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Abstract

Does the dynamical regime in which a system engages when
it is coping with a situation A change after adaptation to a
new situation B? Is homeostatic instability a generic mecha-
nism for flexible switching between dynamical regimes? We
develop a model to approach these questions where a simu-
lated agent that is stable and performing phototaxis has its vi-
sion field inverted so that it becomes unstable; instability ac-
tivates synaptic plasticity changing the agent’s simulated ner-
vous system attractor landscape towards a configuration that
accommodates stable dynamics under normal and inverted
vision. Our results show that: 1) the dynamical regime in
which the agent engages under normal vision changes after
adaptation to inverted vision; 2) homeostatic instability is not
necessary for switching between dynamical regimes. Addi-
tionally, during the dynamical system analyses we also show
that: 3) qualitatively similar behaviours (phototaxis) can be
generated by different dynamics; 4) the agent’s simulated ner-
vous system operates in transient dynamic towards an attrac-
tor that continuously move on the phase space; and 5) plastic-
ity moves and reshapes the attractor landscape in order to ac-
commodate a stable dynamical regimes to deal with inverted
vision.

Introduction
The concept of homeostasis coined by Cannon (1932) refers
to a condition in which coordinated physiological processes
maintain certain variables within limits. Though this con-
cept was introduced by Cannon, earlier work by Bernard
(1927) had already identified regulatory systems in the or-
ganism’s internal environment (milieu interieur). From
these pioneering works, research in animal physiology stud-
ied homeostatic mechanisms controlling body temperature,
heart rate, levels of blood sugar, breathing rate and others
(see Cooper (2008) for a historical review). Recently, Turri-
giano et al. (1998) observed that neurons also have a mecha-
nism of homeostatic regulation which increases or decreases
the strength of their synaptic inputs ensuring the mainte-
nance of their firing rates within boundaries. She has also
reported the presence of homeostatic regulations of activity
in cortical networks (Turrigiano, 1999; Turrigiano and Nel-
son, 2004).

Rather than working directly with physiology, Ashby
(1947, 1960) focused on more abstract dynamical system
models of homeostasis in the context of adaptive behaviour.
According to him, an animal behaviour is adaptive if it main-
tains essential variables within physiological limits. These
variables are closely related to survival; they can be lethal
(e.g. amount of oxygen in the blood), or only represent some
approaching threat (e.g. heat on the skin). When essential
variables cross certain boundaries a mechanism that changes
the system configuration is activated until these variables
return to homeostatic stable regions. The mechanism that
pushes the variables back to their viable regions selects those
configurations that not only recover stability at the current
moment, but also leave the system stable in the presence
of environmental conditions to which the system has previ-
ously adapted.

Figure 1: See text.
Adapted: Ashby (1960) p.116.

To illustrate the operation of
this mechanism, consider an an-
imal (A) interacting with its en-
vironment (E) (Fig. 1 represents
the dynamic of A and E over
time (T)). When the environment
changes (at t2) the animal’s dy-
namic becomes homeostatically unstable (the homeostatic
boundary is represented by the dashed line). Due to instabil-
ities the mechanism that changes the animal’s organization
is activated (downstrokes at M). The new organization found
by M leaves the animal stable in the presence of both envi-
ronmental conditions, as it is shown by the animal’s dynamic
(A) at t4 and t5.

Ashby also postulated that different environmental condi-
tions can move the state of the system to different regions in
phase space and at each region the system can have different
dynamics. This is roughly illustrated by different dynami-
cal regimes presented by the animal at t4 and t5. Summing
up Ashby’s main points in the context of our work, we can
say that: an adaptive system interacting with its environment
switches and engages in different dynamical regimes; when
homeostatic instability increases the system reconfigures it-
self so that it: 1) accommodates a stable dynamical regime
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that deals with the condition that triggered instability; and
2) maintains the stability of pre-existing dynamical regimes
that deal with conditions previously adapted.

