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ABSTRACT

In this paper, we present detailed analyses of the dynamics of a number of embodied neuromechanical systems of a class that has been shown
to e�ciently exploit chaos in the development and learning of motor behaviors for bodies of arbitrary morphology. This class of systems has
been successfully used in robotics, as well as to model biological systems. At the heart of these systems are neural central pattern generating
(CPG) units connected to actuators which return proprioceptive information via an adaptive homeostatic mechanism. Detailed dynamical
analyses of example systems, using high resolution largest Lyapunov exponent maps, demonstrate the existence of chaotic regimes within a
particular region of parameter space, as well as the striking similarity of themaps for systems of varying size. Thanks to the homeostatic sensory
mechanisms, any single CPG “views” the whole of the rest of the system as if it was another CPG in a two coupled system, allowing a scale
invariant conceptualization of such embodied neuromechanical systems. The analysis reveals chaos at all levels of the systems; the entire brain-
body-environment system exhibits chaotic dynamics which can be exploited to power an exploration of possible motor behaviors. The crucial
in�uence of the adaptive homeostatic mechanisms on the system dynamics is examined in detail, revealing chaotic behavior characterized
by mixed mode oscillations (MMOs). An analysis of the mechanism of the MMO concludes that they stems from dynamic Hopf bifurcation,
where a number of slow variables act as “moving” bifurcation parameters for the remaining part of the system.
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It has been known for some time that chaos is prevalent at many
levels in biological motor behaviors, from neural dynamics to
bodily movements.1,2 This has inspired a number of models that
can be used to shed light on the biological mechanisms involved,
as well as providing a new approach in robotics. One such class
of models has been shown to exploit chaotic dynamics in a pow-
erful way, allowing goal driven exploration and learning of motor
behaviors in robots with arbitrary body morphology.3,4 Chaos is
used to power a kind of search process that seeks out high per-
forming behavior. For the �rst time, the dynamics of this class of
system is analyzed in detail, revealing the nature of the chaos and
how it can be exploited.

I. INTRODUCTION

Intrinsic chaotic dynamics in the nervous systemhave long been
recognized in neuroscience and have been shown to be integral to
the operation of the brain.5–9 Indeed, the existence of such dynamics

in both normal and pathological brain states across a variety of
species, at both global and microscopic scales,8 supports the idea
that chaos plays a fundamental role in many neural mechanisms.1

Chaotic dynamics are known to operate in brain regions—such
as the cortex—that are associated with higher-level information
processing1,10 and also in neural circuitry responsible for generating
motor behaviors (to the extent that a decline in chaotic activity in
the sensorimotor-related limbic system has even been proposed as
an indicator of pathology11). In many motor behaviors, chaos seems
to occur not just at the neural level but also within the dynamics of
the body.2 For instance, chaotic movement appears to play a crucial
role in the development and learning of limb coordination.12 Analy-
ses of variability in human motor rhythms, from the cardiovascular
system13 to walking,14 also point towards the widespread exploitation
of chaos in biological motor behaviors.

Following the seminal work of Freeman and colleagues,1 var-
ious models were developed to explain the existence and possible
role of brain chaos15,16 and to show how chaos can enhance learning
performance (e.g., of complex rhythmic patterns17,18). The latter case
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inspired work on the adaptive control of robot motor behaviors by
utilizing chaotic attractors as a controllable source of information
(i.e., pattern reservoirs) for generating desired behaviors as well as
enabling �exible transitions between them. One broad approach that
emerged in this area involved the control (stabilization) of chaos
by the sensory input, grounded in the experimental observation of
decreasing variability in biological neuronal activity under the pres-
ence of a stimulus.1,19 Such chaos control has been realized in both
wheeledmobile20 and legged robots21 bymeans of stabilizing unstable
periodic orbits embedded in a given chaotic attractor. These stabi-
lized orbits are exploited as dynamically switchable internal neural
representations associatedwith correspondingmotor behaviors, pro-
viding rapid and �exible behavioral adaptation against a changing
environment.

While such models have demonstrated how to harness neural
chaos for various sensorimotor, perceptual, and learning tasks, they
assume that the neural system generates chaotic dynamics in iso-
lation in the absence of the sensory input, with sensory feedback
mainly acting as a stabilizer for chaos. However, the identi�cation
of chaotic dynamics in natural motor behaviors from multiple in
vivo studies12–14 suggests that chaos incorporates the continuous pres-
ence of sensory stimuli which actively participate in the generation
of chaotic dynamics. In particular, the sensory input received while
engaged in motor behaviors contains information about the physical
body and its environment, emphasizing the embodied nature of such
chaotic behaviors where the brain is capable of inducing sustained
neuro-physical chaos under continuously changing external stimuli.
Chaos appears to be active in the whole brain-body-environment
system.

This has been re�ected in a strand of research in the �eld of
embodied and developmental systems which has proposed a more
active and radical exploitation of chaos beyond the level of neu-
ral activities, where the chaotic dynamics arise in a whole neuro-
physical system by the interaction between local neuromuscular
elements through physical embodiment.22,23 These models imple-
mented a “bodily-coupled” neuro-musculo-skeletal system inspired
by the cortico-medullo-spinal circuits active at an early develop-
mental stage. The neural system consisted of a group of identical
electrically decoupled neuromuscular units—each implementing an
individual re�ex loop, with the sensory input, driven by a central
pattern generator (CPG, modelled by a neural limit cycle oscilla-
tor). Although the model allowed each CPG to communicate only
locally with the corresponding muscle, information was indirectly
channeled between CPGs through the inertial and reactive forces
from the physical body and its environment, giving rise to a vari-
ety of sustained or transient coordinated rhythmicmovements which
could be spontaneously explored and discovered while acquiring a
body schema (postural model of self) via cortical learning.

Generating chaotic dynamics in these systems is crucial for
the exploration of self-organized motor coordination. It requires a
proper set of tonic (slowly changing) descending signals (which act as
parameters) for each CPG, depending on the given physical embodi-
ment. These tonic “command” signals descend from the brain inmost
spinal animals and are usually related to the sensory input. In con-
trast to the previous studies, which prescribed built-in neural chaos
by using a large number of interconnected neuronal elements, the
chaoti�cation of such an embodied neuro-physical model becomes

non-trivial, since the dynamics of such a relatively low dimensional
model of interacting identical neural oscillators tends towards global
synchronization. In particular, the information �ow between the
neural oscillators tends to dissipate because they interact only indi-
rectly through the physical systemwhich usually acts as amemoryless
or fading memory �lter due to its viscoelastic nature.24 The dissi-
pation of information becomes even greater when such a system is
placed in a viscous environment.

Later, signi�cantly extended, models3,4 addressed this issue by
incorporating an adaptive local neural mechanism to achieve the
controllable chaoti�cation of a similar embodied model for use with
an arbitrary physical system, where the sensory inputs for CPGs
were homeostatically regulated (i.e., maintained within appropriate
ranges), while identical descending signals were fed to all CPGs as
a bifurcation parameter. This model enabled performance-driven
exploration and learning of sustained locomotor behaviors in robotic
systems of arbitrary morphology. The bifurcation parameter was
dynamically adjusted between chaotic and synchronized regimes, in
response to a performance feedback signal, to allow the system to
escape from low performing behaviors and be entrained in high per-
forming ones (Fig. 1). The system performs a kind of “chaotic explo-
ration,” where chaotic dynamics power a form of search through
the space of possible system dynamics, settling on a high perform-
ing con�guration. This scheme de�nes a class of models in which
there is one adaptive neuromuscular unit for each muscle (actuator)
in the body, hence it can be applied to many di�erent bodies: vary-
ing numbers of actuators/limbs/degrees of freedom (DoF) between
bodies are accommodated by an appropriate change in the number
of neuromuscular units.

