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Abstract

Evolutionary robotics relies upon techniques in-
volving the evolution of artificial neural networks
to synthesize sensorimotor control systems for ac-
tual or physically simulated robots. This paper is
a comparative study of three principal types of
artificial neural networks; the Continuous Time
Recurrent Neural Network (CTRNN), the Plas-
tic Neural Network (PNN) and the GasNet. An
attempt is made to evolve networks capable of
achieving locomotion with a physically simulated
biped. Of the 14 distinct networks tested, Gas-
Nets were the only network to achieve cyclical lo-
comotion, although CTRNNs were able to attain
a higher level of average fitness.

1. Introduction

Evolutionary Robotics seeks to create real and simulated
robotics that have economic value, and to gain insight
into biological systems through suitable abstractions of
these systems.

In Evolutionary Robotics, biologically inspired Artifi-
cial Neural Networks (ANN) are evolved using Genetic
or Evolutionary Algorithms (GAs or EAs) to generate
sensorimotor control systems. A significant challenge
faced in this area is that the evolved neural network cir-
cuitry is rarely tractable to functional decomposition or
deconstruction other than in the most trivial of cases
(Beer et al., 1999). Whilst the characteristic equations
associated with a specific network are a compact descrip-
tion of the network, we are as yet unable to predict from
these equations, the dynamic characteristics of the net-
work when it is embodied in an environmental agent.

In this paper empirical investigation is used to com-
pare the performance of different network formulations
in a common task; that of evolving bipedal locomo-
tion in a physically simulated biped. It is hoped that
through considering a number of networks applied to

different but related tasks, we may discover certain net-
work formulations that are of general or specific use.
It is intended as a complementary study to work that
sought to evolve locomotion in a physically simulated
quadruped (McHale and Husbands, 2004). Whilst an
in-depth analysis of the reasons why one network is su-
perior to another is beyond the scope of this paper, a
summary of relevant work is given in the latter stages of
this report. A total of 14 different ANNs are assessed in
this study.

2. Related Work

Continuous Time Recurrent Neural Network (CTRNNs),
Plastic Neural Networks (PNN) and GasNets are all
forms of Dynamic Recurrent Neural Networks (DRNNs).
CTRNNs are the one of the simplest forms of DRNN.
PNNs (Floreano and Mondada, 1996) seek to incorpo-
rate aspects of run-time learning through Hebbian adap-
tive network weights. GasNets are inspired by the action
of Nitric Oxide as a neuromodulator (Husbands, 1998).
GasNets and CTRNNs particularly have the potential
to generate intricate dynamics on several different time
scales, albeit by rather different means. This very likely,
at least partially, accounts for their observed advan-
tages over other less dynamic and unmodulated ANNs
(Husbands et al., 1998, Smith et al., 2002).

This paper is the first study that includes Gas-
Nets, CTRNNs, PNNs and other forms of DRNN,
in a performance comparison involving the gener-
ation of a suitably dynamic behavior - bipedal
locomotion. This report extends work using a
conventional DRNN applied to bipedal locomotion
(Reil and Husbands, 2002). Other researchers have also
addressed the issue of bipedal locomotion using evolu-
tionary algorithms (Hase and Yamazaki, 1999) that in-
corporate neuromodulation (Ishiguro et al., 2003), vari-
able morphology (Bongard and Paul, 2001) and genetic
programming (Ok et al., 2001).



3. Experimental Setup

Parameters were chosen as outlined by the original au-
thors wherever possible (given the differences in genetic
encoding). These original papers should be consulted
for further experimental details if more information is re-
quired. Variations from their implementations are stated
where relevant.

For the purposes of a fair comparison no assumption
is made about the coupling of the underlying network
nodes. The chosen task is to achieve bipedal locomotion
ab initio, without predetermining that nodes are config-
ured as coupled oscillators (Matsuoka, 1985).

3.1 Genetic Algorithm

The same distributed steady-state genetic algorithm is
used on all networks. The population grid has dimen-
sions of 10 by 10, to yield a total of 100 individuals.
Competition is tournament based, with a tournament
group comprising three individuals. A principal is se-
lected at random from the grid. Two other population
members are selected by a random walk originating at
the principal’s grid cell. The length of the random walk
is an integer value in the range 1-4.