The homeostatic characteristics of a system do not impose
constraints on the dynamics inside stable regions. As long
as the state of the system is inside a homeostatic region, the
system can be in an attractor or moving on a transient; it can
also be monostable, bistable, multistable, or even without
attractors inside stable regions. Thus, at the same time two
types of stability can be measured in a system: homeostatic
stability and Lyapunov stability1.

Figure 2: See text.

Both stabilities are illustrated in
Fig. 2. The axes X1 and X2 rep-
resent two generic variables; the
dashed line is the homeostatic sta-
ble region; P1 and P2 are point
attractors; continuous line around
P1 and P2 define two regions on
the phase space. On the border between these regions the
system is Lyapunov unstable; outside the dashed line the
system is homeostatically unstable. The point P3 is homeo-
statically stable and Lyapunov unstable. Both types of sta-
bility are important to studying mechanisms of behavioural
adaptation, but in this paper we focus exclusively on home-
ostatic stability.

Given this brief introduction about homeostatic stability
and adaptation, we present the questions we are tackling in
this paper.

• Q1: Does the dynamical regime in which the system en-
gages when it is coping with a situation A change after
adaptation to a new situation B?

Using the illustration presented in Fig. 1 we can restate
this question as: does the dynamical regime in which the an-
imal engages when it is coping with the environmental con-
dition presented at t1 change after adaptation to the new en-
vironmental condition presented at t2? We want to know the
difference between the dynamics at t1 and t4, as the system
has reorganized itself in order to accommodate a new stable
dynamical regime to cope with the environmental condition
presented at t2.

While the previous questions concerns the mechanism for
adaptation, the second one approaches the mechanism for
switching between dynamical regimes after adaptation.

• Q2: After adaptation, is homeostatic instability a generic
mechanism for flexible switching between dynamical
regimes?

Using the illustration presented in Fig. 1 we can restate
this question as: is homeostatic instability a generic mech-

1A fixed point x* is Lyapunov stable if all trajectories that start
sufficiently close to x* remain close to it for all time. For a formal
definition of Lyapunov stability see Strogatz (2000) p.141.

anism for flexible switching between dynamical regimes in
which the animal engages at t4 and t5?

In order to approach these questions we develop a compu-
tational model based on a related model implemented by Di
Paolo (2000). In his model, Di Paolo minimally replicated
a psychological experiment carried out by Taylor (1962)
where a human being adapts his behaviour to continuously
wearing spectacles that distorts his vision field. Di Paolo
replicated this experiment using an evolved simulated agent
that performs phototaxis. During the agent’s lifetime, he in-
verted the agent’s vision field (switching right and left sen-
sors) and studied the process of behavioural adaptation. The
agent’s mechanism of adaptation was implemented using
homeostatic stability and synaptic plasticity2.

Following Di Paolo we implement an agent performing
phototaxis using homeostatic stability and synaptic plastic-
ity. However, we replicate another experiment carried out
by Taylor where a subject adapts his behaviour to intermit-
tently (rather than continuously) wearing spectacles that dis-
torts his vision field. Besides, in our model the inversion of
the agent’s vision field is done both during its lifetime and
during evolution. Thus, our agent is evolved to adapt dur-
ing its lifetime to inverted vision, differing from Di Paolo’s
agent which was evolved exclusively to perform phototaxis
under normal vision.

The methodology to develop our computational model
is based on four assumptions. The first three assumptions
are grounded in Ashby’s theory in the context of Turri-
giano’s empirical findings on homeostasis in neuronal net-
works, they are: 1) an agent behaviour is adaptive if it main-
tains its simulated neuronal network homeostatically stable;
2) changes in synapse strengths is a mechanism to recover
homeostatic stability; and 3) a system conserves its condi-
tion of being adapted when synapse strengths are adjusted in
such a way that homeostatic stability of neuronal networks
is maintained in the presence of similar conditions that trig-
gered instability in the past. The fourth assumption, which
is supported by Ashby and Taylor3, is that: 4) conditions to
which the system is not adapted trigger homeostatic insta-
bility, that is, switching visual sensors triggers homeostatic
instability in a not-yet-adapted simulated nervous system.