FIG. 1. Performance driven chaotic exploration for locomotor behavior.3 Per-
formance feedback is transformed into a descending input to all CPGs which
act as a bifurcation parameter. The level of chaotification of the system is thus
inversely proportional to its performance. Actuator sensory signals pass through
a homeostatic adaptive process (SA).
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While the behavior of these performance-driven systems is
impressive, analysis of their dynamics has been limited. Partially
qualitative,25,26 and very recently detailed quantitative,27 analyses
have shown that the neural dynamics are chaotic. But the question
remains: Are the physical, bodily dynamics chaotic? Can the whole
neuro-physical system be thought of as exhibiting chaotic dynam-
ics? Is it the chaotic dynamics of the whole system that are being
exploited, rather than just those of the neural part? The apparently
desynchronized rhythmic behaviors displayed by themodels strongly
suggest chaotic dynamics in the state space of the neuro-physical
system, but—until now—proper quantitative analysis of this com-
plex system has not been attempted. The main aim of this paper is
to provide such an analysis, with particular emphasis on the mecha-
nisms underlying the dynamics, especially those associated with the
homeostatic processes, along with the provision of detailed maps of
regions of chaotic dynamics. In so doing, new insights into the power
of chaos for the generation and adaptation of motor behaviors are
given—lessons that are signi�cant in robotics as well as neurobiology.

In order to make the analysis more tractable, in this paper, we
consider relatively simple, although still challenging, examples of
the adaptive embodied neuromechanical system3,4 and quantitatively
identify their chaotic dynamics by conducting elaborate calculations
of Lyapunov exponents (LEs) at a �ne resolution over the space of
a number of selected parameters. Homeostatic sensory regulation
allows us to introduce the basic notion of a scale-invariant scheme
of two coupled oscillators, where any CPG sees the whole of the rest
of the systemas its counterpart in a pair of coupled oscillators. Largest
Lyapunov exponent (LLE) maps show that the chaotic regions are
very similarly spread over the parameter spaces of di�erent versions
of the system with di�erent mechanical settings: instantiations of the
model with di�erent numbers of mechanical parts and DoFs (hence
di�erent numbers of actuators and neuromuscular units) have very
similar LLE maps. This observation validates the scale-invariant two
coupled-oscillator conceptualization of the system.

Analysis of the models’ equations, and their numerical sim-
ulation, reveals that they are non-equilibrium systems, due to the
slow homeostatic terms, whose dynamics show mixed mode chaotic
oscillations (chaotic MMO). By illustrating how the oscillation
amplitudes vary as the slow homeostatic variables drift across the
Hopf bifurcation boundaries, we suggest that the mechanism for
these chaotic MMOs, stemming from the dynamic Hopf bifurca-
tion, are “tourbillon-like” (following the classi�cation terminology
of Desroches28).

II. MODEL

A. Chaos in two coupled FHN equations

The core idea of the chaoti�cation of the embodied neurome-
chanical system stems from Asai and colleague’s version of the two
coupled Fitzhugh-Nagumo (FHN) neuron model,25,26 which is used
in theCPGunits in our system.Asai originally introduced this partic-
ular FHNmodel to represent the population activities of the left-right
spinal networks involved in human interlimb coordination and used
it to successfully reproduce clinical data from studies of patients with
Parkinson’s disease. This coupled neuronmodel has also been used to
model the development and learning of limb coordination.3,23 FHN

neural models29,30 have become important tools in theoretical stud-
ies of chaotic neural systems. They are widely used two-dimensional
simpli�cations of the biophysically realistic Hodgkin-Huxley (HH)
model of neural spike initiation and propagation.31 The HH model
addresses excitation and propagation at the level of underlying cellu-
lar electrochemical processes, while FHNmodels abstract the essen-
tial mathematical properties. As such, they remain a realistic model
of neural dynamics while being more tractable in relation to analy-
sis and visualization than the higher dimensional HH model (with
which they are upwardly compatible). They are computationally
cheaper and thus suitable for real time applications such as robot con-
trol. The equations used are derived from those describing a van der
Pol non-linear relaxation oscillator, hence they are sometimes also
referred to as Bonhoe�ervan der Pol models. The two reciprocally
coupled FHN equations in Asai’s FHN model are given below:

u̇1 = c

(

u1 − u31
3

− w1 + z1

)

+ δ(u2 − u1), (1)

ẇ1 = 1

c
(u1 − bw1 + a) + εu2, (2)

u̇2 = c

(

u2 − u32
3

− w2 + z2

)

+ δ(u1 − u2), (3)

ẇ2 = 1

c
(u2 − bw2 + a) + εu1, (4)

where u describes a neuron’s output andw is its refractory, or “recov-
ery,” variable, a = 0.7, b = 0.675, c = 1.75 are constants, and δ =
0.013, ε = 0.022 are coupling strengths. The constants and coupling
strengths were empirically determined, following sweeps of param-
eter space3,25 such that the neurons exhibit biologically plausible
dynamics. z1 and z2 are the (descending) external stimuli acting as
the control parameters for the coupled system. While a single iso-
lated FHN (with δ = ε = 0) exhibits subcritical Hopf bifurcation
at z = zh ≈ 0.38247, the coupled system can generate autonomous
oscillations in a narrow range below zh. Thus, the system models a
weakly coupled hardwired spinal circuit under supraspinal descend-
ing inputs, which operates as a half-center oscillator or as coupled
pacemakers depending on the descending command signals. An
interesting characteristic of this coupled FHN system is that it can
generate a rich variety of dynamics ranging from multiple synchro-
nised and quasiperiodic oscillations to chaotic orbits, depending on
the two control inputs z1 and z2.25–27 In particular, it has been shown
that the system exhibits chaos in a certain region of the parameter
space de�ned by the values of z1 and z2 and the degree of their asym-
metry. Taking the equations’ left-right symmetry into account, the
LLE map of two coupled FHNs [Fig. 10(a), taken from Ref. 27] on
the z2 − dz space (dz = z2 − z1) con�rms the existence of chaotic
dynamics within a diagonal belt-shaped area that was identi�ed in
a previous, less detailed, more qualitative study.26 Examination of
the diagonally stretched braid of the chaotic area indicates that the
chaotic dynamics mainly take place when the FHN with lower z is
near its critical state (i.e., the Hopf bifurcation point of a single FHN)
over the whole range of dz, which is analogous to chaos at the border
of criticality.32

Closer observation of those chaotic solutions reveals a notable
characteristic of the orbits in 2D subspaces for each FHN, namely,
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FIG. 2. Chaotic dynamics of two coupled FHN oscillators at (z1, z2) = (0.4, 0.73). (Top) The limit cycle of the oscillator with lower z (z1) exhibits dramatic change, whereas
the one with higher z remains almost intact. (Bottom) Time evolution of the two FHN outputs, the (irregular) output from the FHN with lower z is depicted in black, the other
(regular) output is shown in grey.

that the amplitude variance of the FHN with lower z is much larger
than the other, where the output of the FHN with higher z is near
periodic with larger amplitude which almost maintains the shape of
the limit cycle of an isolated FHN (Fig. 2). The underlying intuition
in such dynamics is that the limit cycle of an isolated FHN near Hopf
bifurcation is smaller and more vulnerable to external perturbation,
so when coupled reciprocally with a second oscillator of higher z
which has a larger and more stable limit cycle, the smaller limit cycle
distorts more easily, whereas the larger limit cycle remains almost
intact with little variance—this combination becomes a major source
of complexity for chaotic solutions.

