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Abstract-
This paper investigates the underlying search space

of a difficult robotics problem. Previous work on the
development of neural networks incorporating a model
of gaseous neuromodulation (theGasNet) suggested that
such networks are well suited to evolutionary design for
some problems [9, 27]. Networks allowed to use the
gaseous signalling mechanism evolved significantly faster
than networks with the mechanism disabled, implying a
significant difference between the two search spaces. In
this paper, we investigate this difference using a series
of standard techniques for predicting the “difficulty” of
search in fitness landscapes. We show that in this instance,
measures based on random sampling do not discriminate
between the two search spaces, due to the highly skewed
nature of the fitness distributions, similar to those found
in other difficult optimisation problems. It may be that
such metrics are not useful as measures of difficulty for a
class of complex problems.

1 Introduction

In previous work, we have investigated the incorporation of
mechanisms based on current research in gaseous signalling
in the brain [6, 23], into a more standard neural network
[9, 27]. The resultingGasNetswere used for controlling a
robot engaged in a complex task, and proved faster to evolve
than corresponding networks not allowed to use the gaseous
signalling mechanism. This speed difference must be due to
differences in the two fitness landscapes underlying the evolu-
tionary process. In this paper we use a series of standard tech-
niques for predicting the difficulty of search in such spaces
in an attempt to identify the differences producing the faster
evolutionary search.

The evolutionary robotics method applies the techniques
of stochastic optimisation to the production of controllers
for robots operating autonomously in complex environments.
Two chief concerns are the development of new behaviours
and the development of new controller types. However, most
evolutionary robotics practitioners pay little attention to the
search space underlying the behaviours and controllers they
are trying to develop. Studies comparing, for example, two
types of neural network usually report simply the number of
generations required before success. It is understandable that
researchers are loathe to devote large amounts of time on in-

vestigation of the search space, but as evaluation of genotypes
becomes ever more expensive, it becomes ever more impor-
tant to have available a good comparative method. For com-
plex problems such as evolutionary robotics [3] and evolu-
tionary hardware [29], identification of easily evolvable sys-
tems is crucial. One possible method is analysis of the actual
performance of the systems over their lifetime, identifying
useful operational features. A second approach, used here, is
analysis of the search space underlying the representation of
the problem and solution.

This paper presents a preliminary exploration into the dif-
ferent search spaces underlying a comparative study of two
particular types of neural network [9], using statistical mea-
sures of the search spaces in order to predict the known dif-
ferences in evolvability. The results presented show that a
number of standard measures of search space difficulty sim-
ply fail to discriminate between the two spaces. A breakdown
of the evolutionary process identifies the reasons for this fail-
ure; the two spaces only differ at high levels of fitness not
reached with the random sampling techniques many standard
measures rely on. Further work is currently looking at biased
sampling of the space through collection of both weighted
sample sets and online evolution sample sets.

The paper is laid out as follows: The first section sum-
marises the notion of a search space, and section 3 briefly
introduces theGasNetapproach. Section 4 outlines theoreti-
cal measures for approximating the difficulty of searching for
good solutions in such a space, while section 5 applies these
metrics to the spaces underlying theGasNetneural networks.
The paper concludes with discussion.

2 Search Spaces

The notion of evolvability in evolutionary computation has
strong connections with the idea of the optimising process as
searching some large space. The classic metaphor of the ge-
neticsearch landscape[36] views the space in which search
takes place as a high-dimensional landscape, with one di-
mension per genotype bit and an extra dimension -height -
representing the fitness of the genotype at that point. The
search space defined by a two bit representation can thus be
viewed as a three-dimensional landscape, across which geno-
types move during the search process. Mutation operators
typically produce small movements in this landscape, while
crossover of two different genotypes generally has some re-



sult intermediate between the genotypes.
This view of the search space leads naturally to the iden-

tification of the major problems with which any search pro-
cess will have to cope; ruggedness and modality [14]. Highly
epistatic problems where fitness is dependent on multiple
inter-gene interactions will produce a rugged landscape. Sim-
ilarly, a high degree ofmodality, i.e. large numbers of lo-
cal optima, will be seen as large numbers of hill-tops in the
landscape with no neighbours of higher fitness. The feature
of neutrality is also seen, as plateaus in the landscape where
many genotypes have the same fitness/height [16, 11].