Details of the methodology are presented on the next sec-
tion, followed by the Results where we study the dynamic
of the system and show that: 1) the dynamical regime in
which the agent engages under normal vision changes af-
ter adaptation to inverted vision; 2) homeostatic instability
is not necessary for switching between dynamical regimes.
Additionally, during the dynamical system analyses we also
show that: 3) qualitatively similar behaviours (phototaxis)

2For a theoretical discussion of Di Paolo’s model see Di Paolo
(2003).

3Taylor, in his experiment, uses Ashby’s theory to explain the
operation of the mechanism underlying the adaptive behaviour pre-
sented by the subject wearing distorted spectacles.
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can be generated by different dynamics; 4) the agent’s simu-
lated nervous system operates in transient dynamic towards
an attractor that continuously moves in the phase space; 5)
plasticity moves and reshapes the attractor landscape in or-
der to accommodate a stable dynamical regimes to deal with
inverted vision.

Methods
This methodology follows, as much as possible, that one car-
ried out by (Di Paolo, 2000). The main differences lie in the
number of nodes used to implement the controller and in the
evolutionary setup.

A genetic algorithm is used to evolve the parameters of
our model. The range of each parameter, which defines the
search space, is presented throughout the methodology to-
gether with the description of each variable.

Task. The task involves an agent that moves in a simulated
environment and has to perform phototaxis on a sequence of
light presentations (one by one) for 15000 secs. During its
lifetime, the agent’s right and left sensors are switched every
250 secs. The light is repositioned between 40 and 80 units
away from the agent when either the sensors are switched
or the agent spends 50 consecutive seconds close light (at a
distance smaller than 10 unit).

Figure 3: Agent.

Agent. The agent (Fig. 3) has a cir-
cular body of 8 units diameter, two
diametrically opposed motors that re-
ceive a continuous signal in the range
[-1,1] from the controller nodes (y2
and y3, respectively), and two light
sensors separated by 120 ◦ ± 10 ◦

whose output signal is given by Ik = 1/
√
dk, where k repre-

sents each sensor, d is the distance from sensor k to the light
source. Ik = 0 when the agent’s body occludes the light and
Ik = 1 if d < 1.

Plastic controller. The agent’s behaviour is controlled by
a fully-connected, 3 nodes, continuous-time recurrent neural
network (Eq. 1) (Beer, 1995).

τiẏi = −yi +

N∑
j=1

wjizj +

M∑
k=1

skiIk,

zi = 1
1+e−(yi+bi)

(1)

where y is the state of each node which is integrated
with time step of 0.1 using the Euler method , τ is its time
constant (range [0.4,4], N is the number of CTRNN nodes
(here 3); wj,i is the connection strength from the jth to ith

node (range [-8,8]), zj is the node output signal defined
by a sigmoid function, bj is a bias (range [-3,3]), M is the
number of inputs (here 2); Ik is the sensory output signal,
and ski is a constant that represents the sensory strength
from the kih sensor to ith node. The values for ski are:

s11 = s21 = α; s12 = s23 = β; s13 = s22 = γ, where
α, β and γ are in the range [0.01,10] (see Fig. 3). Each
connection between nodes (wj,i) is adjusted by one out of
four different homeostatic plastic rules (2). The rule used by
each connection is defined by the genetic algorithm.

R0 : ∆wji = δ ηji pi zj zi,
R1 : ∆wji = δ ηji pi (zj − zoji)zi,
R2 : ∆wji = δ ηji pi (zi − zoji)zj ,
R3 : ∆wji = 0,

(2)

where ∆wji is the change in wji, δ is a linear damping
function that constrains the weights between allowed values
([-8,8]), ηji is the rate of change (range [-0.9,0.9], and pi is
the plastic facilitation defined by the function shown in the
Fig. 4. Rule 0 is the Hebbian and anti-Hebbian rules (de-
pending on pi and nji); rules 1 and 2 potentiate or depress
the connection depending on how presynaptic or postsynap-
tic node activity relates to a threshold zoji. This threshold
linearly depends on wji (zoji = 0 if wji=-8 and zoji = 1 if
wji=8).

