al., 1998; McHale and Husbands,
2004; Philippides et al., 2005) are not related to the spatial
embedding of nodes but maybe to the temporal dynamics
promoted by the gaseous diffusion amongst them.

We will start by briefly describing the original GasNet
plus the novel model, together with a summary of the previ-
ous results on a CPG task. Thereafter, we will describe our
experiment in detail including the respective network archi-
tecture and genetic encoding, together with the evolutionary
regime. After the results section we will provide a discus-
sion and propose future work.

Non-Spatial GasNet: NSGasNet

Since the introduction in 1943 of the first artificial neuron
model proposed by McCulloch and Pitts (McCulloch and
Pitts, 1943) most of the subsequent classical artificial neu-
ral networks (ANNs) architectures have employed numer-
ical synaptic interaction between their neurons. However,
recent findings in neuroscience have suggested the existence
of chemical signaling by gases that would play the role of
neurotransmitters (Gally et al., 1990). By drawing inspira-
tion from these latest discoveries, the GasNet model was in-
troduced by Husbands (1998) in an attempt to create a novel
recurrent artificial neural network, which seeks to combine
the electrical and chemical signaling onto a single network.

In the original GasNet model, the classical sigmoided out-
put function y = tanh(x) of each neuron at each time
step is modulated by a transfer function parameterk which
will define which curve from the family of eleven sigmoids
(x = [−4, 4]) will be employed during the network’s oper-
ation. The value ofk is controlled by the concentration of
diffusing transmitter gas at a node following the network dy-
namics dictated by the network’s equations as described in
Husbands (1998).

Almost all GasNet parameters and variables are under
evolutionary control. The use of evolutionary computation
techniques to evolve ANNs is of fairly recent origin (Signals
et al., 1990; Whitley et al., 1990; Yao and Liu, 1997; Yao,
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Figure 1: Mean and standard deviations (error bars) of fit-
ness evaluations required to evolve successful networks for
each CPG pattern, Eleven-Seven, Eleven-Five, Ten-Four and
Seven-Five. Black bar shows original mean data and white
bar shows NSGasNet mean data. The numbers above each
error bar represent the total number of successfully evolved
networks within 50 runs (adapted from (Vargas et al., 2007))

1999). Following this initiative, GasNet models were partic-
ularly designed to ”evolve” for every task addressed. Hence,
the network size, topology and almost all its parameters are
under unconstrained evolutionary control.

Normally, depending on the task, the network is com-
posed of a variable number of nodes. Thus, a network is en-
coded on a variable-sized genotype, where each gene repre-
sents a network node. A gene consists of an array of integer
variables lying in the range [0, 99] (each variable occupies
a gene locus). The decoding from genotype to phenotype
obeys simple laws for continuous values and for nominal
values (Husbands et al., 1998).

Vargas et al. (2007) introduced a novel spatially uncon-
strained GasNet named NSGasNet, in which the nodes do
not have a location in a Euclidean space. Reminiscent of
how the gas neurotransmitter NO normally diffuses once
released (Gally et al., 1990; Wood and Garthwaite, 1996,
1994), in the NSGasNet model all emitted gases can spread
freely among neurons.

NSGasNet is a discrete time recurrent neural network,
which could be fully or partially connected with fixed or
variable number of nodes. This full or partial connectivity
refers to the synaptic connections. The gaseous connections
are defined in terms of sensitivity limits, which impose to
each network node a filter that regulates the strength of gas
modulation (Vargas et al., 2007). Thus, each node has its set
of sensitivity limits lying in the range [0, 1] of which val-
ues correspond to each node within the network. Although
the NSGasNet has a bias that modulates the concentration
of the gas at each node, the rules for how and when the gas

Figure 2: Schematic drawing of the robot and the T-Maze
environment with two corridors. The robot is represented by
the small circle and it is positioned in the bottom of the first
corridor facing north. On the right-hand side there is a beam
of light.

is emitted are the same as the original GasNet (Husbands,
1998).

