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Abstract In general, the mechanisms that maintain
the activity of neural systems after a triggering stimu-
lus has been removed are notwell understood.Different
mechanisms involving at the cellular and network lev-
els have been proposed. In this work, based on analysis
of a computational model of a spiking neural network,
it is proposed that the spike that occurs after a neuron
is inhibited (the rebound spike) can be used to sustain
the activity in a recurrent inhibitory neural circuit after
the stimulation has been removed. It is shown that, in
order to sustain the activity, the neurons participating
in the recurrent circuit should fire at low frequencies.
It is also shown that the occurrence of a rebound spike
depends on a combination of factors including synaptic
weights, synaptic conductances and the neuron state.
We point out that the model developed here is mini-
malist and does not aim at empirical accuracy. Its pur-
pose is to raise and discuss theoretical issues that could
contribute to the understanding of neural mechanisms
underlying self-sustained neural activity.
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1 Introduction

One of the problems in the field of neural dynam-
ics is to understand the mechanisms that enable self-
sustained neural activity after a triggering stimulus has
been removed. At the cellular level, voltage-dependent
conductance activated by specific neuromodulators is
an example of a mechanism that generates different
rhythmic bursting patterns of action potentials in the
absence of synaptic input [12,20]. By changing local
biophysical properties, a neuron can have two or more
bursting patterns (stable states) and switch between
them when it receives transient excitatory or inhibitory
pulses [38]. A variety of empirical works and com-
putational models that reproduce the phenomenon of
multistability at the cellular level have been investi-
gated (e.g., [22,34,36,54,71,72]). At the network level,
recurrent excitatory closed circuits found at differ-
ent spatial scales—from local cortical circuits to large
neural networks encompassing the thalamus and cor-
tex areas, for instance [69]—is an example of another
mechanism capable of generating self-sustained
activity.

One of the first descriptions of a recurrent excitatory
closed circuit was made by Hebb[23]. The central idea
of Hebb’s proposal is that repeated stimulation of spe-
cific synaptic receptors leads slowly to the formation
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of cell assemblies which are closed circuits that main-
tain their activity after the end of the stimulation. A
variety of works have investigated self-sustained activ-
ity at the network level [8,9,33,52,56,66]. Tomov et.
al. [66] investigated self-sustained neural dynamics—
characterized by cycles of intensive global activity fol-
lowed by moments low activity—by analyzing an hier-
archical modular architecture consisting of five classes
of inhibitory and excitatory neurons. They found that
the duration of self-sustained activity increaseswith the
number of network modules and strongly depends on
the initial conditions—suggesting a transient chaotic
regime. In a subsequent work [65], the same authors
found that inhibitory synapses play an important role
in the preparation, start and breakdown of a new epoch
of intensive global activity.

Synaptic dynamics has also been proposed to play a
role in self-sustained neural activity [14,15,41,60]. As
pointed out by Mongillo and colleagues [43], the per-
sistent neural process might not reside entirely in the
spiking activity due to the highmetabolic cost of action
potentials. They propose that short-term synaptic plas-
ticity (STSP)—mediated by increased presynaptic cal-
cium levels—is responsible for maintaining the neural
activitywithout enhanced spiking activity. The removal
of calcium from presynaptic terminals is a relatively
slow process that works as a memory buffer that, when
it is loaded, changes the dynamics of the neural system
for a short period. The central idea of this activity-silent
mechanism is that STSP (mediated by calcium buffers,
for instance) changes the connections of the network
generating temporal neural circuits [58].

Computational and empirical evidence of self-
sustained neural activity mediated by STSP has been
reported in several studies [6,15,16,67]. Fiebig and
Lansner [15] developed a computational model of a
spiking neural network capable of performing a word-
list learning task. They showed that the network capa-
bilities of encoding and reactivation could be repro-
duced by using STSP, namely a fast-expression form
ofHebbian synaptic plasticity. Fujisawa and colleagues
[16] examined neural activity recordings from the
medial prefrontal cortex of the rat moving through
a maze. They found that synaptic connections were
dynamicallymodulated by the task allowing the forma-
tion of short-term functional neural networks. Various
studies have looked at how sustained activity results
from specific synaptic plasticity rules, including spike

timing-dependent plasticity (STDP) [13], input timing-
dependent plasticity (ITDP) [35,55], and beyond [59].

In this work, another mechanism that could be
exploited by neural systems to sustain its activity after
the stimulus offset is introduced. The proposed mecha-
nism exploits the spike generated at the end of a period
of synaptic inhibition (the rebound spike) to maintain
the spiking activity in a closed inhibitory circuit. A
computationalmodel is presented that demonstrates the
efficacy and properties of the mechanism.

Details of the methodology to develop the computa-
tional model are provided in the following section. The
mathematical analysis and the discussion are presented
in Sects. 3 and 4, respectively.

2 Methods

Some preliminary considerations about the methodol-
ogy are presented in Sect. 2.1. The task performed by
the network is described in Sect. 2.2. Details of the
neural network implementation and the methods are
presented in Sects. 2.3 and 2.4, respectively.

2.1 Preliminary considerations

The mechanism proposed in this paper is based on
the analysis of a computational model of a minimal-
ist spiking neural network. While the task and the
types of neurons are predefined, the parameters of the
network (synaptic connections and conductance time
constants) are adjusted by a genetic algorithm. After
adjusting the parameters, the system is analyzed in
order to understand how the neural mechanism devel-
oped by the genetic algorithm operates. By following
these steps, no prior assumption about the operation
of the mechanism is built into the model. The mech-
anism is evolved by the genetic algorithm and then
described during mathematical analysis. This type of
methodology—without prior assumption built into the
model synthesized by the genetic algorithm—allows
hypotheses to be raised about neural functioning and
has been used by other works in computational neuro-
science [26,42,53,68].