Figure 4: Local plasticity facilitation pi. When the node
activation minus its bias (yi − bi) is in the stable region
([−2, 2]) plasticity is not activated as pi = 0. Out of this
region pi changes either positively or negatively according
to the function.

Evolutionary setup. A total of 36 network parameters en-
coded in a genotype as a vector of real numbers in the range
[0,1] are evolved using the microbial genetic algorithm (Har-
vey, 2001) and linearly scaled, at each trial, to their corre-
sponding range. The genetic algorithm is setup as follows:
population size (100); mutation rate (0.05); recombination
(0.60); reflexive mutation; normal distribution for mutation(
µ = 0, σ2 = 0.1

)
; and trials for each agent (8). At the end

of the 8th trial the worst fitness (out of 8) is used as the fit-
ness of the agent.

The agent’s lifetime is 15000 seconds and its sensors are
inverted every 250 seconds. In total, sensors are inverted 60
times, where 30 times the agent is under normal vision and
30 under inverted vision. At each timeslot (250 secs) the
fitness of the agent is measured according to Eq. 3:

Ft =
Fb + Fs

2
(3)

where t is the timeslot (out of 60), Fb is the behavioural-
fitness (Eq. 4) and Fs is the stability-fitness (Eq. 5).
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Fb =

(
P +

(
1− df

di

))
R

T
(4)

where di and df are initial and final distances to the light
source, respectively, and df is clipped at 0 when df > di; P
is the number of times the agent approaches the light in the
current timeslot (the agent can approach the light more than
once as the light moves when the agent spends 50 seconds
near it); T is the timeslot length (250 secs) and R (250 secs)
is the required time given to the agent to approach a light
source. During evolution, as T=R the agent should approach
the light at least once in order to obtain Fb = 1. When the
agent approaches the light more than the number of times
required, Fb is clipped at 1.

Fs =
1

1 + e(
u
70−7)

(5)

where u is the number of times the nodes activate out of
the stable region (at each Euler step, it can be incremented
by 3 when the three nodes activate out of the stable region);
the constants 70 and 7 define the shape of the function.

The total fitness of the agent is given by the weighted
mean of the fitness at each timeslot.

F =
1

3K

K∑
t=1

qt; qt =

 Ft; if v = 1 ∧ ∀ t
2(1− Ft); if v = −1 ∧ t ≤ 30
2Ft; if v = −1 ∧ t > 30

(6)
where K is the number of timeslots (out of 60); Ft is de-

fined in Eq. 3; v is the vision state (1 normal, -1 inverted).
Under normal vision (v=1) the agent should get high fitness
(Ft) during its whole lifetime (∀ t). Under inverted vision
the agent should have low fitness (Ft) during the first 30 in-
versions (t ≤ 30) and high fitness during the last 30. Hence:
1) the agent should perform phototaxis maintaining homeo-
static stability under normal vision during the whole trial (30
timeslots); 2) the agent should be homeostatically unstable
and not perform phototaxis when its vision field is inverted;
and 3) over time, after a sequence of vision inversions (nor-
mal→ inverted→ normal→ inverted, and so on), the agent
should maintain stability and perform phototaxis under in-
verted vision (the last 30 timeslots).

After evolution the best agent of the population was se-
lected and run 10000 in order to generate statistical mea-
surements. The agent’s lifetime was changed to 30000 secs
and after 15000 secs of its lifetime its sensors were switched
at a different frequency (as shown in Fig. 5-D).