In a previous work by (Vargas et al., 2007), this non-
spatial model has been successfully applied to a CPG task
where the network should evolve to generate a sequence of
cyclic output values from the set 0,1. Four patterns were
tested and in all of them the NSGasNet was demonstrated to
outperform the original spatially constrained GasNet Model
in terms of speed of evolution (Figure 1). Some preliminary
statistical analysis around mutants was performed to inves-
tigate the possible reasons for the best performance hypoth-
esising about the role of the fitness landscape smoothness.
A more profound analysis has been carried out in another
work using further statistical correlation analysis between
both models and the results will be submitted to publication
soon. This work on the other hand intends to apply both net-
work models to a more elaborate robot task to further assess
the role of space in the performance of GasNet models.

Methods: T-Maze and Evolutionary Regime
T-Maze with light task

The experiment is a delayed response task in which a robot
must learn to negotiate a T-Maze turning at the junction in
the correct direction after passing a beam of light located in
the first corridor either to the left or the right (Figure 2).
Therefore, the robot must ‘remember’ the position of the
light in order to successfully accomplish the task. This task,
and similar ones, have been used by various researchers to
endow artificial agents with minimal memory mechanisms
(Husbands, 1998; Jakobi, 1993, 1997; Lanzi, 1998; Ulbricht,
1996; Webb et al., 2003); in this context it is interesting
to note that it is still not well understood how biological
memory works (Wilson, 1994; De Zeeuw, 2005; Levenson,
2006).

For this task we make use of a dedicated 2D robot simu-
lator (Figure 3) of a Khepera II robot for the evolution of the
GasNet models. The Khepera II robot has two wheels and
two separate motors, 8 infra-red distance sensors (6 on the



Figure 3: GUI of the robot simulator especially designed for
the T-Maze delayed response experiment. On the left, from
top to bottom, the interface shows a list to choose the Gas-
Net model of interest (e.g. original or NSGasNet) and the
specific run and generation; the best fitness per generation,
the network architecture in terms of synaptic and gaseous
connections and the robot within its arena. The right side of
the interface shows in time from top to bottom: the values of
the gas at site for two chosen nodes together with their func-
tion slopes, the values of the motor outputs, the values of the
light sensor reading, and the values of the distance sensors
reading

front and 2 on the rear) and 8 infra-red light sensors (6 on
the front and 2 on the rear) .

The robot implemented in our simulator is a simplified
model of a Khepera II robot and it was employed to avoid
the overloading of graphical encoding in order to speed-up
the simulations. It has 5 front distance sensors and 2 almost
diametrically opposite light sensors (Figure 4(a)). While im-
plementing the simulator, the two original front-most dis-
tance sensors were coupled (Figure 4(b)); hence, both sen-
sor readings have the same value during the simulation. This
was due to observations made during the design phase of the
simulator where both sensors readings presented the same
values most of the time.

Network Architecture, Genetic Encoding and
Evolutionary Regime

Both GasNet models, original and NSGasNet, were imple-
mented with a fixed number of nodes (total of 10 nodes).
The networks are partially connected in addition to hav-
ing genetically determined recurrent connections (Figure5).
Nodes 1, 2, 3, 6, 7 and 8 have input from the robot distance
sensors S1, S2, S3, S5, S4 and S3, respectively. Nodes 4
and 9 have input from the left (L1) and right (L2) light sen-
sors, respectively (Figure 8). Nodes 5 and 10 are responsible

(a)

distance
sensors

distance and
light sensors

(b)

Figure 4: (a) Zoom of the T-Maze arena and the simulated
robot (black round shape) localized at the bottom of the first
corridor, facing north, and its five distance sensors stressing
their range. Distance sensors were numbered from left to
right: S1, S2, S3, S4 and S5 and light sensors: L1 - on the
left side and L2 - on the right side. The arena is composed of
two corridors forming a T-Maze and there is a beam of light
(shaded star shape) shining from the left side of the robot.
(b) Presents a schematic of the same robot illustrating the
disposition of the distance and light sensors.
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Figure 5: Pictorial example of a symmetrical partially con-
nected ANN for the T-Maze task with ten nodes. The net-
work receives external input from the sensors and supplies
output to the motors.

for the output to the robot motors (left (LM) and right (RM)
wheels, respectively).