B. Embodied neuromechanical system

with homeostatic adaptation

Building on these insights into the dynamics of the coupled
FHN system gives a way into a detailed analysis of the dynam-
ics of a biologically relevant, yet tractable, model of an embodied
neuromechanical system of the type previously shown to be capa-
ble of chaos-powered, goal-directed learning of motor behaviors for
bodies of arbitrary morphology.3,4 The model developed for this
purpose extends and generalizes the two coupled FHN system by

considering modules of single FHNs acting as CPGs coupled with
a simple biomechanical system. The model consists of a group of
decoupled CPGs and a mass-spring-damper network, where each
spring-damper unit represents a simpli�ed “muscle” with built-in
proprioceptors (position and movement sensors). Each CPG con-
trols its own dedicatedmuscle and receives sensory information from
the muscle proprioceptors. The single-channelled incoming (a�er-
ent) connection for a CPG, limited by such a local re�ex loop, results
in a lack of any explicit information about the size andmorphology of
the neuromechanical system. In essence, every CPG views the entire
rest of the system (i.e., the physical system and the other CPGs) as a
single autonomous system (i.e., the “virtual” secondCPGas in Fig. 3).
By homeostatically adapting the sensory input of a CPG such that
its output signal tries to match that of a reference CPG, each CPG
acts as if the rest of the system is its pair in the two coupled oscilla-
tor system described in Sec. II A. This adaptation motivates the idea
of a scale-invariant two coupled CPG scheme for an arbitrary phys-
ical system by utilizing the near-invariancy of the second CPG, as
described in Sec. II A, to determine the set points for sensory home-
ostasis, as explained later in this section. In this paper, which gives the
�rst detailed analysis of the dynamics of such a system, we keep the
physical systems relatively simple (Fig. 4 shows the 9, 16, and 25 DoF
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systems used). For examples of more complex locomoting (robotic)
systems in this class, see Ref. 4.

Following the form of the coupled FHN equations given in
Eqs. (1)–(4), each CPG, i, communicates locally with its dedicated
muscle by giving the muscle command ui and receiving sensory
signal Ii according to

u̇i = c

(

ũi −
ũ3i
3

− wi + z

)

+ δ(Ii − ũi), (5)

ẇi = 1

c
(ũi − bwi + a) + εIi, (6)

where ũi is the CPG output translated by ũi = ui + Aref, Aref is
a reference o�set in order to bring the output of the CPG into
a zero-centered oscillation. Other symbols and constants are as
in Eqs. (1)–(4). The input Ii is a realtime modulated signal from
the muscle proprioceptors, which is passed through a homeostatic
sensory adaptation process [SA in Fig. 3(c)]. Homeostasis—that
is maintaining key variables and processes within bounds as part
of a dynamic state appropriate to normal operation—is prevalent
throughout the central and peripheral nervous systems to maintain
functional properties in the face of continually changing internal
and external conditions.33–35 Here, we use a systemic model of sen-
sory modulation inspired by the adaptive fusimotor action in muscle
spindles,36 which tries to maintain the amplitude and o�set of a
rhythmic sensory signal close to those of a reference CPG. Previous
work has shown that this form of homeostatic adaptation signi�-
cantly improves the e�ciency of chaos-driven exploration and learn-
ing of goal-directed motor behaviors in embodied neuromechanical
systems.4The rawproprioceptive sensor signal, si, is transformed into
the adapted sensory signal Ii, which is fed to the corresponding CPG,
according to the following equation:

Ii = (si − ŝi) log(1 + eαi) + (ŝi + βi), (7)

where αi and βi are dynamic variables that control the homeo-
static process that aims to keep the sensor signal properties close

FIG. 3. Scale invariant interaction between each oscillator and the rest of a
neuro-physical system. Every neural oscillator communicates with all the other
subsystems only through the local coupling to its corresponding muscle. An oscil-
lator interacting with the rest of the neuro-physical system (b) is analogous to
the interaction between two coupled oscillators (a), in that any oscillator sees its
incoming information from the entire rest of the system as if from another oscil-
lator [boxes with dashed lines in (b) and (c)] via homeostatic sensor adaptation
[SAs in (c)].

FIG. 4. Simple neuromechanical systems. [(a) and (b)] A mass with two antag-
onistic “muscles” driven by one (a) and two (b) CPGs (the total numbers of
system variables gives 9 DoF and 16 DoF, respectively). (c) Two masses serially
connected by three CPG driven muscles (25 DoF).

to those of the output of a reference CPG. αi determines the ampli-
tude scaling and βi the o�set bias. ŝ is the moving average of s—as
determined by a simple leaky integrator [Eq. (12)]—which is used
to smooth the adaptation. αi and βi drive the adaptation process
as follows:

τhα̇i = Pref − pi, (8)

τhβ̇i = −Îi, (9)

τhṗi = −pi + log[1 + (Ii − Îi)
2], (10)

τh
˙̂Ii = −Îi + Ii, (11)

τh
˙̂si = −ŝi + si, (12)

where Îi is the smoothed moving average of Ii [Eq. (11)] and pi is the
smoothed moving average of the log power of the signal Ii [as calcu-
lated by the leaky integrator of Eq. (10)], which is a measure of the
signal strength and amplitude. Pref is the target value for p from the
reference CPG. Hence, Eqs. (8) and (10) work to dynamically change
the scaling factor αi to keep the signal strength close to that of the
reference CPG output. The rate of change of the o�set variable, βi, is

negatively proportional to Îi [Eq. (9)], hence, it dynamically changes
to maintain Ii as zero-centered, like the reference CPG. The refer-
ence o�set forβ is always zero, since the CPG equationwas translated
in advance by an amount Aref [Eqs. (5) and (6)]. The time constant,
τh, was set to equal Tref, the oscillation period of the reference CPG,
making the time scale of adaptation depend on a certain number of
revolutions of the reference CPG. The given setting is comparable
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FIG. 5. Properties of the limit cycle of a single FHN oscillator which are used for the reference values for homeostatic sensor adaptation. (a) The limit cycles of a single
untranslated FHN for different values of control parameters z (from the smallest to the largest: z = 0.385, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). (b) Tref vs. z. (c) Pref vs. z.
(d) Aref vs. z.

to that of the step response time of exponential decay to reach 99%
of the target value within about 5 revolutions. The homeostatic ref-
erence values (Pref,Aref,Tref) were predetermined for a range of zref
from the numerical measurements of an isolated CPG (Fig. 5) by
assuming that the subspace orbit for the CPG of larger z in a chaotic
two-CPG system is almost invariant and identical to the limit cycle of
an isolated CPG with the same z (see Sec. II A for further discussion
of this point). These slow adaptation terms make the model a non-
equilibrium system, since Eq. (8) con�icts with Eqs. (10) and (11)
for solving pi. Thus, the dynamics are of that of hidden attractors
in a non-equilibrium system whose chaotic orbit does not follow
Shilnikov criteria.37–39