If the principal is the fittest then the weakest mem-
ber is replaced by a mutated version of the principal.
Otherwise the weakest member of the tournament set is
replaced by a recombination of the two fittest individuals
(using single point cross-over). This recombined genome
is then mutated.

In these experiments the generation index is incre-
mented after the evaluation of 100 individuals (compris-
ing a pseudo-generation). Each neural network type was
evaluated for 200 generations. This was carried out ten
times with different random seeds for each network type.

Each fitness assessment starts with the biped in a sta-
ble standing position. The trial lasts a simulated 20
seconds. The fitness of the individual is taken to be the
minimum of the distance traveled by either of the biped’s
feet, or hips. Each time-step for the neural network up-
date lasts 0.025 seconds (or 1/40th of a second). Thus a
20 second trial corresponds to 800 neural network time-
steps.

The trial was terminated if the biped fell below 50
percent of its original height and a fitness value assigned
based on the distance traveled up to that point in time.

3.2 Physical Model

The computer code for the biped physical model was gen-
erated with the aid of a product called Autosim. Joints
are simulated as torsional springs. Strictly speaking the
motor output is actually a control signal. This signal is
mapped to an angular displacement that corresponds to
the rest position of a torsional spring. A change in the

angular displacement of this rest position, will result in
a torque applied to the lower limb attached to the joint
(as the spring seeks to restore the joint to its new rest
position).

The kinematic root has five degrees of freedom (two
rotational and three translational). The biped is physi-
cally incapable of rotating in its roll axis. This prevents
the biped from falling over on its side, although it is still
free to fall forwards and backwards. Whilst this is not
entirely physically realistic, it is sufficient for the pur-
poses of this comparative study. This still remains a
non-trivial problem; feet are modeled as point contact
points, resulting in a dynamically unstable model after
an initial displacement of the biped.

3.3 Sensorimotor System

Motor output signals are taken from the 1st 5th, 9th,
13th nodes in the network . These nodes were used to
control the rest position of the torsional springs in the
biped’s left hip, right hip, left knee and right knee re-
spectively. The output of these nodes was mapped to
a range of -94 to 101 degrees angular hip displacement,
and 0 to -89 degree angular knee displacement.

There are two sets of sensor configurations used in
this experiment (nominally referred to as R and I con-
figurations). The majority of simulations were carried
out with a regular connection pattern (R configuration).
Sensor input from the right foot contact sensor occurs
at the 2nd, 6th, 10th and 14th nodes. Sensor input from
the left foot contact sensor occurs at the 3rd, 7th, 11th
and 15th nodes. Sensor input consisted of a binary 1.0
or 0.0 value depending upon whether or not the feet of
the biped were in contact with the ground.

Additional simulations were carried out on GasNet
networks with an irregular sensor connection pattern (I
configuration). In this case sensor signals were input to
the 8th, 9th and 10th nodes for the right foot, and the
11th, 12th, 13th and 14th nodes for the left foot. One
of the reasons for this second sensor configuration was
to see if there were any significant changes in the per-
formance of circuits where sensor nodes were connected
directly to motor nodes (i.e. in the case of the 9th and
13th nodes in the I configuration).

3.4 Genetic Encoding and Mutation

The genetic encoding strategy follows a similar approach
for all networks. Network parameters are stored on a
node or cell basis. Each gene comprises a list of real val-
ued and integer parameters. Connection weights (where
relevant) are also stored on a per node basis. The num-
ber of genetic parameters per node for each network type
is shown in Table 1. Note that CTRNN’s require us to
store node weights on a per connection basis, in a fully
connected network this means that we have N weights



per node as evolvable parameters, where N is the total
number of nodes in the network, plus the time constant
and bias parameters, to yield a total of 18 parameters in
this case.

Mutation takes place either after recombination, or
after cloning of the principal tournament member (as
described earlier). Mutation takes place at 20 percent of
the nodes (rounded to 3 in a 16 cell network) selected
at random. A single mutation event will result in the
mutation of a single real or integer parameter in each
of the randomly selected nodes. The magnitude of this
mutation corresponds to 4 percent of the real valued pa-
rameters range with a probability of 0.2, and 1 percent
of the parameters range with a probability of 0.8. In the
case of integer parameters we follow a similar strategy
of small mutations with a probability of 0.8 and large
mutations with a probability of 0.2. These mutation
parameters were chosen in preliminary experiments to
avoid premature convergence and maintain a reasonable
degree of phenotypic diversity across the different net-
work varieties during evolution.