It is important to mention that the goal here is not to
develop a model with empirical accuracy but to build
a minimal model from which theoretical issues about
self-sustained neural activity can be raised and dis-
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cussed. Minimal models have been used to propose
testable hypotheses about the operation of neural sys-
tems. Izquierdo and Lockery [30], for instance, pro-
posed a novel neural mechanism for spatial orienta-
tion in Caenorhabditis elegans based on the analysis
of a minimal model consisting of two sensory and two
motor neurons. This and other models [5,42,53] repro-
duce at a merely conceptual level of abstraction a type
of dynamics that can be exploited by neural systems
to carry out a functional task. They contribute to the
understanding of the real neural systems by raising
hypothesis and discussing dynamical principles that
can be empirically investigated. In the current work,
a theoretical, minimal model is also developed aiming
at raising a hypothesis that could guide the study of the
neural dynamics that outlasts the stimulus.

2.2 Task

The task was designed to be sufficiently rich to require
a non-trivial neural mechanism and to be analytically
tractable and easily understood. It is inspired by an
experiment that consists of presenting a sequence of
stimuli to a subject who tries to reproduce it, in the
same order, after the presentation of the last stimulus
[11,25]. A schematic representation of a trial of the task
is presented in Fig. 1. A sequence, among those shown
in Table 1, is selected (e.g., S1). At t = 25 ms, the
network is stimulated with the first input (e.g., red) and
then, at t = 50 ms and t = 75 ms with the second and
the third inputs (e.g., green and blue), respectively. The
time interval in which the stimuli is given to the net-
work is referred to as cue period. After a delay period,
where no stimulus is applied, the output of the network
is analyzed. An output is considered correct if it repro-
duces the same order of the input sequence (e.g., red,
green and blue). The timing between the stimuli does
not have to be reproduced, only the order matters.

The task implemented is a simplified version of a
memory span test which has beenwidely used in exper-

Fig. 1 Trial of the task. Three inputs are presented to the network
at t = 25ms, t = 50ms and t = 75ms, respectively. After a time
window T (delay period), the output of the network is analyzed
for 100 ms (response period)

Table 1 Six different sequences of stimuli that are applied to
the network

Sequence 1st 2nd 3rd

S1 Red Green Blue

S2 Red Blue Green

S3 Green Red Blue

S4 Green Blue Red

S5 Blue Red Green

S6 Blue Green Red

Each sequence consists of three different inputs, which can be
interpreted as the colors of an object

iments aiming at exploring neural activity [10,46,47].
Note that the model studied here is not intended as
a general model of working memory but as a work-
ing example of self-sustaining neural activity in a non-
trivial context.

2.3 Network model

A schematic representation of the network is shown
in Fig. 2. Neurons 1, 2 and 3 are the input neurons;
they do not receive connections from other neurons.
Neurons 4, 5 and 6 form a fully connected network and
are considered the output of the network. Each output
neuron receives connections from all input neurons. In
order to stimulate the network, a current is applied to an
input neuron so that it fires a spike. The stimulation of
each input neuron represents a specific color. Red, blue
and green colors are represented by an input current
applied to neurons 1, 2 and 3, respectively.

The output neurons 4, 5 and 6 have to reproduce the
input sequence presented to neurons 1, 2 and 3, respec-
tively. For example, if the input sequence S5 (blue, red
and green) is applied to the network by stimulating the
neurons 3, 1 and 2; then the output neurons 6, 4 and 5
should fire in this order.

Each neuron is implemented by using the Izhikevich
spiking neuron model [27,28]. This model has been

Fig. 2 The network has 6
neurons. Three of them
receive external stimuli
(neurons 1, 2 and 3) and are
connected to the other three
neurons (4, 5 and 6) which
form a fully connected
network (Color figure
online)
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used to study neural dynamics in different contexts
[3,4,29,32,57,60,64] and was obtained from simplifi-
cations of theHodgkin–Huxleymodel [24].Although it
does not reproduce neuronal biological structures, it is
capable of simulating several spiking dynamics of real
neurons with an efficient computational cost [27,50].
Izhikevich [28] analyzed a variety of neuron models
to identify the number of characteristics of real neu-
rons each model reproduced. He also calculated how
many floating-point operations (FLOPS)were required
to simulate them. It was shown that the Izhikevich
model presents the best balance between computational
cost and biological plausibility, which hasmotivated its
use in our work. Despite that, other models capable of
generating rebounds could also be used as the mech-
anism of self-sustained activity introduced here does
not require any specific property from the Izhikevich
model.

The equations describing the Izhikevich neuron are
shown in (1) and (2) with an auxiliary after-spike reset-
ting represented by (3).

dv

dt
= 0.04v2 + 5v + 140 − u + I, (1)

du

dt
= a(bv − u), (2)

if v ≥ 30mV, then

{
v ← c
u ← u + d,

(3)

where v is themembrane potential of a neuron; u repre-
sents the activation of K+ channels and the inactivation
of Na+ channels, which are responsible for the recov-
ery of the neuron membrane potential. The parame-
ter u provides a negative feedback for v and, after a
spike, when v is high (v ≥ 30), u is incremented by a
constant d, as shown in Eq. 3. The parameter I is the
input current received from external stimuli or from
other neurons (more details are presented throughout
this section), a is the decay rate of u, b is the sensitiv-
ity of u to subthreshold fluctuations of the membrane
potential, c is the reset value of the membrane potential
after a spike, and d is the reset value of the variable u
after a spike. All neurons used the same fixed set of
parameter values (a = 0.02, b = 0.25, c = −65 and
d = 6). These values were obtained from Izhikevich’s
prior work and correspond to the Phasic Spiking neu-
ron [28]. By using these parameters, the stable state of
the neuron is near the firing threshold, which makes it
very sensitive to any stimulation.

The strength of the stimulation (parameter I) applied
to the input neurons (1, 2 and 3), at t = 25, 50 and 75
ms is equal to 20. The only role of this stimulation is
to trigger spikes in the input neurons. With this stimu-
lation, the input neurons fire a spike with a latency of
3 ms, as described in the Results. The input I applied
to neurons 4, 5 and 6 is described in Eq. 4.