An alternative view, explicitly based on defining the
search space through the operators used, argues that the fit-
ness landscape metaphor is misleading in the identification
of local optima [12, 17]. Mutation operators acting on more
than one bit, and other complex operators such as crossover,
may not ‘see’ these hill-tops as local optima at all. A more
accurate view of the search space would be as a connected
graph, with vertices connected through the action of mutation
and other operators.

However, it is unclear what explanatory or interpretive
power this picture provides especially when search processes
can provide very high connectivity between vertices. For in-
stance, representations using real-valued genotype bits and
Gaussian mutation operators acting on one or more bits si-
multaneously could lead to fully connected hypergraphs, use-
less as a visualisation aid. For these reasons, the authors pre-
fer the original “fitness landscape” analogy. The rest of the
paper thus follows the fitness landscape picture, rather than
the connected hypergraph analogy.

2.1 Search Space Difficulty

Work on characterising problems in terms of their difficulty
(see section 4) usually focuses on boiling the fitness search
space down to a single parameter, typically a measure of the
ruggedness of the space. However, it is clear that such at-
tempts cannot work in general; epistasis, modality, deceptiv-
ity, and neutrality may all affect the problem difficulty. A fur-
ther problem is the possible anisotropy and non-homogeneity
of the space, implying that calculated measures may not be
equal across the space, or at different fitness levels.

These caveats aside, there is no doubt that knowledge of
the problem difficulty, however approximate, is invaluable
when tackling the complex problems faced by practitioners
of artificial evolution and other stochastic search processes.
The next section introduces previous results which this work
attempts to explain in terms of search space properties.

3 The Problem: GasNets

TheGasNet, introduced by Husbandset al. [9, 27], incorpo-
rates a mechanism based on the neuron-modulating properties
of a diffusing signalling gas into a more standard sigmoid-
unit neural network. In previous work the networks have been
used in a variety of evolutionary robotics tasks, comparing

the speeds of evolution for networks with and without the gas
signalling mechanism active.
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Figure 1: The fitness distribution histogram of a single genotype
evaluated10, 000 times, ranging from[0.07, 0.37]. Possible fitness
∈ [0, 1]. The bimodal (or even 4-modal) nature of the distribution is
due to the controller successfully completing the task on a varying
number of the trials in each evaluation.

In the work presented here, we are using the two types
of network for control of a robot engaged in a visual shape
discrimination task; from random starting orientation and po-
sition in a black arena the robot must navigate to a white tri-
angle while ignoring a white square. However, we can con-
sider the two scenarios simply as a two distinct mappings
from genotype to phenotype. As in many problems requiring
controllers to provide sensor-to-motor mappings over time,
fitnesses are extremely time consuming to evaluate (in the
work presented here, generating a sample of106 fitnesses
takes around24 hours on a Pentium II700MHz machine) and
inherently extremely noisy (figure 1). Success in the task was
taken as an evaluated fitness of1.0 over thirty successive gen-
erations of the genetic algorithm. For further information on
the actual networks and tasks see [9, 27].

3.1 The Genetic Algorithm

A distributed asynchronous updating genetic algorithm was
used, with a population of100 arranged on a10 × 10 grid.
Fitness was awarded on the fraction of the distance moved to-
wards the triangle over a series of8 runs with different initial
conditions. Parents were chosen through rank-based roulette-
wheel selection on the mating pool consisting of the8 nearest
neighbours to a randomly chosen grid-point. The child solu-
tion was a mutated copy of the parent (the mutation operator
applied a3% mutation probability per bit, and a small prob-
ability per genome of adding or deleting a network node. No
crossover was used.) and placed back in the mating pool us-
ing inverse rank-based roulette-wheel selection.

3.2 Results

Over a series of twenty evolutionary runs both with and with-
out the gas signalling process turned on, networks allowed to



use the gaseous signalling mechanism reached success sig-
nificantly faster (table 1). This speed difference was seen in
several different evolutionary robotics scenarios [9].