Both networks have a symmetrical architecture meaning
that for the genetic encoding we will only have to evolve
half of the network. Hence, the original GasNet gene will
have 65 parameters for the entire network, i.e. 13 pa-
rameterstimes 5 nodes. Each node is coded as folows:
< gene >=< node >=< x >,< y >,< x1 >,<
y1 >,< x2 >,< y2 >,< rec >,< Es >,< Gt >
,< s >,< Gr >,< k0 > and < bias >, where
< x > and< y > are the node coordinates on the plane;
< x1 >,< y1 >,< x2 >,< y2 > specify the center of two
circles on the network plane defining the node spatial elec-
trical connectivity;< rec > is the recurrent status;< Es >
is the emitting status;< Gt > is the gas type;< s > is the
build up/decay rate;< Gr > is the gas maximum radius of



Parameter T-Maze task
Mutation rate 8%

Fitness function FitnessT−Maze = d1 + d2 + bonus
Number of runs 40

Maximum number of generations 150
Population size 100
Genotype size 65 (Original)

100 (NSGasNet)
Trials 10

Number of evaluations per trial [70, 100]

Table 1: Evolutionary regime parameters employed on the T-Maze task.

emission,< k0 > is the transfer function default value and
< bias > is the bias value (Husbands, 1998).

The NSGasNet genotype does not have parameters related
to node coordinates, spatial electrical connectivity and maxi-
mum radius of emission, thus each NSGasNet gene will have
6 parameters for each node plus 10 values for the NSGasNet
sensitivity limits (10 nodes), which makes the totality of 80
parameters for the entire network, plus 2 times the maximum
number of allowed synaptic connections per node (to include
the node number and the synaptic connection weight). For
instance, if the maximum allowed number of synaptic con-
nections per node is 2, than the NSGasNet genotype will
have80 + 5(2(2)) = 100 variables.

The choice of partially interconnected networks for this
task follows from previous works (Psujek et al., 2006;
Williams and Noble, 2006) and also from the preliminary
experiments on the T-Maze task where it was observed that
full connectivity produced a negative impact on the evolv-
ability of the networks for this particular task. The fully con-
nected networks were too sensitive to genetic operations and
initial conditions (e.g., the starting angle of direction)during
the evolutionary process; therefore, a successful controller
from one evaluation could hardly repeat its performance on
the next fitness evaluation.

We employed a distributed steady-state genetic algorithm
as described in (Husbands et al., 1998), who developed
the idea from an early work using distributed populations
(Hillis, 1990). The current population is updated steadily
during the evolutionary process, i.e. each offspring is placed
immediately into the current population (Whitley et al.,
1990), instead of an entirely new population being generated
and replacing the current population at a single time. Off-
spring were created through mutation operators (no recom-
bination was used) with a probability of (8%) for each gene
locus following a Gaussian distribution around its value for
non-nominal values and a random value for nominal values.
Non-nominal values refer to variables that have continuous
values and nominal for discrete values.

In order to gather statistics 40 runs were performed for
each model. One evolutionary run is composed of a maxi-

mum of 150 generations, or until successful genotypes are
produced. Each generation comprises of 100 reproduction
events or fitness evaluations.