Ii =
n∑
j

Wi j g(t) j , (4)

where Ii is the input current for each neuron i and
Wi j is the synaptic weight from neuron j to neuron i .
The function g(t) j is a postsynaptic conductancemodel
representing the synaptic dynamics. It is calculated by
the normalized alpha function [51] described in Eq. 5.

g(t) j = t

τ j
e
1− t

τ j , (5)

where t is the elapsed time after the spike of the presy-
naptic neuron and τ j is the conductance coefficient of
neuron j . The behavior of the g(t) for different values
of τ is illustrated in Fig. 3.

The value of g(t) varies within [0, 1] and is equal to
1 when t = τ and equal to 0 when t goes to infinity.

2.4 Parameter optimization

In a successful trial of the experiment, the network
should reproduce in its output the same sequence
applied to its input neurons. In order to obtain a net-
work capable of performing this task, the microbial
genetic algorithm [21] was used to optimize the synap-
tic weights (Wi, j ) and the time constant τi . An initial
population of 30 networks was initialized with ran-
dom values for these parameters. The time constants
were initialized within [0.5, 10] and the weights within
[−15, 15], allowing inhibitory connections between
neurons. In each tournament of the genetic algorithm,
the parameters of the losing network (lower fitness)
were recombined with the winning network (higher fit-
ness) at a rate of 0.6 and mutated at a rate of 0.05.

The fitness of each network was calculated as fol-
lows. An individual of the population is selected and
the first sequence S1 is applied to the input neurons
at t = 25 ms, t = 50 ms and t = 75 ms, as repre-
sented in Fig. 1. After a time window T of 25 ms, the
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Fig. 3 Conductance for
different values of τ
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output of the network is analyzed during one hundred
milliseconds. If the output neurons reproduce the input
sequence, the fitness is incremented by 1. The same
steps are repeated for sequences S2, S3, S4, S5 and S6.
The maximum fitness of a network should be 6 when
it reproduces all input sequences.

Five networks were evolved, each one capable of
reproducing the input sequences for a specific delay
period (T = 25, 500, 1000, 1500, 2000 ms). The anal-
yses of the networks evolved for T = 25 ms and
T = 500 ms will be presented. The operation of the
other networks (T = 1000, 1500, 2000 ms) is simi-
lar to the one evolved for T = 500 ms. The networks
evolved forT = 25msandT = 500mswill be referred
to as NetA and NetB , respectively.

The synaptic conductances τ for NetA and NetB
are shown in Table 2. The connection weights Wi, j

for NetA are shown in Table 3 and for NetB in Table
4. All these parameters were evolved by the genetic
algorithm.

3 Results

An introduction to the role played by the postsynaptic
rebound spike in the maintenance of working memory
is presented in Sect. 3.1. A more detailed study of this
memory mechanism is described in Sect. 3.2.

3.1 Neural network dynamics

The operation of NetA can be briefly described as fol-
lows. During the cue period, when the input sequence
is presented, the input neurons fire action potentials.
These action potentials hyperpolarize the output neu-
rons due to inhibitory connections from the input neu-
rons to the output ones. During the delay period, the

membrane potentials of the output neurons recover
from the inhibition. At the end of the recovery dynam-
ics, in the response period, the output neurons fire
rebound spikes in response to the inhibitory synapses.
The rebound spikes reproduce the input sequence pre-
sented to the network.

Figure 4 shows the spiking dynamics of NetA. The
network correctly reproduced the order of the input
sequences in all cases. The inputs neurons are stimu-
lated at 25, 50 and 75 ms and fire action potentials 3
ms later, at 28, 53 and 78 ms, respectively. Notice that,
during the cue and delay periods, the information about
the input sequence is maintained by the network with-
out firing spikes in the output neurons. The first spike
in an output neuron happens at 108 ms for S6 and at
t = 117 ms for S3. For all sequences (S1, S2, S3, S4, S5
and S6), when the first output neuron spikes, the cur-
rent generated by the spikes in the input neurons has
already ceased.

As described in Eq. 4, the input current of a postsy-
naptic neuron depends on the time constant τ (Table 2)
and on the connection weightsWi, j (Table 3). Observe
that the connection weights from the input neurons to
the output ones are all negative—see the first three
columns of Table 3. Figure 5 shows an example of how
the input currents of neurons 4, 5 and 6 change over
time considering the input sequence S6. The input cur-
rent is ≈ −1× 10−3 at t = 91 ms and ≈ −1× 10−6 at
t = 100 ms. At the moment of the first spike of neuron
6 (at t = 108 ms), all input currents are null.

Without input current, the dynamics of the neurons
tend to converge to their resting state. However, when
the current generated by the inhibitory input neurons
(1, 2 and 3) goes to zero, the output neurons are left
in a state from which they will fire spikes (the rebound
spikes). The state of each neuron when their inputs are
near zero is shown in Fig. 6. In Graphic B, neurons 4
(red) and 6 (blue) have already crossed the threshold
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Table 2 Time constants
(ms) for the synaptic
conductance for NetA and
NetB

Network τ1 τ2 τ3 τ4 τ5 τ6

NetA 1.01 2.30 2.30 5.24 9.41 9.44

NetB 5.90 8.83 7.93 8.23 6.56 7.24

Table 3 Connection weights between neurons for NetA

i Wi,1 Wi,2 Wi,3 Wi,4 Wi,5 Wi,6

4 −5.16 −11.39 −10.84 0.00 −10.12 −10.26

5 −6.83 −2.10 −14.14 5.81 0.00 −10.26

6 −14.08 −13.22 −4.00 −2.54 −12.77 0.00

Each line contains the presynaptic weights for a neuron i . The synaptic weight from neuron 1 to 4, for instance, is W4,1 = −5.16 and
from neuron 2 to 4 is W4,2 = −11.39

Table 4 Connection weights for the network NetB

i Wi,1 Wi,2 Wi,3 Wi,4 Wi,5 Wi,6

4 −15.00 −10.56 −4.19 0.00 −15.00 −13.87

5 12.27 0.71 −7.56 −15.00 0.00 4.49

6 −3.72 3.75 5.38 −12.82 −11.84 0.00

Each line contains the presynaptic weights of a neuron i . The weight from neuron 4 to 6, for instance, is W6,4 = −12.82