Gas mean rank (median generations) 16.88 (675)
No gas mean rank (median generations)24.13 (1228)

Mann-Whitney U 127.5
2-tailed P 0.049

Table 1: Mean ranking and median generations required for suc-
cess, for conditions with/without the gas signalling enabled. The
results for the Mann-Whitney test for similarity between the ranked
distributions are also shown, with the probability for identical distri-
butions,P < 0.05.

4 Methods: Search Space Metrics

A large number of metrics have been developed as proxies
for search space “difficulty”1. Development of such measures
tends to highlight the inadequacies of existing methods when
applied to some theoretical landscape, then proposing a new
metric which does not suffer the same problem. However,
it should be stressed that the existence of a global measure
applicable in all situations is not possible in principle through
the “No Free Lunch” theorem [35]. The following section de-
scribes some standard methods, focusing on the ruggedness,
or epistasis, of the search space.

4.1 Correlation Lengths

Weinberger [33, 34] proposed the autocorrelation function
ρ(d) as a mathematical definition of landscape ruggedness:

ρ(d) =
〈f(x)f(y)〉 − 〈f〉2c

varc[f ]
(1)

the correlation between the fitnessesf of two sets of points
x, y separated by distanced, typically the Hamming distance.
The measure is defined over the entire spacec, but Wein-
berger introduced therandom walkmethod as an approxima-
tion for ρ(d). A random point, or genotype, is created and
the walk constructed through successive application of a mu-
tation operator. For a walk of lengthl:

ρ(d) ≈
d=l−s∑
d=1

〈fsfs+d〉 − 〈f〉2

var[f ]
(2)

the correlation between the fitnessesf of two sets of points
s, s + d separated byd applications of the mutation operator.
One advantage of the random walk method for approximating
the autocorrelation function is the explicit use of the mutation

1The definition of difficulty here is slightly ambiguous, but is usually
taken to mean “time required to find good solutions”, alternatively “the good-
ness of solution found after a certain time”. The definition is usually used
only comparatively; Naudts and Kallel [22] among others bemoan the lack
of standard test-problems and difficulty measures.

operator to generate the genotype sets. Non-standard opera-
tors can be used, even if Hamming distance cannot be calcu-
lated, as with variable length representations where mutation
operators may increase or decrease genotype length.

Weinberger defines the correlation length as the measure
of ruggedness in the system. The longer the correlation length
the smoother the space, or the further one can move before the
fitnesses at the start points are not correlated with the fitnesses
at the end points:

τ = − 1
ln(ρ(1))

(3)

Others define the length to be the distance at which the cor-
relation function falls below an arbitrary value, usually0.5.
Weinberger showed that this correlation length correctly pre-
dicted increasing ruggedness for increasing epistatic interac-
tion K in Kauffman’sNK landscapes [33]. Other measures
have been developed for correlation analysis of fitness land-
scapes, notably Lipsitch [18] and Hordijk [7].

4.2 Information Content

An alternative method for approximating landscape rugged-
ness through random walk is given by Vassilev [32, 31], based
on the idea of theinformation contentH(ε) of a system as a
measure of how difficult it is to describe that system:

H(ε) = −
∑
p6=q

P[pq]log6(P[pq]) (4)

All points along the random walk can be characterised by
the fitness of the nodes on either side. A local optima, either
minima or maxima, has fitness increasing then decreasing (or
vice versa); in this case the block is referred to aspq. Nodes
where fitness consistently increases or consistently decreases
can be characterised bypp.

The parameterε defines neutral fitness; if the fitness dif-
ference between neighbouring nodes is less than this value,
the nodes are taken to be equal in fitness. Thus asε in-
creases from0 to the maximum fitness difference between
nodes along the walk, the amount of fitness change, or en-
tropy, decreases to zero.H(ε) is thus a measure of the entropy
of the random walk, as defined by the relative probabilitiesP
of encountering blockspq. The information content of the
system is defined as the value ofε at whichH(ε) = 0, or the
maximum fitness difference between neighbouring points on
the walk.

For systems with high epistasis the information content
will be high, and low for systems with low epistasis. Vassilev
shows the measure correctly predicts ruggedness for theNK
landscapes [31].