The robot is tested for ten trials. Each trial is divided into
two phases, following Jakobi’s experiments set-up (Jakobi,
1997). The fitness value for phase 1 accounts for the dis-
tance d1 traveled by the robot in the first corridor(d1max =
200) and the fitness for the phase 2 is composed of the dis-
tance d2 traveled in the second corridor(d2max = 180)
plus a bonus if the robot turns to the correct direction. The
total fitness is the sum of the fitness at each trial divided by
the total number of trials. The only difference from Jakobi’s
fitness calculation is the bonus value, which is computed as
follows during the trials:

• 200 if the robot has turned to the correct side once;

• 500 if the robot has turned an equal number of times to
both sides, plus:

• +200 if the robot has turned four times to one side
and four times to the other side

• +500 if the robot has turned five times to one side
and five times to the other side

Therefore the maximum fitness has a value around1, 380
according to 1. This new bonus scheme was devise for it
was observed that the evolution was very sensitive to the
bonus criteria which imposes a selection pressure. Possibly
this change was due to not implementing Jakobi’s minimal
simulations schema. Basically, this schema encompasses the
addition of a controlled degree of noise and uncertainty dur-
ing the evolution which will lead the robot to an improved
robust behaviour when transferred to the reality. However,
in these first robot experiments we are not concerned with
the reality gap but with the measure of the evolvability of
each GasNet model under noiseless circumstances. There-
fore, we do not add noise to our simulations, just the start
directional angle of the robot varies from trial to trial.

FitnessT−Maze = d1 + d2 + bonus (1)
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Figure 6: Mean and standard deviations (error bars) of gen-
erations required to evolve successful controllers for T-Maze
with light task. Black bar shows original mean data and
white bar shows NSGasNet mean data. The numbers above
each error bar represent the total number of successfully
evolved controllers within 40 runs.

Table 1 summarizes the parameter settings implemented
within the evolutionary regime.

The successful evolution of a controller is considered if
the robot obtains a fitness value that is greater than a thresh-
old of 1,260 over seven subsequent trials. A robot with such
fitness value has received the maximumbonus = 1, 000 for
having turned correctly in all 10 trials, plus the minimum
distances traveled in both corridors, which when added may
vary between [260, 380]. Runs that exceed 150 generations
were aborted.

Results
The statistical results over 40 runs for each model are graph-
ically illustrated in Figure 6. Black bar shows original mean
data and white bar shows NSGasNet mean data. The num-
bers above each error bar represent the total number of suc-
cessfully evolved controllers within 40 runs.

The NSGasNet outperforms the original GasNet model
in terms of number of succesful runs. The frequency his-
tograms portrayed at Figure 7 show that both distributions
are skewed to the right, thus not symmetric, the difference
between the mean and the median tend to spot a similar per-
formance in terms of speed of evolution for the robot task
between both models. However, the percentage of success-
fully evolved networks for the NSGasNet(37/40 = 92%)
is greater than the original(24/40 = 60%).

Concerning the network architecture, in contrast to the
NSGasNet model, the original model evolved less synaptic
connections and more gaseous connections (Figure 8).

Many NSGasNet networks and some original ones did not
make use of gases in the final evolved solution. When gases
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Figure 7: Frequency histograms comparison between the
original (a) and the NSGasNet (b) models over the number
of generations for the T-Maze task.

were at play, normally the nodes connected to the robot sen-
sor lights had a coupled gaseous connection. Therefore, both
nodes were making explicit use of gases to control the dy-
namics of each other and/or of other network nodes in re-
sponse to environment changes, e.g. source of light (Figure
9).

An analysis of the behaviour of the robot shows that some
of the successfully evolved controllers developed a reactive
response to the task. For instance, the robot starts to follow
the wall after passing the beam of light and thus, the robot
is using the wall as an external memory, instead of creating
an internal memory based on its internal state (Braitenberg,
1986; Nolfi, 2002). Naturally, this observation does not in-
validate our evolvability results of the GasNet models. It
only sheds some light on the potential requisite for an im-
proved way to assess the robot behaviour during evolution,
possibly in terms of a more elaborated fitness function.



Figure 8: Picture of the simulation of an original GasNet
successfully evolved controller, highlighting its synaptic and
gaseous connections. There are few synaptic connections
and intricate gaseous connections.