Fig. 4 Neural network
spikes for each input
sequence (see graphic title).
Time (ms) is shown in the
x-axis and the neuron
number (from 1 to 6) in the
y-axis. Vertical dashed lines
highlight the response
period (t = [100, 200] ms)
where the output neurons (4,
5 and 6) should reproduce
the input sequence

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Input currents
(y-axis) for neurons 4, 5 and
6 (see legend) during the
presentation of the input
sequence S6 in a time
window of 120 ms (see
x-axis)
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Fig. 6 Trajectories of the output neurons during the time win-
dow [91,107] ms for all input sequences (see graphic title). The
membrane potential v is shown on the x-axis and the variable
u on the y-axis. The dynamics of neurons 4, 5 and 6 are shown
by the red, green and blue trajectories, respectively. The state of
each neuron at t =107 ms is represented by the colored filled

circle (see legend). Only Graphic F has a different scale for the
x-axis. The nullclines for v and u and the firing threshold are
identified in Graphic A. The system resting state is given by the
point where the nullclines cross each other. The arrows at the top
of Graphic A show the direction of the vector field in each region
of state space defined by the nullclines (Color figure online)

and will fire. When neuron 4 fires, it excites neuron 5
(green) making it cross the threshold. In Graphic D, all
output neurons have already crossed thefiring threshold
and will fire in the order 5, 6 and 4 (corresponding
to green, blue and red colors). In Graphic F, neuron 6
(blue) fires first. Although neuron 4 has already crossed
the threshold, it is inhibited by neuron 6 (blue) and fires
only after neuron 5 (green).

Summarizing, in NetA the input neurons inhibit the
output neurons during the cue period. At the end of
the inhibition, the output neurons fire rebound spikes
according to the input sequence presented. The order
of the rebound spikes depends on the trajectories of the
output neurons in the state space given by v and u. Note
that, during the delay period, the information about the
input sequence is stored by the output neurondynamics,
i.e., the information ismaintained bymechanisms at the
cellular level represented in the model by the variables
v and u.

Network NetB differs from NetA as it requires a
network mechanism to maintain the information for
a longer period (T=500 ms). The firing dynamics of
NetB is shown in Fig. 7. The network correctly repro-

duced the order of the input sequences for all cases. For
S1 (Fig. 7A), for example, neurons 4 (red), 5(green) and
6(blue) fire at 587ms, 663ms and 664ms, respectively.
While in NetA the output neurons fire only during the
response period, in NetB they fire after the application
of the first input signal (e.g., neuron 5 fires at t = 32
ms for S1 and S2).

During the delay period, the action potentials of
the output neurons are responsible for maintaining the
information about the input sequence and do not nec-
essarily reproduce the correct sequence. In Fig. 7D,
for instance, the output neurons fire in the order 4
(red) 6 (blue) 5 (green) before generating the correct
sequence 5 (green), 6 (blue) and 4 (red) from t = 575
ms onwards. (Hence, the output sequence is correct
during the response period.) In order to understand
how the network activity ismaintained during the delay
period, the input currents of neurons 4, 5 and 6 were
analyzed.

The total input currents for neurons 4, 5 and 6 during
the time window [100, 400] ms for S6 are shown in Fig.
8. Neuron 5 is inhibited during the interval [130, 180]
ms (see the negative value of the input current - green
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Fig. 7 Neural network
spikes for each input
sequence (see graphic title).
The time (ms) is shown in
the x-axis and the neuron
identification (from 1 to 6)
in the y-axis. Vertical
dashed lines highlight the
response period
(t = [575, 675] ms) where
the output neurons (4, 5 and
6) should reproduce the
input sequence (Color figure
online)
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Fig. 8 Membrane potential
(Graphic A) and input
currents (Graphic B) for
neurons 4, 5 and 6 (see
legend) at the time window
[100, 400] ms (see x-axis)
considering trial S6
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line). In the interval t = [180, 205] ms, the input cur-
rents tend to zero (at t = 204 ms, I4 = −0.00001,
I5 = −0.078 and I6 = −0.060) and the neurons
approach their resting state (not shown in the graphics).
However, at t = 205ms, neuron 5 fires a rebound spike
which maintains the activity of the network. Note that,
neuron 6 (blue line) is also inhibited during the interval
[130, 180] ms but does not fire a rebound spike as it
is inhibited again by the spike of neuron 5 at t = 205
ms. The inhibition received by neuron 6 at t = 205
ms generates a rebound spike at t = 260 ms. Note as
well that the rebound spikes are responsible for sus-
taining the network activity, which otherwise would
disappear.

A common mechanism in both networks (NetA and
NetB) is that at the end of a period of synaptic inhibi-
tion (when the input current goes to zero), the post-
synaptic neuron fires an action potential. While in
NetA the action potentials of the output neurons repro-
duce the corresponding input sequences, in NetB they
maintain the network activity up to the moment where
the input sequence has to be reproduced. This result
suggests that in a recurrent spiking neural network,
synaptic inhibition followed by a postsynaptic action
potential can be used to sustain neural activity after
the stimulation has been removed. A more detailed
study of this mechanism is presented in the next
section.
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3.2 Inhibitory synapse and postsynaptic action
potential

We now analyze the dynamics and the parameters of
the system in order to understand the conditions under
which a rebound spike occurs.

3.2.1 Dynamical description

First of all, let us highlight the inhibitory synapses
received by the output neurons in both networks (shown
in Tables 3 and 4). In NetA, all synapses are negative
except the one fromneuron 4 to 5 (W5,4). The inhibitory
current received by the output neurons during a trial of
the experiment is illustrated in Fig. 5. In NetB , all con-
nections among the output neurons are negative except
the one from neuron 6 to 5 (W5,6). The input current
dynamics is illustrated in Fig. 8B. Despite having one
excitatory synapse among the output neurons in each
network, our focus is to understand how the inhibitory
synapses participate in the maintenance of the neural
activity.