The regulation of sensory activation achieved by this homeo-
static mechanism not only ensures the systematic control of system
chaoticity by the feedback signal (Fig. 1) but also ensures that the
neuro-mechanical system maintains a certain level of information
exchange close to that of a weakly coupled oscillator pair so that its
dynamics are regulated within an appropriate range to generate �exi-
ble yet correlated activities. This enables e�cient chaotic exploration,
regardless of the physical properties of the embodied system and the
type of sensors.4

The mechanical system is modelled as a number of point
masses connected bymassless linear spring-dampers, where a spring-
damper represents a simpli�ed Hill-type muscle40 whose sti�ness
(spring constant) is controlled as a function of CPG output. The

sensor value si combines kinetic information from three types of
muscle proprioceptors,41 which are simple representations of the
length, speed, and force of amuscle.4,36The sensory information from
each muscle is given as (without subscript i)

s = LII + 0.5VIa − FIb, (13)

LII = |xp − xc|
r

, (14)

VIa = (vp − vc)·epc
r

, (15)

FIb = k(u)|xp − xc|
k0r

, (16)

where LII and VIa are the length and velocity information (mimick-
ing signals from the group II and group Ia �bres in a muscle spindle),
expressed in a unit of muscle rest length r. FIb is the muscle force
information (based on the signal from type Ib �bres in the Golgi
tendon organ), expressed by a normalized spring force. k(u) is the
muscle sti�ness controlled by the corresponding CPG output u (fur-
ther details in Sec. III). The length and velocity of muscle stretch are
calculated from the position and velocity vectors of the two masses
(or anchor) at each end of the spring, denoted by those of the parent
(xp, vp) and child (xc, vc) nodes, where epc = (xp − xc)/|xp − xc| is a
unit vector for muscle orientation.
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C. The embodied neuromechanical system in action

To better understand it, this section gives a brief overview of
the system in operation. The system’s intrinsic dynamics enable it
to explore self-generated behaviors without a need for conventional
optimization or search strategies.3,4 It does not require o�-line evalua-
tions ofmany instances of the system, nor the construction of internal
simulationmodels or the like, and requires no prior knowledge of the
environment or body morphology.

The system uses its intrinsic chaotic dynamics to naturally
power a search process to explore and discover self-organized coor-
dinated dynamics (movements). This is driven by an evaluation
signal which measures how well the behavior of the embodied sys-
tem matches the desired criteria (e.g., locomote as fast as possible).
This signal is used to control the global bifurcation parameter zcpg,
which alters the chaoticity of the system by identically setting the z’s
of all CPGs (revisited in Sec. III). During exploration, the bifurcation
parameter continuously drives the system between stable and chaotic
regimes. If the performance reaches the desired level, the bifurcation
parameter decreases to zero and the system stabilizes. A learning pro-
cess that acts in tandem with the chaotic exploration captures and
memorizes these high performing motor patterns by activating and
then adapting the connections between the neural elements (this cap-
turing process is not relevant to the analysis, which forms the main
focus of this paper, so will not be detailed here; for full details, see
Refs. 3 and 4.

The performance driven chaotic exploration was performed by
controlling the chaoticity variable de�ned as 0 ≤ µ ≤ 1, where the
system dynamics changes between completely stable (0) and maxi-
mum chaotic (1) behaviors by varying its bifurcation parameter zcpg
as follows:

zcpg = zref − zdi�µH(µ − ε), (17)

τµµ̇ = −µ + G(E/Ed), G(x) = 1/(1 + e16x−8), (18)

τdĖd = −Ed + E, τd = τE[4H(Ėd) + 1], (19)

where τµ = 0.2T and τd = T (T = 8.113, CPG period) are time
constants and Ed is the desired performance. zref = 0.73 and zdi� =
0.32 were used throughout the experiment. G(x) implements a
decreasing sigmoid function which maps monotonically from (0,1):
maximally chaotic to (1,0): stable regime. The heaviside function
H(x) is used in order to ensure z does not �uctuate unnecessarily
in the stable regime of the system by forcing the in�uence of the
bifurcation parameter to zero when it is below a small threshold
(µ < ε = 0.001). The evaluation signal is determined by a ratio of the
actual performance (E) to the desired performance (Ed). The actual
performance E can be any measurable value from the target system
(e.g., the forward speed of a robot). Since the method is intended
for use in the most general case, where the target system is arbitrary,
we do not have prior knowledge of what level of performance it can
achieve. Using the concept of a goal setting strategy,42 the dynamics
of the desired performance, Ed, are modeled as a temporal average of
the actual performance such that the expectation of a desired goal is
in�uenced by the history of the actual performance experienced. This
is captured in the “leaky integrator” equation for Ed above which it
encourages as high a performance as possible by dynamically varying
Ed with soft rachet-like dynamics, where Ed asymmetrically decays
toward E by di�erentiating the decay rate τd such that the rate of
decrease is set �vefold lower than the rate of increase.

Figure 6 shows an example of the chaotic exploration process
using the 25 DoF neuromechanical system described earlier. The
system behavior was represented by the phase di�erences between
CPGs outputs φ1 − φ2 and φ1 − φ3, where φi is the phase of ui.
Thus, the system’s behavior space can be described on a 2-torus
(depicted as a �at surface in the �gure for convenience), where a
certain behavior (phase relationship between CPGs) is shown as a
point on the behavior space. The system performance E was explic-
itly designed by hand on the behavior space as shown in Fig. 6(b).
When we set the CPG control parameter to zcpg = zref, the system
yields multiple stable and transient solutions from which the stabil-
ity landscape for a given embodiment emerges from neuro-physical
interactions [Fig. 6(a)]. These solutions re�ect the natural “modes” of

1
−

3

1 −
2

1
−

3

1 −
2

FIG. 6. Chaotic exploration of 25 DoF system. The system behaviors are represented as phase differences between each pair of CPG outputs. (a) Empirically derived
stability landscape in the stable regime shown as a flow field and the stable states of CPG phase differences. The vector magnitudes, averaged over numerous runs, were
color coded to represent the flow speed from slow (red) [relatively stable] to fast (blue) [unstable]. Black symbols shows 4 stable points (on 2-torus space). (b) Manually
designed performance landscape for each behavior. (c) Visited locations and system chaoticity on the behavior space during chaotic exploration—note the chaoticity scale
is inverted; chaoticity can be seen to reduce on the performance peaks.
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the given body which are potentially bene�cial for di�erent kinds of
movements.