Figure 9: Screenshot of the simulation of a NSGasNet suc-
cessfully evolved controller, highlighting its synaptic con-
nections on the left and NSGasNet bias values for nodes 1,
2, 3, 4, and 5 on the right (the bars refer to nodes 4 and 9,
respectively). Only nodes 4 and 9 are gas emitters. Remem-
ber that these are the nodes directly connected to the light
sensors.

Discussion
This paper is a further step on the investigation of a novel
non-spatial GasNet model (NSGasNet) in an attempt to un-
cover the role of space within this neural network paradigm.
The performance of the original and the NSGasNet model
was explored on a memory robot task. Unlike the previous
results on a CPG task, the comparison between both mod-
els showed little difference in terms of speed of evolution.
Although the evolvability values are quite similar they dif-
fer in the percentage of evolved controllers meaning that the
NSGasNet has a higher success rate. Nonetheless, further
analysis should be carried out in order to further assess this
better performance.

Additional remarks could be made from the experiments.
For instance, the use of partial connection between nodes
was adopted in both models for the fully connected networks
were too sensitive to genetic operations and initial condi-
tions (e.g. the starting angle of direction) during the evolu-
tionary process. Therefore, a successful controller from one
evaluation could hardly repeat its performance on the next
fitness evaluation, thus compromising its speed of evolution.
One may argue that the problem might be the elevated muta-

tion rate adopted. However, many mutation rates were tested
and no improvement was observed. Thus, in order to make
a compromise between evolvability and good performance,
apart from the partial connection, we adopted 8% for the
mutation rate.

It was observed that after evolution, some nodes either
had their synaptic weights set to zero or there were no
gaseous connections whatsoever. This fact shows the abil-
ity of the evolutionary process to find simple solutions to the
problem and it also indicates that the introduction of meta-
dynamics could improve the results. Metadynamics in this
context means exploring a variety of network’s dimensions
during the evolutionary process. Therefore, in a future work
we envisage using not only partially connected networks, but
also exploring the network metadynamics. In our opinion,
which is shared by others (Psujek et al., 2006), this coupling
might lead to superior results.

According to (Strogatz, 2001) realistic networks have
both nontrivial node dynamics and specific but irregular con-
nection topologies. Moreover, highly distributed and non-
hierarchical neural circuits had been identified in neuro-
science investigations of simple organisms as pointed out
by (Altman and Kien, 1990) and stressed by (Beer, 1995).
Likewise, an analysis of the resulting network architectures
for the T-Maze task has demonstrated a huge variety of
topologies of connections (synaptic and gaseous) among the
evolved controllers. This enormous variety was also verified
by Vargas et al. (2007) for the CPG task. In both cases, it
was impossible to identify a predominant pattern of connec-
tions and/or of spatial location of the nodes (in the case of
the original GasNet model).

Internal state is not a pre-requisite for the agent to perform
sophisticated interactions with the environment, as pointed
out by (Izquierdo and Di Paolo, 2005; Nolfi, 2002; Stanley
and Miikkulainen, 2002; Ziemke and Thieme, 2002). Ac-
cordingly, the fact that some of the robots presented a reac-
tive response to the T-Maze task seems to indicate that the
chosen task does not require a non-reactive response in order
to be successfully accomplished.

In conclusion, the results obtained on this work together
with the first investigations presented by (Vargas et al., 2007)
seem to indicate that the explicit use of spatial constraints
and a spatially embedded diffusion process is not necessary
to explain the success of GasNet models. Rather, the inter-
play between two distinct processes (electrical signals and
gas modulation) acting on different timescales, and the mul-
tiplicative modulation effect of the gases appear to be the
important factors (Philippides et al., 2005).

In order to fully clarify the role of space within GasNet
models, future work should include an analysis of the per-
formance of both models in other tasks that require networks
with higher dimension.
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