Two trajectories of a neuron in the state space, start-
ing from the same initial conditions and different presy-
naptic weights (W = −15 and W = −9), were ana-
lyzed to understand the neural dynamics at the end of a
period of synaptic inhibition. For both trajectories the
neuron was initialized at v = −67.74 and u = −15.24
with presynaptic conductance τ = 7.5. The values of
W, v, u and τ were chosen in order to illustrate two
types of trajectories, one that converges to the stable
point and another that generates a rebound spike. A
detailed study of the parameter space is shown in Sect.
3.2.2. Snapshots of the trajectories were taken at 4 dif-
ferent moments: t = 40 ms, t = 50 ms, t = 60 ms and
t = 150 ms. The snapshots of the trajectory for W=-
15 are shown in Fig. 9A1–A4 and for W=-9 in Fig.
9B1–B4.

As the value of I decreases, the v-nullcline moves
upwards (see how the vertex of the parabola changes
in Graphics A1, A2, A3 and A4). At t = 40 ms and
for W = −15 (Graphics A1), the system is close to
crossing the v-nullcline. Notice that above v-nullcline
(see regions R1 and R3) the neuron membrane poten-
tial decreases and, if the input current does not change,
it will eventually converge to its resting state (the point
where the nullclines cross eachother). Tenmilliseconds
later (at t = 50 ms, see Graphics A2), the input cur-
rent is smaller (which moves the v-nullcline upwards),

and the neuron state is very close to crossing the firing
threshold (red curve). At t = 60 ms (Graphics A3),
the neuron membrane potential has already crossed the
threshold. At this point, the neuron will fire unless it
is inhibited again. At t = 150 ms, the input current is
near zero 1×10−6 and the neuron will fire the rebound
spike (v = 30 mV, not shown in the graphic).

For W = −9 (Graphics B1–B4), as the input
decreases the neuron state converges to the resting
state.When the neuron state crosses the v-nullcline (see
GraphicB4), itmoves in the direction of the stable point
and does not fire a rebound. Notice that the rebound
spike in the postsynaptic neuron happened when the
inhibition was stronger (W = −15). This result indi-
cates that whether or not a neuron fires at the end of a
period of synaptic inhibition depends on the strength
of inhibitory connection between the pre- and postsy-
naptic neurons. The parameter space for W, v, u and τ

is studied in the next section.

3.2.2 Influence of the system parameters on the
rebound spikes

Whether or not there will be a rebound spike depends
on the connection strength (W), on the conductance (τ )
and on the state of the postsynaptic neuron (v and u) at
the moment the inhibition occurs.
Influence of W and τ on the rebound spike. In order
to understand whether or not a combination of W , τ

causes a rebound spike, the dynamics of a postsynaptic
neuron has been simulated considering: i) presynaptic
weights withinW = [−30,−0.5]; ii) presynaptic con-
ductances within τ = [1, 20]; and five different initial
states. The results are shown in Fig. 10.

The closer the neuron is to its resting state (P5), the
bigger the set of values of τ and W that will produce
rebound spikes. If the inhibition starts from P4 (Fig.
10E), for instance, a spike will happen for most values
of τ ≥ 3 and W ≤ −8.5. On the other hand, if the
inhibition starts fromP1 (Fig. 10B), a spikewill happen
for a smaller set of valueswithin τ ≥ 11 andW ≤ −22.

The value of τ has a strong influence on the time
it takes for the neuron to fire a spike. Notice how the
color changes along the x-axis (see the color bar) in Fig.
10B–E. This result was expected because the neuron
may fire a rebound only when its input is near zero
and, the higher the value of τ , the longer it takes for the
input current to go to zero. The synaptic weights also
influence the time it takes for the neuron to fire a spike.
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Fig. 9 Dynamics of a neuron under different inhibitory
synapses. Graphics A1 (see title) shows the trajectory in the state
space (v in the x-axis and u in the y-axis) of a neuron that receives
an inhibitory synapse W = −15. The initial state of the neuron
is v = −67.74 and u = −15.24. The trajectory (green line) in
Graphics A1 depicts the dynamics from t = 0 ms to t = 40
ms. The state of the neuron at t = 40 ms is shown as a green
filled circle. The blue parabola represents v-nullcline, and the
blue line represents u-nullcline. The red curve shows the firing
threshold. After crossing it, a neuron fires a spike unless it is
inhibited. The nullclines and the threshold were plotted consid-
ering I = −1.05, which is the value of the input at t = 40 ms

(see graphic title). The arrows represent the direction of the vector
field at each region defined by the nullclines. For easier explana-
tion, the regions were identified as R1, R2, R3 and R4. Graphics
A2, A3 and A4 show how the trajectory unfolds in the intervals
[0,50] ms, [0,60] ms and [0,150] ms, respectively. The values of
I at the end of these intervals are shown in the graphic titles. The
nullclines and the threshold in each graphic are different due to
different values of I (more details in the text body). The only
difference from Graphics B1–B4 is that they show the trajectory
for an inhibitory synapse W = −9 (rather than W = −15). The
neuron fires a rebound spike for an inhibition of W = −15 and
goes to the stable point for W = −9 (Color figure online)

Taking P3 as the initial state (Fig. 10D) and τ = 15,
the neuron will fire at t = 109 ms for W = −30 and
at t = 129 ms for W = −13.5. Independently of the
initial state, there will not be a rebound spike if W >

−5 and τ ≤ −1 (values taken from Fig. 10F). On the
other hand, the neuron will always fire if W ≤ −24.5
and τ ≥ 13.5 (values taken from Fig. 10A).

Influence of v and u on the rebound spike. In order to
understand whether or not a combination of v and u
causes a rebound spike, the dynamics of a postsynap-
tic neuron has been simulated considering all possible
combinations of v within [−80,−79.5,−79,−78.5,
...,−60] and u within [−17,−16.9,−16.8, ...,−12].
For each combination, fixed values of W and τ were
used (see Fig. 11). Notice that the value of u (on the y-
axis) divides the state space into two regions.A rebound
spike occurs only in the region below u. In Fig. 11A,
for example, rebound spikes occur for values u smaller

than −16.20. The value of u below which a rebound
spike occurs will be referred to as threshold uth .