In order to investigate the statistics of the long term behavior
of the exploration process, a challenging, abstract performance map
was designed such that the most stable patterns do not have high
performance [Fig. 6(b)], making it extremely hard for the system
to settle in a stationary state, thus forcing it to continuously explore
and visit the four transient patterns represented by the peaks. Thus,
after the system enters a pseudo-stable regime by visiting a tran-
sient pattern, performance will gradually decrease as the instability
forces the system orbit to drift away from the pattern; this triggers
the resumption of exploration by increased chaoticity of the system
through changes to the bifurcation parameter as the performance
decreases. It can be seen fromFig. 6(c) that the system behavior space
is searched in an e�cient manner. Most time is spent on the perfor-
mance peaks, with the highest peak most favored. Because of their
instability, some of the regions around the performance peaks are less
frequently visited; nevertheless, the exploration process is still able to
�nd the peaks themselves. In a more natural setting, where high per-
formance dynamics oftenmatch highly stable regions, the systemwill
settle long term into a high performance state.3,4

More complex examples of chaotic exploration related to limb
coordination in robot behaviors were demonstrated using two simu-
lated robotic systems under di�erent physical situations (Fig. 7). The
system architecture and methods used are exactly the same as for
the simple neuromechanical systems. Again the CPG units are only
indirectly coupled through bodily and environmental in�uences. A
3-arm swimmer was constructed using a 2D mass-spring-damper
system, where the sti�ness of the spring were set di�erently to repre-
sent three distinct types of body part: rigid structures (kr = 500Nm),
compliant edges (kc = 5Nm), and actuatingmuscles [km = f (u)]. All
point masses were set to 1 kg, and the spring rest lengths were set to
those at the neutral pose of the robot as shown in Fig. 7(a), except
rm = 0.075 for the three muscle edges. The rest of the parameters
were set the same as in the previous more abstract systems. For each
outer edge of the robot, a simpli�ed �uid force acting in the nor-
mal direction was calculated by F = Dlv2, where D = 50 kg/m2 is
a constant which merges the e�ects of a drag coe�cient, �uid den-
sity, and the “thickness” of the robot. l is the current edge length,
and v is the velocity of the midpoint of an edge in its normal direc-
tion. The required behavior was tomove straight ahead in an e�cient
manner. The evaluation measure for the robot was thus based on
its forward speed. Since the system has no prior knowledge of the
body morphology of the robot, it does not have direct access to the

direction of movement or information on body orientation. In order
to facilitate steady movement in one direction without gyrating in a
small radius, the center of mass velocity of the robot was continu-
ously averaged by leaky integration, and its magnitude was used as
the performance value,3,4 which is de�ned as

E = ‖v̄‖, (20)

τE ˙̄v = −v̄ + v, (21)

where τE = T and v is the center of mass velocity.
Since the robot has three CPG-muscle units, the dynamics of

chaotic exploration can be visualized in the same way as for the
25 DoF system described earlier (Fig. 8). In fact, the swimmer is
controlled by exactly the same system as the earlier 25 DoF sys-
tem: an example of “same brain, di�erent body and environment,”
illustrating the adaptability of the method which requires no knowl-
edge of body morphology. The behavioral stability landscape for the
swimmer robot was depicted in a similar way to the phase portrait
of a dynamical system [Fig. 8(a)]. This was obtained empirically
by repeatedly running the system for 3000 s starting from 50×50
phase di�erence points on the grid. Then, all the movement vec-
tors in the same grid cell were averaged to generate the “�ow �eld”
of phase di�erences. The permanently stable behaviors were also
found numerically by long term observations of the system running
from many di�erent initial phase di�erences. Interestingly, some of
the stable behaviors exhibited periodic transitions, which yielded a
closed curve similar to limit cycle dynamics. The performance land-
scape [Fig. 8(b)] was also empirically generated on the phase space
in the same way, except sensory feedback was disabled in order to
maintain the initial phase di�erences of the CPGs. Considering the
radial symmetry of the robot body, the stable behaviors that emerged
de�ne three qualitatively di�erent modes: high performance propul-
sion using two arms [Fig. 8(d)], small arm movements by nearly
in-phase action, and periodic transition of phase di�erences which
result in circling movement with no forward locomotion. Since the
patterns for the three high performing peaks are also highly stable, we
arti�cially forced the system to eventually escape from those states by
gradually increasing the chaoticity whenever the system is stabilized
to any of the discovered patterns, which allowed us to illustrate the
resulting long term exploration dynamics [Fig. 8(c)]. The exploration
statistics show the highest performance peaks are the most visited,
demonstrating the capability of the same 3 CPG system that dis-
covered high performing behaviors for the simple embodied system
[Fig. 4(c)] to also discover high performing behaviors in a completely

FIG. 7. Simulated robots. (a) 3-arm 2D mass-spring-damper swimmer. (b) 8 DoF quadruped. (c) Antagonistic torsional muscles for a joint of quadruped.
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FIG. 8. Chaotic exploration of 2D swimmer. Same analysis as for 25 DoF system in Fig. 6. (a) Behavioral stability landscape. Six stable points (on a 2-torus surface) and 2
periodic transitions emerged symmetrically due to the radial symmetry of the robot morphology. (b) Performance landscape. Three stable points have the highest performances
(i.e., locomotion speed), whereas the other 3 points (nearly all-in-phase motions) and the 2 transient behaviors show low performances. (c) Long-term visits during chaotic
exploration. (d) Snapshots of high-performing locomotion [the behavior point at the middle of (a); (3.62,3.62)].

di�erent embodied system and environment, namely, self-organized
locomotor behaviors.

Further generality of themethodwas demonstrated using a sim-
ulated quadruped with 8 degrees of joint freedom, where each joint
is driven by a pair of antagonistic torsional muscles, resulting in 16
CPGs [2 per DoF, Figs. 7(b) and 7(c)]. The actuation of the torsional
muscle is the same as for the linear muscle, except the “stretched
angle” is used instead of linear displacement; see Refs. 3 and 4 for
the full details of the physical parameters and the muscle control set-
tings for this actuator. The time plots of 15 phase di�erences between
all 16 CPGs during exploration are shown in Fig. 9. Because of the
larger system size, as well as the non-smooth reaction forces due to
ground friction with slip, only transient behaviors emerged with dif-
ferent residence periods. This quite challenging, slippy environment
was deliberately used to encourage transients so that the long term
exploration dynamics could be illustrated. However, most of the high
performing patterns typically last for hundreds of walking cycles,
allowing them to be easily captured andmemorized in realtime by an
adaptive neural mechanism, if desired, as introduced in other work
by the authors.3 Figures 9(a), 9(A1), and 9(B1) show two di�erent
locomotor behaviors (forward and side walking) that were discov-
ered by the exploration process, which exempli�es how the system
is able to �nd completely di�erent modes of locomotion for a given
physical system. Because of the nature of the environment, many of
the discovered legged motions included some foot slippage, which
is energy-ine�cient if too great. However, an interesting and unex-
pected discovery was that themethod found particular combinations
of di�erent foot slips and asymmetric limb movements resulting in
relatively e�cient close to straight locomotion of the whole body (as
an alternative to bilaterally symmetric gaits). The real time and online

operation of the exploration process allows practical and challenging
scenarios such as re-adaptation after damage. This is illustrated in
Figs. 9(b) and 9(B1), where the robot simply resumes the exploration
of new locomotor behaviors for the new (i.e., damaged) body. In this
case, one leg was chopped o� at the knee; after a period of exploration
triggered by a drop in performance, leading to an increase in chaotic-
ity, a new stable, relatively e�cient “hobbling” gait was discovered
where the phase di�erence patterns, and hence limb coordination
mechanisms, were completely di�erent from those used pre-damage.