Attractor landscape. In order to find the attractors
of the controller while the agent is interacting with
its environment, a snapshot of the system is taken at

each Euler step of the agent’s lifetime and the limit
limt→∞ 〈y1(t), y2(t), y3(t)〉 is numerically estimated. This
snapshot consists of states of each CTRNN node (y1,y2,y3),
which are the initial conditions to find the limit; connection
weights (wji); inputs (I1 and I2), which are maintained fixed
during the numerical estimation; sensor strengths (ski), bi-
ases (bi); and time constants (τi).

The limit is found using Euler integration with time step
0.1 and 900000 steps. When the system does not converge
to a point attractor, the Euler integration runs for a further
100000 steps in order to capture at least some points of either
the limit cycle or the strange attractor the system is assumed
to be following.

Results
Evolution. The mean fitness of the population after evolu-
tion is 0.77 and the fitness of the best agent is 0.86. In Fig.
5-A and B (see caption) we present how the behavioural-
fitness and stability-fitness of the best agent change during
its lifetime.

Under normal vision the behavioural-fitness and the
stability-fitness are maintained near 1 over the whole sim-
ulation. At the beginning of the agent’s lifetime and un-
der normal vision, the number of unstable activations is near
200. Despite these unstable activations the stability-fitness
is still high due to the shape of the function defined in (5).
Under inverted vision, the behavioural-fitness starts near 0
and linearly increases during the first 10000 secs; while the
stability-fitness increases mainly between 5000 secs. and
10000 secs. These fitnesses increase at a different rate be-
cause while the activations of the nodes move towards the
stable region, the behavioural-fitness increases; on the other
hand, the stability-fitness only increases when the activa-
tions actually cross the boundaries (range [-2,2]), which
starts after 5000 secs.

Behaviour. The distances from the agent to the light
source before and after adaptation are presented in Fig. 6-
A and B, respectively. After the first inversion (Fig. 6-A,
t = 251 secs) the agent keeps turning around itself and
only slightly moves towards the light until its sensors are
switched back to the normal position (t=500 secs). After
adaptation the agent approaches the light under both condi-
tions.

Dynamics. The dynamical patterns in which the agent en-
gages are represented in 6 dimensions (S1, S2: sensors; M1-
M2: motors; y1, y2, y3: CTRNN nodes) by each pair of
graphs in Fig 7 (see figure caption). From now on the dy-
namics of the CTRNN nodes presented in Fig 7-A, B, C and
D will be referred as ρ1, ρ2, ρ3 and ρ4, respectively.

At the beginning of its lifetime, the agent engages in a
homeostatic stable dynamical pattern (ρ1) while performing
phototaxis. Just after the first inversion the agent switches
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Figure 5: A and B show how behavioural-fitness and
stability-fitness change over the agent’s lifetime. Each point
in those graphics represents the fitness for a specific times-
lot. C depicts the number of node activations out of the
stable region. D depicts the frequency of sensor switch-
ings. These plots were generated running the best agent over
10000 trials. The vertical bars represent the standard devia-
tion.

to the unstable ρ2. After a sequence of inversions and plas-
tic changes, the dynamical pattern instability under inverted
vision decreases and changes from the unstable ρ2 to the sta-
ble ρ4. While instability under inverted vision decreases, the
stability under normal vision is maintained (as shown in Fig
5-B); however, even while maintaining stability the dynam-
ics under normal vision qualitatively changes from ρ1 to ρ3
as a side effect of adaptation to inverted vision.

While plasticity is activated during adaptation to inverted
vision (from t=250 to t= 15000(s)), the dynamical patterns
under normal vision smoothly change from ρ1 to ρ3. In be-
tween these patterns there are other slightly different dynam-
ical patterns and all of them generate phototatic behaviour
(as shown by the behavioural-fitness - Fig 5-A). Besides the
dynamical patterns under normal vision, ρ4 under inverted
vision also generates phototaxis. This shows that qualita-

Figure 6: Distance from the agent to the light source before
and after adaptation (A and B , respectively).

tively the same behaviour can be generated by different dy-
namics.