While the value of u defines a threshold, the value of
v (on the x-axis) has a small influence on the occurrence
of rebound spikes. For v = −60, in Fig. 11A, rebound
spikes will occur for all values of u ≤ −16.20 and for
v = −80 rebound spikes will occur for u ≤ −16.06.
Relationship of W, τ and uth . As the inhibitory synapse
W becomes more negative, the threshold uth increases.
For example, the thresholds for W = −5,−10 and
−20 are uth =-16.08,−14.82 and −12.7, respectively
(these values are considering v = −70, see Fig. 11A–
C). On the other hand, as the value of the synapse con-
ductance τ increases, the threshold does not necessar-
ily increase. For example, the thresholds for τ = 5, 10
and 15 are uth = −15.62,−14.76 and−17.56, respec-
tively (these values are considering v = −70, see Fig.
11D–F). The relation between the threshold uth and the
variables W and τ is shown in Fig. 12.
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Fig. 10 Effects of the parametersW and τ on the rebound spike
of an inhibited neuron. The five different initial states analyzed
are represented by the black filled circles in Graphics A. Point P5
corresponds to the stable state of the neuron. The vertical dashed
line, in Graphic A, depicts the after-spike resetting value for v.
The blue parabola represents the v-nullcline, and the blue line
represents the u-nullcline. Graphics B, C, D, E and F show the

conductance τ on the x-axis, the connection weight W on the
y-axis and the initial neuron state in the graphic title. A colored
point in these graphics represents the time (in milliseconds) it
takes for a neuron to fire a rebound spike, considering t = 0 ms
at the beginning of the inhibition (see color bar). The white area
in these graphics represents combinations of τ andW that do not
generate rebound spikes (Color figure online)

Fig. 11 Effects of the parameters v and u on the rebound spike
of an inhibited neuron. The values of W and τ are fixed and
shown in the title of each graphic. Vertical dashed lines depict
the after-spike resetting value for v. Black parabolas represent v-
nullclines, and the black lines represent u-nullclines. The colored

region in these graphics represents the time (in milliseconds) it
takes for a neuron to fire a rebound spike considering t = 0
ms at the beginning of the inhibition (see color bar). The white
region in these graphics represents combinations of v, u that do
not generate rebound spikes (Color figure online)
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Fig. 12 Relation between the variables W , τ and the thresh-
old uth for a constant v = 70. Graphic A shows the synaptic
weight W on the x-axis and the threshold uth on the y-axis. The
threshold was calculated for four different values of τ (see leg-
end). The rebound spike occurs for values of W and u below the
threshold (i.e., below each line). Graphic B shows the synaptic

conductance τ on the x-axis and the threshold uth on the y-axis.
The threshold was calculated for four different values of W (see
legend). Graphic C shows a threshold surface consisting of W
(x-axis), τ (y-axis) and the threshold uth (z-axis). Points below
the surface generate a rebound spike (Color figure online)

For an inhibitory synapse W = −10 and conduc-
tance τ = 1, the postsynaptic neuron fires a rebound
spike for values of u below −16.38 (see blue line in
Fig. 12A). For a conductance τ = 10 and a inhibitory
synapse W = −15, the postsynaptic neuron fires a
rebound spike for values of u below −13.73 (see blue
curve in Fig. 12B). The stronger the inhibition (the
more negative), the higher the thresholds and, conse-
quently,more likely is the neuron to fire a rebound spike
(see Fig. 12A). Higher values of τ (see x-axis Fig. 12B)
increase the threshold up to a certain point and decrease
it afterward.

The peak of the surface threshold shown in Graphic
C is at W = −15 and τ = 15 and the threshold at
this point is uth = −12.95, which means that when
u is above −12.95, the neuron will not fire a rebound
spike for any combination of W and τ . On the other
hand, the minimum of the surface threshold is at W =
−5.5 and τ = 19.5 with a threshold of uth = −19.51,
which means that when u is below −19.51, the neuron
always fires a rebound spike for any combination ofW
and τ . For values of u within [−19.51,−12, 95], the
presence of a rebound spike depends on the values ofW

and τ . The surface shown in Fig. 12C summarizes the
conditions under which a combination of parameters
generates a rebound spike.

When apresynaptic neuron is firing inhibitory spikes
at certain frequency, some spikes may occur when the
parameter u of the postsynaptic neuron is below uth
(causing a rebound spike) and others when u is above
uth (not causing a rebound). In this case, the frequencies
of these neurons will not necessarily be the same as not
all inhibitory spikeswill have a corresponding rebound.
In the next section, we analyze how the frequency of
the inhibitory neuron relates to the frequency of the
neuron that generates rebounds.

3.2.3 The relationship between inhibitory and
rebound spikes

There are two situations where the inhibitory spike will
not have a corresponding rebound. In the first situation,
suppose that a presynaptic neuron fires and causes a
rebound in the postsynaptic neuron. At the moment the
postsynaptic neuron fires, the value of u is increased
by a constant d (as described in Eq. 3). This increase
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Fig. 13 Recovery period of u. The blue line shows how the
parameter u (y-axis) of a postsynaptic neuron changes over time
(x-axis). Red circles and yellow asterisks represent a spike in the
pre and postsynaptic neurons, respectively (see legend). Hori-
zontal black lines at u = −15.70 and u = −15.62 highlight the

thresholds uth for v = −80 and v = −60, respectively. Two ver-
tical red bars highlight the recovery period [147, 217] ms where
the value of u is above the thresholds. This simulationwas carried
out using W = −10 and τ = 5 (Color figure online)

pushes the value of u above the threshold. If the presy-
naptic neuron fires again when u is above the threshold,
the inhibition will not cause a rebound spike. The value
of u remains above the uth for a short period. During
this period, referred to here as the recovery period of
u, inhibitory synapses will not cause rebound spikes,
as illustrated in Fig. 13.