III. ANALYSIS OF SYSTEM DYNAMICS

For the sake of tractability and to cope with the very large num-
ber of calculations needed for a detailed analysis of their dynamics,
we consider three relatively simple examples of the neuromechanical
systems outlined in Sec. II B. These are controlled by one, two, and
three CPGs (Fig. 4). The �rst two systems share the same mechani-
cal model, a mass driven by two antagonistic muscles (one contracts
as the other expands) controlled by one and two CPGs, respectively,
where the uncontrolled spring-damper represents an environmental
e�ect. A neuromechanical system ofMmoving masses controlled by
N CPGs is described by a total of 2M + 7N equations, hence the three
example systems use 9, 16, and 25 �rst-order di�erential equations,
respectively. The position x and velocity v of the mass in the 9 and 16
DoF systems is given by

ẋ = v, (22)

mv̇ = k(u2)(pR − x − r) − k(u1)(x − pL − r) − 2dv, (23)
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FIG. 9. Chaotic exploration of Quadruped. (a) An example of the time courses of phase differences between CPG-1 and the other 15 CPGs during exploration. Two high
performing locomotor behaviors are shown as (A1; quadruped walking gait) and (A2; side-walk like gait) with corresponding snapshots. (B) A scenario for the realtime recovery
from damage where the one of lower limbs was removed during the course of (A1) behavior (the moment of damage is indicated by the red arrowhead), a new high performing
behavior (B1; clumsy walking gait) was quickly found. The gray arrows in (A1), (A2), and (B1) indicate the directions of movement.

where the two anchor positions (pL, pR) = (−1, 1). Likewise, the 25
DoF system with two masses (x1, v1 and x2, v2) connected by three
muscles is described by the following equations:

ẋ1 = v1, (24)

mv̇1 = k(u2)(x2 − x1 − r) − k(u1)(x1 − pL − r) + d(v2 − 2v1),
(25)

ẋ2 = v2, (26)

mv̇2 = k(u3)(pR − x2 − r) − k(u2)(x2 − x1 − r) + d(v1 − 2v2),
(27)

where the two anchor positions (pL, pR) = (−1.5, 1.5). The spring
constants are controlled by corresponding CPGs according to
k(ui) = k0[1 + tanh(ui)], where u2 = 0 for the 9 DoF system. The
�xed parameters for the base sti�ness k0 = 5N/m, damping constant
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FIG. 10. LLE maps on the hypothesized area of complex dynamics (non-grey regions) based on the previous classification of the parameter space for the coupled FHN
system.25 It can be seen that most of the chaotic dynamics in all systems studied, including the embodied neuromechanical systems, dwell in the presented regime and have
similar distributions. (a) Two coupled oscillators. (b) 9 DoF system. (c) 16 DoF system. (d) 25 DoF system. Due to the finite computation time, LLEs less than 0.0005 are
discarded and rendered as black.

d = 2
√
mk0≈4.4721N s/m, mass m = 1 kg, and muscle rest length

r = 0.2m were set identically for all systems. These values were cho-
sen after preliminary empirical investigations as a representative of
systems capable of exhibiting rich dynamics (although many other
values also achieved this, there is nothing particularly special about
these values).

A. Chaotic region of the neuromechanical systems

In order to investigate the similarity of the chaotic regions
among the neuromechanical systems in terms of the two coupled
CPG scheme (i.e., that each CPG “treats” the whole of the rest of
the system as if it were a single CPG; Fig. 3), the LE was calculated
at a �ne resolution over the parameter space de�ned by zcpg and zref,
which are the representative factors corresponding to z1 and z2 in two
coupled FHNCPGs [Eqs. (1)–(4)], where zcpg is the descending input
for all CPGs and zref determines the reference values for homeostatic
adaptation (Fig. 5, Sec. II B).

The LE analysis for identifying chaos was done over a parameter
region based on the previous, mainly qualitative, classi�cation of the
two-CPGmodel (refer to the region C in Fig. 6 of Asai et al.26), where
the region of apparently chaotic dynamics was roughly identi�ed as
a diagonal-band area on a (z = z1, dz = z1 − z2) parameter space.
This space speci�es the overall level of and the degree of asymme-
try between two descending inputs; it translates into the parameter
space de�ned by (z = zref, dz = zref − zcpg) for the neuromechani-
cal systems. Figure 10 shows the result of positive LLEs for each of
the neuromechanical systems together with those of the basic two
coupled CPGs.27 The existence of hyperchaos in the 16 and 25 DoF
systems is shown in Fig. 11. The resolution of the LE calculations on
the parameter region under investigation (i.e., the non-gray pentag-
onal area) was 0.001 on both axes, resulting in a total of 170 801 data
points for each neuromechanical system.

A standard QR decomposition method43 was used for com-
puting LE spectra by numerically updating both the model and its
variational equations using Runge-Kutta 4th order integration with a
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FIG. 11. Existence of hyperchaos in 16 DoF (a) and 25 DoF (b) systems. Each color represent: (blue) only one LE is positive; (red) two positive LEs; (green) three positive
LEs. Note the number of positive LEs increases with the system size.

time step of 0.001s for 10 000 s, excluding 1000 s of initial burn-out,
which is considered long enough to ensure the precision of the �nal
LEs up to a few �oating point digits, while the satisfactory conver-
gence of the values was normally observed before 2000-3000 s. The
calculation of full LE spectrums is highly computationally demand-
ing even for a single data point. For instance, a calculation of LE
spectrum for the 25 DoF system took more than half an hour on
a single 3Ghz processor even after optimizing the computation by
reducing the total number of equations fromN(N + 1) = 650 to 127
by eliminating zero Jacobian entries. Hence, it would take about a
decade, on a single processor, to complete all data points just for the
25 DoF system.

In order to mitigate the massive computational demand, the
analysis was divided into two stages by �rst screening non-chaotic
points by calculating LLEs (λ1) using Wolf’s method44 (with a time
step of 0.001 s for 20 000 s), which is about an order of magni-
tude faster than LE spectra, then the points with λ1 > 0.0005 were
identi�ed as chaotic and were processed for the next stage which
determines the number of LEs. The analysis for hyperchaos by LE
spectra was limited to the identi�cation of the number of positive
exponents by monitoring the time course of the secondary LEs and
pre-terminating the computation. A system was considered as non-
hyperchaotic if the moving average of intermediate values of the

second largest exponent (λ̂2) is less than 0.0005 after 3000 s, where λ̂2

is the average of λ2 over the past 1000 s. Otherwise, the systems went
through the full iterations, then the smallest positive exponent λk

(λ1 > λ2 > · · · > λk > 0 > λk+1 > · · · > λN) was again probed for
identifying the zero exponent by comparing its magnitude with the
next exponent; the number of positive exponents is k if |λk| > |λk+1|,
and k + 1 otherwise. The whole procedure was processed for a cou-
ple ofweeks on a parallel computing platformusing 160 virtual CPUs,
each equivalent to 2.3GHz processor.