4.3 Other Measures

The metrics of landscape ruggedness outlined above use sam-
ples of the fitness space based on random walks. Many other
measures have been developed: Fitness-distance correlation



[13] requires knowledge on the distribution/position of fitness
optima, and uses the correlation of genotype fitness with dis-
tance to known optima as a metric. Epistasis variance [4]
calculates the level of variance in the system with respect to a
set of first order approximations to the system. Site-wise op-
timisation [21], density of states [24] and other techniques in-
vestigate the distribution of genotypes in the space at different
fitness levels. However, few of these approaches are applica-
ble to the evolutionary search space investigated in this paper.
The positions of the global optima are unknown, the fitness
evaluation of robot performance over time in a real environ-
ment is not easy to project onto a first order approximation,
and the variable length permutable representation used means
calculating the distance between two arbitrary solutions in the
space is not a simple task.

One more promising area of interest lies in the idea of bi-
ased sampling. It is likely that the search spaces of difficult
problems contain large proportions of solutions with low/zero
fitness; only biased sampling procedures will allow analysis
of the search space at higher levels of fitness. Weinberger [34]
introduced the notion of arandom adaptive walk, where the
next step on the walk is accepted only if the fitness is higher
than that of the current genotype (in contrast to the random
walk where the next step is accepted regardless). In effect the
walk is a simple hill-climb, and will halt at a local optimum.
The lengths and heights of the walks are thus a measure of the
modality of the space; spaces containing large numbers of lo-
cal optima will produce short adaptive walks, while spaces
without local peaks will allow long walks to the global op-
tima. This issue is discussed further in section 6.

4.4 Landscape Neutrality

This section has so far concentrated on landscape ruggedness
as a proxy for difficulty in finding good solutions. However,
the importance of non-adaptiveneutral evolution has also
been argued for [16, 10, 5, 2]. In high-dimensional spaces,
local optima and other epistatic effects may have less im-
pact on the search process. Instead, evolution can proceed
through randomly searching a sequence of neutral changes,
a neutral network. In an extension to Kauffman’sNK land-
scapes [15], Barnett has developed the tunably neutral set of
NKp landscapes and shown that altering the level of neutral-
ity p can affect the evolutionary dynamics for systems with
fixed epistatic interactionK [1]. It may be possible to design
systems in such a way as to encourage this neutral evolution,
e.g. through redundancy in the genotype-phenotype mapping
[25].

Little research has been done on calculating the degree of
neutrality for a given problem; most work has focused on the
effects of adding some known degree of neutrality. It is also
unclear to what extent neutrality is useful as a potential escape
from local optima, and to what extent it is harmful in the sense
of producing flat plateaus that must be explored through ran-
dom drift. Theoretical work on search space difficulty should
certainly not ignore the issue of neutrality. Neutral networks

in the search spaces investigated here are discussed further in
a companion paper [26].

5 Results:GasNetSearch Spaces

The significant difference shown between the speeds of evo-
lution for the neural networks with and without the gas sig-
nalling mechanism active must be measurable through differ-
ences in the two search spaces. The following section looks at
the metrics introduced in section 4, and investigates whether
they predict differences between the two search spaces.

5.1 Random Sampling

Straightforward random sampling of106 genotype fitnesses
in each of the spaces showed no discernible differences (table
2 and figure 2). The vast majority of fitnesses found through
such sampling are extremely low, with the maximum only at
53% of the maximum obtainable fitness. Note, an evolution-
ary run hitting success in500 generations will have sampled
5× 104 genotypes, only5% of the random sample used here.

Fitness Gas N No-gas N

0.0-0.099 992,927 993,434
0.1-0.199 6,521 6,042
0.2-0.299 508 48
0.3-0.399 35 35
0.4-0.499 8 9
0.5-0.599 1 0

Max. Fitness 0.53 0.50
Mean Fitness 0.022 0.022

Fitnessσ 0.024 0.024

Table 2: Random sample (106) of network fitnesses with/without
gas. Note: Fitness lies in range [0.0,1.0]; no fitnesses above 0.53
were obtained through random sampling.
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Figure 2:Mean fitnesses of random sample (106) with/without gas
signalling.