At t = 94 ms, the presynaptic neuron spikes and
inhibits the postsynaptic neuron. At t = 147 ms, the
postsynaptic neuron fires a rebound spike. During the
next 70 ms ([147, 217] ms), the variable u is above
the threshold. During this time window, a spike in the
presynaptic neuron will not cause a rebound, which
is illustrated by the spike in the presynaptic neuron at
t = 166 ms followed by the stabilization of u from t =
300 ms until t = 582 ms when the presynaptic neuron
spikes again. Notice that, if the inhibitory presynaptic
neuron is firing at a high frequency, some spikes may
occur during the recovery period of u and will not have
a corresponding rebound.

The second situation is when the presynaptic neuron
firesmore than once before the postsynaptic neuron has
time to fire the rebound. The rebound occurs only at the
end of the inhibition processes when the input current I
goes to 0, as shown in Figs. 5, 8 and 9. If the presynaptic
neuron is firing at high frequencies, some inhibitory
spikes may occur before the postsynaptic neuron has
time to fire the rebound.

A study on how the frequency of a presynaptic neu-
ron relates to the number of rebound spikes in the post-
synaptic neuron is shown in Fig. 14. There will be
a one-to-one relationship when the frequency of the
presynaptic neuron is less than or equal to 6 Hz, i.e., if
the presynaptic neuron fires at frequencies less than or
equal to 6 Hz, the postsynaptic neuronwill fire rebound
spikes at the same frequency. Above 6 Hz, inhibitory
spikes start happen during the recovery period of u in
the postsynaptic neuron. For 9 Hz, for instance, 50% of
the inhibitory spikes take place above the threshold and,
consequently, the postsynaptic neuronwill fire rebound
spikes at 4.5 Hz. For a frequency of 13 Hz, the percent-
age of spikes in the presynaptic neuron that takes place
above uth increases to 53% and the rebound spikes
decreases to 47%.

For a frequency of 16 Hz, 33.3% of the inhibitory
spikes generate rebounds and the other 66.7% do not
generate rebounds. Out of the 66.7%, 60.1% do not
generate rebounds as they are above uth and 6.6% are
presynaptic spikes that do not wait for the rebound of a
previous inhibitory synapse.When thepresynaptic neu-
ron fires at frequencies greater than or equal to 23 Hz,
the percentage of rebound spikes is zero. The reason is
that the postsynaptic neuron is constantly inhibited and
does not have time to fired rebound spikes.

In summary, in order to have a one-to-one relation-
ship between the number of inhibitory and rebound

123



B. A. Santos et al.

0 3 6 9 12 15 18 21 24 27 30

Frequency at the presynaptic neuron

  0

 20

 40

 60

 80

100

pe
rc

en
ta

ge

Rebound spikes
Above u th

Below uth
 without rebound

Fig. 14 Relation between inhibitory and rebound spikes. The
x-axis shows the frequency of a presynaptic inhibitory neuron.
The line with circles (blue line) shows the percentage of rebound
spikes generated by the inhibitory spikes of the presynaptic neu-
ron firing at different frequencies (x-axis). Line with crosses (red
line) shows the percentage of spikes in the presynaptic neuron
that happen above the threshold uth . For example, when the

presynaptic neuron is firing at 12 Hz, 50% of its spikes will hap-
pen when the parameter u of the postsynaptic neuron is above
uth . Line with asterisks (orange line) shows the percentage of
spikes in the presynaptic neuron that occur below the threshold
uth and do not cause a rebound spike. This simulationwas carried
out using W = −10 and τ = 5 (Color figure online)

spikes, the presynaptic neuron should fire at low fre-
quencies.

3.3 Dynamics of the system during self-sustained
oscillations

To shed further light on the type of behavior (e.g., peri-
odic, quasi-regular, chaotic, etc.) underlying the oscil-
lations sustained by the rebound spikes, we carried out
a preliminary analysis of the time series of the neu-
ron membrane potentials (v3, v4 and v5) for each input
sequence (from S1 to S6). Themethod used for the anal-
ysis was the 0-1 Test [17–19], which has been previ-
ously applied to distinguish chaotic from regular behav-
iors in Izhikevich spiking neurons [31,61,63]. The out-
put of the 0-1 Test is a value K between 0 and 1, with
values near 0 indicating regular behavior and values
near 1 indicating chaotic behavior. The results from
the 0-1 Test are shown in Table 5.

The results of the 0-1 Test suggest that the oscil-
lations sustained by the rebound spikes exhibit chaotic
dynamics.However, for all initializing input sequences,
the system eventually converges to a stable state. This
indicates that the system dynamics might best be
thought of in terms of transient chaos [62], which sup-
ports previous findings related to self-sustained neural

activity [66]. It is worth noting that the time taken for
the oscillations to converge to a steady state varies quite
widely depending on the initializing sequence; in other
words, the dynamical trajectories seem to be highly
sensitive to initial conditions, again pointing to chaotic
properties. Preliminary investigations indicated that the
dynamical trajectory of the systemwas also highly sen-
sitive to tiny perturbations to membrane potentials (at a
single time instant) during the oscillatory phase, further
supporting chaotic dynamics.

4 Discussion

Two spiking neural networks NetA and NetB , per-
forming a simplified version of the memory span
test, were analyzed. The memory span test was used
simply as an example of a task that requires self-
sustained activity in a non-trivial context, rather than
to explicitly model memory. The focus of this explo-
rations has been on neural dynamics in self-sustained
activity.

The parameters of NetA and NetB were evolved to
carry out the task using delay periods of 25 ms and 500
ms, respectively. It was shown that, in NetA the out-
put neurons are inhibited during the cue period, recover
from the hyperpolarization during the delay period and
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Table 5 Values of K for each input sequence (from S1 to S6)
and for the membrane potential of neurons 3 (v3), 4 (v4) and 5
(v5)

Seq. v3 v4 v5

S1 0.98 0.96 0.98

S2 0.97 0.97 0.95

S3 0.94 0.97 0.97

S4 0.99 0.98 0.98

S5 0.97 0.98 0.97

S6 0.97 0.94 0.97

fire action potentials in the correct order during the
response period. In NetB , the output neurons start fir-
ing during the cue period, maintain their activity during
the delay period and generate the correct output in the
response period.