The resulting maps clearly shows that the main chaotic regions
of all systems, including the initial two-CPGmodel, are very similarly

spread on the hypothesized area, thus showing that the homeostatic
adaptation does result in systems that support the scale-invariant
two-CPG scheme for our embodied neuromechanical chaos. The
analysis also validates the earlier, less detailed, analysis of the two-
CPG dynamics.26 Examining the diagonally stretched bands of the
chaotic area suggests that chaotic dynamicsmainly take place around
the Hopf bifurcation point of a CPG [z = zcpg = zh ≈ 0.3812 in
Eqs. (5)–(6), when I(t) = 0] over the whole range of dz, indicat-
ing that the CPGs in the chaotic regime are near their critical state,
which is analogous to the chaos at the border of criticality.32 These
dynamics are exploited by the system while it is engaged in chaotic
exploration. The critical state of the CPGs (zcpg = zh) can be thought
of as a diagonal line connecting two on-axis points (0.4, 0.4 − zh) and
(0.5 + zh, 0.5) on the LE maps, where the region to the right of the
line indicates zcpg > zh and vice versa. Similar to the two-CPGmodel,
which can produce autonomous oscillatory dynamics in any one of
its modes—including two half-centers (z1,2 < zh), two pacemakers
(z1,2 > zh), and mixtures of both27—the embodied neuromechanical
systems generate autonomous oscillations over the entire parame-
ter region regardless of the value of zcpg, due to the non-equilibrium
nature of the system. Since the mechanical systems (with damp-
ing) are unable to generate autonomous oscillations, the system with
zcpg < zh has no oscillation center, which corresponds to the half-
center mode in the two-CPG model. While all systems exhibit chaos
both in the half-center (or non oscillation center) and pacemaker
modes, the chaotic dynamics of the neuromechanical systems occupy
a wider region on the left side of the critical line (i.e., in the half-
center mode), although most of these dynamical regimes show weak
chaoticities.

B. Mixed mode chaos from homeostasis

In this section, the crucial role of the homeostatic adaptation
processes in the system dynamics are examined in more detail. The
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FIG. 12. Example trajectories of the 25 DoF system. Top row: the CPG outputs over time; middle row: the time course of the slow homeostatic adaptation variables [see
Eqs. (8)–(12)]; bottom row: positions of the two masses.

observed time series of the CPG outputs in the chaotic neurome-
chanical system clearly shows alternating small and large amplitude
excursions in synchrony with the slow homeostatic adaptation vari-
ables (Fig. 12). This is an example of chaotic mixed mode oscillation
(MMO) or mixed mode chaos. The complex behaviors of MMOs
have been found and analyzed in various systems, experimentally
and numerically, which led to the clari�cation of several mechanisms
for MMOs such as folded singularities, near homoclinic orbits, three
time scales, and dynamic Hopf bifurcations (refer to Ref. 28 for a
review).

We focus on dynamic Hopf bifurcation as the likely scenario
for our neuromechanical chaos, where the slow variables for home-
ostatic adaptation act as the dynamic bifurcation parameters. We
choose the scaling factors for sensor signals [α in Eq. (8)] as the
slow variables of interest, since they are at the heart of the homeo-
static process. The original non-equilibrium system can be analyzed
in terms of a reduced subsystem having equilibria by treating the
αs as �xed parameters. For convenience, let us use Pi = log(1 + eαi)
for each CPG as the Hopf bifurcation parameters of the neurome-
chanical subsystem, which results in a reduced set of equations by
excluding Eqs. (8) and (10) for every CPG (by removing α, p has
no e�ect on the system dynamics). Thus, the total number of equa-
tions of the reduced system with M masses and N CPGs becomes
2M+5N.

The equations of the reduced system for the 9 DoF model
(Fig. 4) can be written as (by omitting subscript i, sinceM = N = 1)

u̇ = c

{

(u + Aref) − (u + Aref)
3

3
− w + z

}

+ δ {I − (u + Aref)} , (28)

ẇ = 1

c
{(u + Aref) − bw + a} + εI, (29)

τhβ̇ = −Î, (30)

τh
˙̂I = −Î + I, (31)

τh
˙̂s = −ŝ + s, (32)

ẋ = v, (33)

mv̇ = k0{(r − x − 1) tanh(u) − 2x} − 2dv, (34)

where

I = (s − ŝ)P + (ŝ + β), (35)

s = 1

r

{ v

2
− (1 − r + x) tanh(u)

}

. (36)

Here, P is considered as the bifurcation parameter for the 7 dimen-
sional system. Solving for equilibria for Eqs. (30)–(32) using Eq. (35)
yields

¯̂s = −β̄ = s̄, ¯̂I = Ī = 0, (37)

s̄ = s|ū,x̄,v̄, Ī = I|¯̂s,s̄,β̄ , (38)

This means that every Ii = 0 at equilibrium and this is the same for
all other systems (16 and 25 DoF systems), and thus all CPGs have
same equilibria, regardless of the system size. Since the discriminant
of df (u)/du from the eliminated simultaneous equations f (u) = 0
for solving the intersections of the two nullclines (for u̇ = ẇ = 0)
of the CPG equations [Eqs. (28) and (29) at I = 0] is negative, i.e.,
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1 − 1
b

− δ

c
< 0, there is only a single real equilibrium of the CPG

equations (ū, w̄) which is given by

ū =
(

G +
√

G2 + H3

)
1
3 −

(

−G +
√

G2 + H3

)
1
3 − Aref, (39)

w̄ = ū + Aref + a

b
, (40)

where

G = 3

2

(

z − a

b

)

, H = 1

b
− 1 + δ

c
. (41)

Finally, the equilibrium for themechanical system is determined by ū,

v̄ = 0, (42)

x̄ = (r − 1) tanh(ū)

2 + tanh(ū)
. (43)

The resulting equilibrium point (ū, w̄, β̄ , ¯̂I, ¯̂s, x̄, v̄) was then fed into a
7×7 Jacobianmatrix in order to determine its stability. Since the alge-
braic solution for the eigenvalues of the Jacobian is unavailable (by
the Abel-Ru�ni theorem), the critical values of P for Hopf bifurca-
tion were found numerically using the Routh-Hurwitz (RH) stability
criterion by scanning P within a certain range. The coe�cients of
the Nth order characteristic polynomial (in λ) of the Jacobian at
equilibrium, as given by

Fc(λ) =
N

∑

k=0

Ckλ
N−k = 0, (44)

were used to build the Routh array in order to determine the number
of roots having positive real parts. The systemwithN = 7 results in 8
coe�cients (C0,C1, . . . ,C7), all of which can be expressed as a func-
tion of P by substituting all other parameter values into the system
equations. For example, the 8 coe�cients when z = zcpg = 0.4 and
zref = 0.73 (with corresponding parameters Aref = −0.2144124 and
Tref = 8.1343) yield (for brevity, the calculated numbers are rounded
o� to 7 �oating-point digits),

C0 = −1.0, (45)

C1 = −9.1443158 − 0.0490403P, (46)

C2 = −9.7918352 − 0.4409398P, (47)

C3 = −9.3137997 + 0.9017610P, (48)

C4 = −7.8419268 + 1.3806229P, (49)

C5 = −1.5239377 + 0.1552919P, (50)

C6 = −0.1741496, (51)

C7 = −0.0110641. (52)

All the elements in the Routh array can now be expressed as a func-
tion ofP so that the stability of equilibrium is determinednumerically
for a range of P in order to �nd its critical values (Hopf bifurcation
points). The two planes in Fig. 13(a) indicate the values ofPwhere the
stability of equilibrium changes, hence the Hopf bifurcation points.

The equilibrium is stable in the range 0.0353≤P≤0.3301, indicat-
ing that the autonomous oscillations occur outside that range. Direct
numerical simulations of the reduced system in the vicinity of those
parameter values indicated that the Hopf bifurcation is likely sub-
critical, as the stable limit cycle and stable equilibrium coexist in a
narrow range near the critical values inside the boundary.