In addition to this, those networks where connection
weights are under evolutionary control (such as conven-
tional CTRNNs) undergo further mutation. Each ran-
domly selected cell has all of its weights mutated (again
by a factor of 4 percent with a 20 percent probability
and 1 percent with an 80 percent probability).

Time constant initialization was devised to yield a
wide range of of values. An exponent f was randomly
selected from the set:

fε[−10,−8,−6,−4,−2, 0, 2, 4, 8, 10]

A second random variable rε[0.0, 1.0] was then used to
scale the value such that the time τ constant is calculated
from:

τ = 1.0 + r(10f ) (1)

The time constant mutation operator increments or
decrements the exponent by 1 with a probability of 0.2,
and generates a new value of rε[0.0, 1.0] with a probabil-
ity of 0.8.

4. Network Details and Characteristic
Equations

This section describes the network details of each of the
varieties of networks tested. The focus is on the char-
acteristic equations that govern the dynamics of each
network variety.

A list of the network types is shown in Table 1. Each
network type is assigned an index for reference purposes
numbered between 1 and 14. The R letter denotes the
regular sensor configuration, the I denotes the irregular
sensor configuration.

It should be noted that Conventional GasNets com-
prise nodes that are spatially distributed. A paramet-
ric coding strategy is used where connections are de-

Table 1: List of network types, and number of genetic pa-

rameters per node.

Type Params.
1R Conventional CTRNN 18
2R Center-Crossing CTRNN 18
3R Basic PNN 3
4R Gas-Modulated PNN 17
5R CTRNN/PNN Hybrid 20
6R Conventional GasNet 15
7R Fully Recurrent GasNet 15
8R CTRNN/GasNet Hybrid no Gas 5
9R CTRNN/GasNet Hybrid with Gas 18
10I Conventional GasNet 16 Cell 15
11I Conventional GasNet 32 Cell 15
12I Fully Recurrent GasNet 15
13I CTRNN/GasNet Hybrid no Gas 5
14I CTRNN/GasNet Hybrid with Gas 18

termined for each node based on genetic parameters
that define geometric arcs originating at each node. A
node that falls within an excitatory or inhibitory arc are
deemed to be electrically connected to the node at origin
of the arc (Husbands, 1998). The consequence of this, is
that conventional GasNets are only sparsely connected.
This approach is used in the the following network types;
6R, 8R, 9R, 13I and 14I. All other network types are fully
interconnected.

4.1 Conventional CTRNN - type 1R

This is a conventional CTRNN (Beer, 1995), fully re-
current, where node connection weights and biases are
under evolutionary control.

yt+1
i = yt

i +
T

τi
(−yt

i +
N∑

j=1

ωjiσ(yt
j + θj) + Ii) (2)

i = 1, 2, ..., N

Where:

yit + 1 is the activation of the i’th node at time t + 1.

yt
i is the activation of the i’th node at time t.

τi is the time constant for the i’th node calculated ac-
cording to equation equation 1.

Ii a sensor input to the i’th node where I is either 1
(in contact with the floor) or 0 (not in contact with
the floor).

θj a bias term for the j’th node where θε[−2, 2].

T is the time slice (in this case T is set to 1).



ωji is the weight of the output from the j’th node to
the i’th node where ωε[−4.0, 4.0].

σ is the logistic activation function.

σ(z) =
1

(1 + e−z)
(3)

4.2 Center-Crossing CTRNN - type 2R

The characteristic equation of the Center-Crossing
CTRNN (Mathayomchan and Beer, 2002) is the same as
that of the CTRNN (type 1). However initial biases are
calculated such that:

θi =
−

∑N
j=1 ωji

2
(4)

These authors suggest that populations seeded with
center-crossing networks may be more likely to yield a
wider range of dynamics than a population of random
networks.