Both networks exploit the capacity of the neuron
to fire an action potential at the end of the inhibi-
tion period. In NetA, the rebound spike is the mech-
anism used by the network to delay the action poten-
tial of the output neurons until the response period.
During the delay period, the membrane potentials
of the output neurons recovered from the inhibitory
synapses. On the other hand, in NetB the rebound
spike is the mechanism to maintain the network
activity during the longer delay period and, eventu-
ally, to generate the correct output in the response
period.

We have seen that whether or not a neuron fires
an action potential after a period of synaptic inhibi-
tion depends on a combination of values for synaptic
weight (W ), synaptic conductance (τ ) and the postsy-
naptic neuron state (v and u). The closer the neuron
is to its resting state (the stable point in the param-
eter space of v and u), the bigger the set of values
for W and τ that make a neuron fire a rebound spike
(shown in Fig. 10). On the other hand, soon after a
spike, when a neuron starts recovering from an action
potential, a rebound spike will occur only for a small
set of high values of W and τ . When the analysis was
carried out considering fixed values of W and τ (i.e.,
without synaptic plasticity), it was shown that there is
a threshold for the parameter u below which a neu-
ron fires rebound spikes (as shown by the surface in
Fig. 12).

The parameter analysis contributed to understand-
ing why a presynaptic inhibitory neuron should fire at

low frequencies in order to generate rebound spikes
in a postsynaptic neuron. When a postsynaptic neuron
spikes, its parameter u crosses the threshold.While u is
above the threshold, inhibitory spikes in the presynap-
tic neuron will be lost (will not cause rebound spikes).
In order to have a one-to-one relation between the num-
ber of inhibitory and rebound spikes, the presynaptic
neuron should wait for the recovery period of u firing
at low frequencies. Another reason why the frequency
should be low is that a rebound spike occurs at the
end of the inhibition process. If the presynaptic neu-
ron fires at a high frequency, its spikes will not wait
for the end of the inhibitory current and consequently
will not have a corresponding rebound. In summary,
the parameter analysis described the conditions under
which a neural system can exploit the rebound spikes
generated in inhibitory neural circuits as a mechanism
to sustain the system activity after the stimulation has
been removed.

The self-sustained mechanism introduced here can
operate, in a larger system,with othermechanisms such
as excitatory recurrent networks and short-term synap-
tic plasticity. While the rebound spikes could partic-
ipate, for instance, sustaining the neural activity dur-
ing the delay period of a trial of a memory task, per-
sistent activity in recurrent network could participate
during the preparation for the response period [58,70].
The rebound spikes could also play a role in non-
consciousness working memory tasks where persistent
activity is not present [67]. The investigation of how
the post-inhibitory rebound could operate with other
mechanisms requires the development of another com-
putational model of a larger scale network with plastic
connections.

The dynamics of the mechanism introduced here
has some common properties with the mechanism
underlying abnormal regimes of spike-wave discharges
(SWDs) in the absence of epilepsy as proposed in
[1,73]. Spontaneous initiation by short-term stimuli,
synchronized oscillations maintained by the network
coupling structure and spontaneous termination are
important properties of abnormal regimes of SWDs
[39,40]. Similarly, in our model, self-sustained oscilla-
tions are triggered by transient, short-term stimuli from
neurons 1, 2 and 3 during the first 75 ms. Besides,
the maintenance of the oscillations does not arise from
the properties of individual neurons (such as in pace-
maker cells), but also from the coupling structure
of the network. Neurons 4, 5 and 6 are nonoscilla-
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tory by themselves and do not have a parameter that
changes their individual behavior, such as the birth of
a limit cycle in Andronov–Hopf bifurcation. The self-
sustained oscillations spontaneously terminate by dis-
continuation of maintenance mechanisms, that is, by
breaking the circuit of rebound spikes. Whether the
mechanism proposed here can generate pathological
regimes of synchronicity, as observed in the SWDs,
would have to be investigated with another computa-
tional model.

Note that the neural mechanism introduced was
developed without any restriction on the type of behav-
ior (e.g., periodic, quasiregular, chaotic) of the self-
sustained activity. Our aim was to reproduce the phe-
nomenon of self-sustained activity without explic-
itly modeling a specific instance of it, that is, with-
out adjusting or adding parameters to the system in
order to reproduce a particular behavior. A prelimi-
nary analysis of the system using the 0-1 Test sug-
gested that the self-sustained regimes have a chaotic
behavior and seem to exhibit transient chaos. How-
ever, further studies using a larger set of stimuli,
other network coupling structures and other mathe-
matical methods could be used for a deeper under-
standing of the system and will be the subject of
further work. It should be possible to use more
detailed, computationally expensive methodologies
such as bifurcation analysis [61] and Lyapunov expo-
nent with saltation matrices and Poincaré section
[7,44,45]. It will also be important to investigate
the presence of other types of dynamical behavior
such as chimera states and heteroclinic trajectories
[2,37,48,49].

We point out that, although it is common to see ref-
erences in the literature to postsynaptic neural spikes
following synaptic excitation, it is also biologically
plausible to have an action potential following a
period of synaptic inhibition. This phenomenon can be
explained by differentmechanisms that respond to volt-
age changes by opening sodium and potassium chan-
nels ondifferent timescales [24].Different neuronmod-
els that exhibit rebound spikes have been proposed by
Izhikevich, namely rebound burst, inhibition-induced
spiking and inhibition-induced bursting (see [28] for
details).

All in all, based on a theoretical and minimal-
ist model, we have suggested that post-inhibitory
rebound spikes could participate in self-sustaining
neural activity after the stimulus offset. For analyt-

ical tractability, the number of neurons of the net-
work was kept to a minimum. Implementing a more
detailed model (e.g., with more neurons and plas-
tic connections) would produce more complicated
dynamics and would not allow the type of analysis
carried out here. However, future work will include
investigations of this neural mechanism in larger net-
works to further establish its operating conditions.
Results from our initial, more abstract, model may
already suggest some interesting directions for neu-
rophysiological experiments aimed at investigating
whether or not the inhibitory mechanism discovered
in our synthesized models can be found in real neural
circuits.
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