The dynamical patterns in which the agent engages are
generated by an attractor that continuously moves in the
phase space. This continuous movement of the attractor
leaves the agent in a transient state while interacting with its
environment (see Fig. 8). The transient dynamic is obtained
because different sensor values define different set of param-
eters for the CTRNN equations which in turn gives different
point attractors at each iteration. In other words, the agent’s
behaviour (movement in the environment) changes its sensor
values which in turn moves the attractor in the phase space.
The direction to which the attractor pulls the system gen-
erates new motor outputs that change the agent’s position
and consequently its sensor values. The resulting dynami-
cal patterns involving the controller, body and environment
generate the coordinated movement of the agent towards the
light source.

While sensors values are changing and the rate of plas-
tic changes is low, that is, when the agent is engaged in a
stable dynamical pattern while interacting with its environ-
ment, the point attractor moves on a fixed 3D surface. At
the beginning of the agent’s lifetime this surface resembles
a rectangle with attractors lying on its corners (see Fig.9 -
gray dots). After adaptation, this surface moves to a differ-
ent position and is reshaped (see Fig.9 - black dots). This
new position and shape of the attractor landscape accom-
modates the stable dynamical patterns under normal and in-
verted vision, that is, both dynamical patterns ρ3 and ρ4 are
generated by the same attractor landscape.

A quantitative difference between surfaces of attractors
for each dynamical pattern (ρ1, ρ2, ρ3 and ρ4) is shown by
the positions of clusters of attractors4 (see Fig. 10-A1, B1,

4We used the K-means method (MacQueen, 1967) to identify
clusters of attractors and their centroids.
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Figure 7: A) Stable dynamical pattern under normal vision
before the first inversion; time: 85.7 to 137.0 secs; initial
distance di= 40.17; final distance df= 20.2. B) Unstable
dynamical pattern during the first inversion; time: 250.2 to
300.0 secs; di= 57.75; df= 57.84. C) Stable dynamical pat-
tern under normal vision after adaptation; time: 14569.9
to 14650.2 secs; di= 40.06; df=20.09. D) Stable dynam-
ical patterns under inverted vision after adaptation; time:
14749.7 to 14818.5 secs; di= 40.02; df=20.01.

C1, and D1). Comparing the centroid positions for ρ1 and
ρ3 we see how the surface changed for normal vision af-
ter adaptation to inverted vision. Comparing the centroid
positions for ρ3 and ρ4 we see that the surfaces after adap-
tation are qualitatively the same under normal and inverted
vision. The new shape and position of the attractor surface

Figure 8: Four snapshots depicting the agent’s transient
internal dynamic while engaged in ρ4. (time interval:
[14753.0, 14761.9] secs.). P(y1-b1, y2-b2, y3-b3) indicates
the attractor position.

Figure 9: Surfaces defined by the movement of point attrac-
tors when the agent is doing phototaxis under normal vision
before (gray) and after adaptation (black). Time intervals
[85.7,137.0] and [14569.9, 14650.2] secs, respectively.

after adaptation is caused by plastic changes that are acti-
vated when the system is homeostatic unstable.

Though the attractor surfaces are qualitatively the same
after adaptation, the way the attractors move on the surface
is different under normal and inverted vision. That is the
reason why ρ3 and ρ4 are different (see Fig. 10-A2, B2,
C2, and D2). While ρ3 is generated by the movement of an
attractor between the four clusters in the order 4 → 3 →
2→ 1, ρ4 is generated by 1→ 2→ 3→ 4.

Switching between dynamical regimes (e.g. switching
from ρ3 to ρ4) does not require homeostatic instability. At
the end of the agent’s lifetime, after many plastic activations,
the agent switches between the dynamical patterns without
activation out of its viable region (see Fig. 11).
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Figure 10: Phase space (A1, B1, C1 and D1) depictions: dynamics of the internal nodes (gray lines); point attractors and
attractor layout (black dots); cluster centroids (numbering from 1 to 4). Temporal sequence of the movement of attractors (A2,
B2, C2 and D2) shows how the attractors move between clusters over time. The time intervals to generate these graphs are the
same as those in Fig 7
.