4.3 Basic PNN - type 3R

The key characteristic of PNN’s
(Urzelai and Floreano, 2000) is that connection weights
vary over time based on Hebbian learning rules given
by:

ωt
ji = ωt−1

ji + η∆ωji (5)

Where η is a learning rate ( 0.0 < η <1.0 ) and ωji is
the connection weight of the input to node i from node j.
The adaptation rule ∆ωji is genetically determined for
each node. All inputs to a given node are subject to the
same adaptation rule ( referred to as node encoding by
the original authors).

Where x is the activation of node j, which is an input
to node i ( which has an output activation of y), the
adaptation rule is one of:

Plain Hebb Rule

∆ωji = (1− ωji)xjyi (6)

Post-Synamptic Rule

∆ωji = ωji(−1 + xj)yi + (1− ωij)xjyi (7)

Pre-Synaptic rule Rule

∆ωji = ωji(−1 + yi) + (1− ωji)xjyi (8)

Covariance Rule

∆ωji =
{

(1− ωji) if F (xj , yi) > 0
(ωji)F (xj , yi) otherwise (9)

Where:

F (xj , yi) = tanh(4(1− |xi − yj | − 2) (10)

All nodes in the PNN are fully interconnected (with
self-connections also supported). The rate of learning η
can only assume one of four values (0.0, 0.3, 0.6, 0.9).
The characteristic equation for the PNN is shown below:

yt+1
i = σ(

N∑
j=1

ωt
ji(y

t
j)) + Ii i = 1, 2, ..., N (11)

Where:

ωt
ji is the adaptive weight for the j’th input to the i’th
node.

σ is the standard logistic activation function.

Ii a sensor input to the i’th node where I is either 1
(in contact with the floor) or 0 (not in contact with
the floor).

The term ”basic” is used to differentiate it from that
used by (Tuci and Quinn, 2003) where an additional bias
input was used for each node. In common with the im-
plementation described in (Blynel and Floreano, 2002)
the range of yi is [0, 2] for input neurons and [0, 1] for
hidden and output neurons.

4.4 Gas-Modulated PNN - type 4R

This is essentially the same as the basic PNN (type 3)
with the exception that nodes whose weights are geneti-
cally determined to be modified by the Plain Hebb Rule,
or Post-Synaptic Rule have their weights modified by dif-
fused gases. For these two varieties of nodes, the weight
modification rule becomes:

Gas Modified Plain Hebb Rule

∆ωji = (
ct
1i

ct
1i + ct

2i

)(1− ωji)xjyi (12)

Gas Modified Post-Synaptic Rule

∆ωji = (
ct
2i

ct
1i + ct

2i

)(ωji(−1+xj)yi +(1−ωij)xjyi) (13)

Where:

ct
1i is the concentration of gas 1 at the i’th node.

ct
2i is the concentration of gas 2 at the i’th node.

The significance of these equations is that the rate of
change in the weights of the inputs to these nodes will
vary continuously with changes in the relative concen-
tration of these two gases. When both gases have zero
concentrations there is no change in weight.



4.5 CTRNN/PNN Hybrid - type 5R

This is a modification of the conventional PNN, with
activation signals modified by a node based time con-
stant under evolutionary control (in a similar fashion to
conventional CTRNNs).

yt+1
i = yt

i +
T

τi
(−yt

i +
N∑

j=1

ωt
jiσ(yt

j + θj) + Ii) (14)

i = 1, 2, ..., N

Where:

ωt
ji is the adaptive weight for the j’th input to the i’th
node.

4.6 Standard GasNet - type 6R

In GasNets (Husbands et al., 1998), node transfer func-
tions can be modulated by local gas concentrations in
the vicinity of the node. Nodes can also act as chemical
emitters, under either gas or electrical stimulation. Gas-
Net nodes exist in a geometric plane where internode dis-
tances determine gas concentrations and (in conjunction
with additional genetic parameters) network connectiv-
ity. Under typical evolutionary parameters the GasNet
connectivity rules result in a sparsely connected network.

yt+1
i = tanh[kt

i(
∑
jεCi

ωjiσ(yt
j + Ii)) + bi] (15)

Where:

kt
i is a time-varying transfer function modulator. The
value of k varies with gas concentrations at the i’th
node.

Ci is the set of all nodes that have an input to the i’th
node.

Ii a sensor input to the i’th node.

bi a bias term for the i’th node.