An extension of the random sampling procedure was to
take a subset of the sample (100 genotypes), and apply104

random mutations to each genotype, see figure 3. Again, no



significant differences were seen, and mean and best muta-
tions were still extremely low.
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Figure 3: Mean fitnesses of104 single mutations from each of a
random sample of100 genotypes. Data shown for with and without
gas signalling conditions. Error bars show standard deviations.

5.2 Random Walks

One hundred random walks of104 steps were performed (an-
other sample of106 genotypes), and the correlation lengths
and information stability measures described in section 4 cal-
culated, see figures 4 and 5. No significant differences were
observed between the conditions.
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Figure 4: Mean correlation lengths for100 random walks of104

steps. Data shown for with and without gas signalling conditions.
Error bars show standard deviations.

One point to note here is the high standard deviations in
the correlation lengths, and to a lesser extent in the informa-
tion stabilities. These are much larger than were seen with
such measures calculated on Kauffman’sNK landscapes
[31], and indicate a large degree of anisotropy in the system.
However, calculation of Stadler and Grüner’s coefficient of
anisotropy [28] does not show the same level of anisotropy.
This is discussed further in section 6.

5.3 Modality

One thousand random adaptive walks [34] were performed
from random starting points, stopping when a local optimum
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Figure 5:Mean information stability for100 random walks of104

steps. Data shown for with and without gas signalling conditions.
Error bars show standard deviations.

was reached (figures 6 and 7). At each step, fifty genotypes
were generated, and the next step chosen randomly from
among the genotypes with higher fitness than at the current
step. Due to the mutation operators used, it is impossible to
state definitively if a genotype is a local optimum - the walk
was terminated if none of the fifty generated genotypes had
higher fitness. Again no difference was seen between the con-
ditions.
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Figure 6:Mean random adaptive walk length for103 walks. Data
shown for with and without gas signalling conditions. Error bars
show standard deviations.

Table 3 shows the distribution of the fitnesses of the final
step on the adaptive walks. Note that we have obtained a
significantly fitter sample here than the random sample shown
in section 5.1, with maximum fitness now at0.86. However,
the vast majority of walks still terminate at extremely low
fitnesses.

5.4 GA Sampling

The analysis above shows no significant differences between
the spaces. However even with the random adaptive walk
sampling method, fitnesses found were on average extremely
low. Table 2 shows that no fitnesses above0.53 were found
through random sampling, even with large sample sizes. The
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Figure 7:Mean random adaptive walk height for103 walks. Data
shown for with and without gas signalling conditions. Error bars
show standard deviations.

Fitness Gas N No-gas N

0.0-0.099 605 627
0.1-0.199 271 273
0.2-0.299 97 63
0.3-0.399 23 27
0.4-0.499 2 8
0.5-0.599 1 2
0.6-0.699 0 0
0.7-0.799 0 0
0.8-0.899 1 0

Max. Fitness 0.86 0.57
Mean Fitness 0.11 0.10

Fitnessσ 0.08 0.08

Table 3: Final genotype fitnesses on103 random adaptive walks.
Data shown for with and without gas signalling conditions. Error
bars show standard deviations.

results from the GA runs show that there must be some dif-
ference between the spaces; one hypothesis is that the spaces
are only significantly different in certain areas, e.g. above a
certain fitness. To test this hypothesis, the performance of
the genetic algorithm over the40 runs was broken down into
the numbers of generations required to reach certain fitnesses
(figure 8 and table 4).

We see that only above a fitness score of0.5 is any real
difference seen between the performance of the genetic al-
gorithm on the two conditions, with statistically significant
differences appearing only above fitnesses of0.7. Thus all
random sampling methods used will simply not be sampling
the parts of the space which show differences. Increasing the
sample size will not solve the problem; calculated statistics
will still be swamped by the huge fraction of the space at near
zero fitness. Section 6 continues the discussion introduced in
section 4.3 on biasing the sample towards areas of the space
that show differences.

Figure 8: Median generations before given fitness level reached,
for both with/without gas conditions.