Figure 11: A and B depict dynamical patterns under normal
and inverted vision, respectively. C depicts the difference
between dynamic of attractors before and after inversion. D
depicts the number of activations out of the homeostatic sta-
ble region.

Discussion

We would like to point out some of the important implica-
tions of this model. First, it has practical importance for the
design of artificial neural network systems that can learn dif-
ferent behaviours. It is commonly believed that when a net-
work system learns a new behaviour, the activation of neu-

ral plasticity will perturb the existing weight configuration
of previously acquired behaviours and therefore will have a
detrimental effect on the systems overall performance. One
traditional way to address this so-called problem of neu-
ral interference is by taking inspiration from the modular
computer architecture, namely by dividing the neural sys-
tem into non-overlapping neuronal groups. However, here
we have demonstrated that this kind of structural modu-
larity is not the only way for one system to realize differ-
ent styles of behaviour. Even a completely integrated sys-
tem can achieve behavioural differentiation because the be-
haviours can be generated by different dynamical regimes
on the phase space.

Accordingly, the current model also has important impli-
cations for our scientific understanding of the nervous sys-
tem. It is a widely held belief in neuroscience that different
cognitive functions map onto distinct regions of the brain,
a belief reinforced by the advent of various brain imag-
ing methods. This appeal to structural localizability may
be valid to some extent. However, the model presented in
this paper is a proof of concept that this is not the only way
of realizing functional differentiation. Rather than focusing
on anatomical divisions alone, it is also possible to take the
nervous system as one integrated system which can realize
a multiplicity of behaviours by transiting between different
dynamical regimes.
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Conclusion
We minimally replicated the psychological experiment de-
scribed by Taylor based on assumptions drawn from Ashby’s
and Turrigiano’s works. While Taylor’s experiment shaped
the desired behaviour, our assumptions constrained the dy-
namics of the mechanism underlying behaviour. Thus, the
methodology to obtain the model we wanted to investigate
incorporated restrictions on the task and on the agent’s in-
ternal dynamic. Once the model was obtained we studied its
dynamic in order to suggest answers to the questions Q1 and
Q2 (detailed in the introduction).

In order to answer the question Q1, we showed that the
dynamical regime in which the system engages under nor-
mal vision changes after adaptation to inverted vision (ρ1
changed to ρ3). As the system is relatively simple (only 3
CTRNN nodes) and fully-connected, even small reorgani-
zations to accommodate new stable regimes are expected to
affect pre-existing dynamics. Hence we can not generalize
and say that pre-existing stable regimes always change when
the system adapts to a new condition. More complex system,
such as the brain, probably engages in independent dynami-
cal regimes under different environmental conditions.

In order to answer the question Q2, we showed that home-
ostatic instability is not necessary for switching between
dynamical regimes. This result contributes to research on
brain dynamics as it complements the theoretical claim that
Lyapunov instability is one generic mechanism for flexible
switching among multiple attractive states; that is, for enter-
ing and exiting patterns of behaviour (Kelso, 1995). Indeed
Ashby has already demonstrated that a system can switch
between dynamical regimes without homeostatic instabil-
ity. The difference is that, while Ashby uses the homeo-
stat we use a more complex model where the homeostatic
mechanism is intertwined with the mechanism that coordi-
nates the movement of an agent that is continuously interact-
ing with its environment. Thus, our investigation confirms
Ashby’s demonstration in a more complex environment and
also complements Kelso’s hypothesis about the importance
of Lyapunov instability as a mechanism for switching dy-
namics.

We have also shown that qualitatively similar behaviours
(phototaxis) can be generated by different dynamics; the
agent’s simulated nervous system operates in transient dy-
namics towards an attractor that continuously moves in the
phase space; and plasticity moves and reshapes the attrac-
tor landscape in order to accommodate a stable dynamical
regimes to deal with inverted vision.
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