TheHopf bifurcation of the 16 and 25DoF systemswas obtained
in the samemanner [Figs. 13(b)–13(d)]. The reduced 16 DoF system
has 12 equations with two control parameters P1 and P2 for each sen-
sory signal, and the RH criterion analysis resulted in a closed Hopf
bifurcation boundary on a 2D (P1, P2) space. In the same way, the
reduced 25 DoF system has 19 equations which resulted in a closed
boundary surface for Hopf bifurcation in a 3D (P1, P2, P3) space. It
can be inferred that higher dimensional systems of this class will have
similar D − 1 dimensional hypersurfaces as Hopf boundaries in D
dimensional spaces. With the Hopf bifurcation boundaries de�ned,
we were able to investigate how the dynamics of these bifurcation
parameters (P1,2,3) behave in the full (original) system with respect
to those boundaries. The results show that the trajectories of these
“dynamic bifurcation parameters” indeed penetrate (likely chaoti-
cally) the non-oscillatory regions inside the bifurcation boundaries,
indicating that the dynamics of reduced systems continually alternate
between oscillatory and non-oscillatory states. Dynamic Hopf bifur-
cation does indeed underly the dynamics as hypothesized at the start
of this section. The dynamics revealed here correspond to the “tour-
billon” mechanism,28 where the system orbit spirals around a slow
manifold (formed by slow variables) with small amplitudes until the
orbit jump towards large amplitude oscillations by escaping from the
tourbillon passage [Figs. 13(a) and 13(b)]. [The term tourbillon is
used in analogy to the ingenious tourbillon (whirlwind) watchmech-
anism where the entire (fast) escapement mechanism is rotated in a
slow moving cage.]

IV. DISCUSSION

We have presented a detailed analysis of the chaotic behaviors
of a number of example embodied neuromechanical systems from
a class of systems that has been shown to be capable of generat-
ing and learning motor behaviors in a general and powerful way.
By exploiting massive cloud-based computing resources, we were
able to perform rigorous calculations of Lyapunov exponents to gen-
erate �ne resolution LLE maps for these systems. These revealed
chaotic dynamics at all levels of the system, from the neural oscil-
lators to the bodily movements. The dynamics of the whole brain-
body-environment systems had areas rich with complex and chaotic
regimes: all systems exhibited chaos and hyperchaos. The maps for
systems of di�erent sizes were remarkably similar and all were very
close to the LLE map for a base system of two coupled neurons.
This was made possible by an adaptive homeostatic sensory regu-
lation process that meant that any CPG in the modular architecture
treated the whole of the rest of the system as if it were another single
CPG in a two-coupled system. This in turn enabled a scale invariant
two-coupled CPG conceptualization of any system in the class which
gave a way into the detailed analysis of the dynamics, including the
role of the homeostatic process. Because of the regularities inherent
in the highly modular model, it should be relatively straightforward
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FIG. 13. Visualization of the trajectories of dynamic bifurcation parameters (P1,2,3) (the number of parameters matches the number of CPGs in the particular system) and
their Hopf bifurcation boundaries. The reference parameters and CPG descending inputs for all systems were set to zcpg = 0.4, zref = 0.73, Aref = −0.2144124, and
Tref = 8.1343. (a) 9 DoF, 1 CPG system: trajectories of the CPG (u,w) and P is shown along with the CPG equilibrium states (dashed straight line). Each consecutive return
of P to its minimum is depicted with different colors. The two Hopf bifurcation points are shown as planes at 0.0353 and 0.3301. (b) 16 DoF, 2 CPG system: trajectories of
the two CPG outputs (u1, u2) (u2 as a dashed line) are shown with the Hopf boundary. Three consecutive returns of the trajectory for (P1, P2) are shown in different colors.
(c) Longer trajectory of (P1, P2) in the 16 DoF system. The different colored regions indicate different numbers of positive real eigenvalues from the reduced system (white:
0, light grey: 2, and dark grey: 4). (d) (P1, P2, P3) plots for the 25 DoF, 3 CPG system: the projected trajectories on each plane are shown in grey. See the main text for further
details.

to extend the analysis, using the methods developed here, for larger
scale systems with an arbitrary (embodied) mechanical setting.

The detailed LLE maps of the chaotic regions were calculated
using well accepted numerical methods43,44 using a small integration
time-step and a large number of iteration to ensure the conver-
gence of all calculations. Numerical methods were used since for

this highly non-linear system, the relevant equations are not ana-
lytically tractable. Although there can always be slight doubts about
numerical calculations, the methods used here are uncontroversial
and produced highly stable results. If we de�ne a system as chaotic
(in a subset S of state space) if it shows (i) sensitive dependence on
initial conditions and (ii) S is bounded so as to exclude the trivial case
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of an unstable linear system whose trajectories diverge exponentially
for all times, then the systems described in this paper exhibits chaos.
Condition (i) is satis�ed if the properly calculated LLE is positive,
which is the case for the example systems in the regions depicted in
the LLE maps, and condition (ii) is clearly satis�ed in this case, so
we are justi�ed in referring to the dynamics as chaotic. Hence, these
analyses show that it is indeed the chaotic dynamics of the whole
system that are exploited when a controllable chaoti�cation of the
system is used to drive the exploration and learning of goal directed
motor behaviors.

Validation of the scale invariant conceptualization of this class
of systems means that any neuromechanical system that is a mem-
ber can be chaoti�ed in the same way as the models described in this
paper. The same system architecture can be used to produce chaotic
dynamics regardless of themechanical systemunder control. As illus-
trated in Sec. II C, it can be used to discover motor behaviors for
arbitrary bodies; the same “brain” can be put into di�erent bodies
in di�erent environments and the whole system will automatically
adapt.3,4 The same kind of analysis as used in the relatively simple
abstract spring-damper systems, and indeed the lessons learned from
those analyses, can be directly transferred to the more interesting
mechanical structures, such as the simulated robots whose explo-
ration and adaptation behaviors were discussed in Sec. II C. In theory,
the system can be of any size as long as it adheres to the architecture
introduced here. The homeostatically mediated chaotic exploration
process described in this paper is generally more e�cient than the
earlier, simpler chaotic explorationmodels; this is of increasing bene-
�t for larger systems. Many other methods for learning and adapting
robot behaviors require explicit internal models that become more
expensive as the system size increases, our method does not require
such models and hence does not su�er from this problem.

It was concluded that theMMObehavior of the closely analyzed
basic neuromechanical systems stemmed from dynamic Hopf bifur-
cation, where slow variables, associated with homeostatic sensory
regulation, act as “moving” bifurcation parameters for the remaining
(faster) part of the system. Interestingly, the Hopf bifurcation bound-
aries were found to be closed (hyper)surfaces. The slow bifurcation
variables were shown to continually wander across the boundaries,
which clearly ties in with the observed behavior of the system (Fig. 6)
and indeed with that of the other examples of this class of system that
have been examined in this paper.

It is worth noting that the intrinsic stability and dynamical
structure of non-chaotic and chaotic systems are di�erent even if
their orbits seem similarly irregular, which may well lead to dif-
ferent behaviors when such systems are used for robot control
under the in�uence of external forces/control signals and/or noise.
Hence, when applying these ideas in biorobotics, it is important to
have a rigorous understanding of the dynamics as provided by this
paper.
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