Fitness level Gas No-gas

0.1 30 30
0.2 34.5 41
0.3 40 49
0.4 79 97
0.5 259 222
0.6 379.5 661
0.7 408 663
0.8∗ 415 813
0.9∗ 565 940
1.0∗ 675 1228

Table 4:Median generations before given fitness level reached, for
both with/without gas conditions (significant difference∗p < 0.05).

6 Discussion

In this paper we have presented an analysis of the search
spaces underlying two different styles of neural network used
as robot controllers in a difficult problem. An earlier compar-
ative study found significant differences in the number of gen-
erations required to evolve successful networks for the two
setups [9]. However, in this paper we have demonstrated that
the application of several standard problem difficulty metrics
shows no differences between the spaces.

The primary reason for the failure of the metrics used is
the highly skewed nature of the distribution of fitnesses over
the space. Fewer than1% of the genotypes obtained through
random sampling had fitness above0.1, and none had fitness
higher than0.53 out of a maximum possible fitness of1.0.
Thus statistics derived from random walks and other random
sampling procedures are massively biased towards the lower
fitness areas of the space. From a closer examination of the
performance of the genetic algorithm, we saw that the dif-
ferences between the two search spaces only emerged at fit-
nesses above0.5. Even with the large samples used here -
106 genotypes corresponds to10, 000 generations of a ge-
netic algorithm with a population of100 - random sampling
methods will produce very small numbers of genotypes with
fitness above0.5, and so will be unable to distinguish be-



tween the two spaces. Similar distributions have been found
in other difficult problems, e.g. evolutionary hardware exper-
iments [30], job-shop scheduling [8] and evolutionary design
optimisation [20]. It is likely that in many complex problems
the distribution of fitnesses will follow this pattern; a large
number of solutions will have extremely low fitness.

A second problem was the large variance in statistics
derived from the random sampling; the space is highly
anisotropic (section 5.2). Although calculation of Stadler and
Grüner’s coefficient of anisotropy over the random walks [28]
fails to confirm this result, the reliance of the measure on the
variance of the mean fitnesses over a number of walks must
be viewed with suspicion in the light of the fitness distribu-
tions presented here. As most of the proposed difficulty met-
rics make the explicit assumption that the space is isotropic,
results from anisotropic spaces such as seen here should be
treated with caution.

It is not possible to accurately describe the shape of a fit-
ness landscape in two dimensions, but a rough sketch may
be useful in explaining the results discussed in the previous
two paragraphs. The landscape mostly consists of a rugged
plateau with fitness in the range[0.0, 0.1] (the sea?); the
height of the plateau varies due to the inherent noise in fit-
ness evaluation. Out of this plateau rise unevenly distributed
small peaks (islands?), with varying heights. Random walks
(swims?) and other random sampling procedures will collect
the majority of their sample from the plateau of low fitness,
only occasionally sampling the peaks. Thus statistics based
on such samples will simply tell us about the nature of the
plateau, and not about the peaks.

The failure of random sampling methods in spaces with
such highly skewed fitness distributions leads naturally to the
idea of biased sampling, as discussed by Naudts and Kallel in
the context of theoretical problem landscapes [22]. The ran-
dom adaptive walks in section 4.3 are a simple way of pro-
ducing such samples. Although the samples collected were
still heavily weighted towards low fitnesses, higher fitness
genotypes were obtained. Such adaptive walks are simple
hill climbers; increasing the number of genotypes tested at
each step, and allowing several steps of failure before termi-
nating the walk would turn the sampling procedure into a real
hill-climb optimisation process. At some critical point, such
procedures must start to show the differences that exist in the
spaces investigated here. However, there is a real concern that
the time taken to collect such a sample may well approach the
time taken to solve the problem. For instance if the required
biased sample involves collecting samples at or near the opti-
mum, we will have effectively solved the problem merely in
the act of description. A useful analogy could be drawn here
with Marr’s type II systems [19]; the system may not be re-
ducible to a simpler level of description than the system itself.
It may well be that we can not characterise complex problem
spaces in advance, and will have to employ the “suck-it-and-
see” optimisation approach that prevails today.
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