The original GasNet diffusion model (upon which this
implementation is based) is controlled by two genetically
specified parameters, namely the radius of influence r
and the rate of build up and decay s. Spatially, the gas
concentration varies as an inverse exponential of the dis-
tance from the emitting node with a spread governed
by r, with the concentration set to zero for all distances
greater than r (Equation 16). The maximum concentra-
tion at the emitting node is 1.0 and the concentration
builds up and decays from this value linearly as defined
by Equations 17 and 18 at a rate determined by s.

C(d, t) =
{

e−2d/r × T (t) d < r
0 else

(16)

T (t) =
{

H
(

t−te

s

)
emitting

H
[
H

(
ts−te

s

)
−H

(
t−ts

s

)]
not emitting

(17)

H(x) =

 0 x ≤ 0
x 0 < x < 1
1 else

(18)

where C(d,t) is the concentration at a distance d from
the emitting node at time t. te is the time at which
emission was last turned on, ts is the time at which emis-
sion was last turned off, and s (controlling the slope of
the function T ) is genetically determined for each node.
The total concentration at a node is then determined by
summing the contributions from all other emitting nodes
(nodes are not affected by their own concentration, to
avoid runaway positive feedback).

For mathematical convenience, in the basic GasNet
there are two ‘gases’, one whose modulatory effect is to
increase the transfer function gain parameter (kt

i from
equation 19) and one whose effect is to decrease it. It
is genetically determined whether or not any given node
will emit one of these two gases (gas 1 and gas 2), and un-
der what circumstances emission will occur (either when
the ‘electrical’ activation of the node exceeds a threshold,
or the concentration of a genetically determined gas in
the vicinity of the node exceeds a threshold. Note these
emission processes provide a coupling between the ‘elec-
trical’ and ‘chemical’ mechanisms). The concentration-
dependent modulation is described by Equation 19, with
transfer parameters updated on every time step as the
network runs.

kt
i = k0

i + αCt
1 − βCt

2 (19)

where k0
i is the genetically set default value for ki, Ct

1 and
Ct

2 are the concentrations of gas 1 and gas 2 respectively
at node i at time t, and α and β are constants. Both gas
concentrations lie in the range [0, 1]. Thus the gas does
not alter the electrical activity in the network directly
but rather acts by continuously changing the mapping
between input and output for individual nodes, either
directly or by stimulating the production of further vir-
tual gas. The concentration dependent modulation can,
for instance, change a node’s output from being positive
to being zero or negative even though the input remains
constant. Any node that is exposed to a non zero gas
concentration will be modulated. This set of interacting
processes provides the potential for highly plastic sys-
tems with rich dynamics.

4.7 Fully Recurrent GasNet - type 7R

The fully recurrent GasNet uses the GasNet model of gas
diffusion but adopts a fully recurrent connectivity model.



Whereas a conventional GasNet is sparsely connected,
this network is fully connected.

yt+1
i = tanh[kt

i(
N∑

j=1

ωjiσ(yt
j + Ii)) + bi] (20)

i = 1, 2, ..., N

4.8 CTRNN/GasNet Hybrid no Gas - type 8R

This is a variation of the conventional CTRNN. In this
case inter-node connectivity is determined by the ap-
proach used in GasNets. It uses a sigmoid transfer func-
tion, with bias and node time constants under evolution-
ary control.

yt+1
i = yt

i +
T

τi
(−yt

i + tanh[Ki(
∑
jεCi

ωjiσ(yt
j + Ii)) + bi])

(21)
Where:

Ki is a transfer function constant.

T is the time slice constant.

τi is the time constant for the i’th node.

4.9 CTRNN/GasNet Hybrid with Gas - type
9R

This is another variation of a conventional CTRNN, but
in this case it is more extensively modified along the
lines of GasNets. The network nodes transfer function
is gas modulated, and network connectivity is based on
the GasNet model. What remains of the the original
CTRNN is the node time constant.

yt+1
i = yt

i +
T

τi
(−yt

i + tanh[kt
i(

∑
jεCi

ωjiσ(yt
j + Ii)) + bi])

(22)
Where:

kt
i is a time-varying transfer function modulator. The
value of k varies with gas concentrations at the i’th
node.

4.10 Conventional GasNet 16 Cell - type 10I

This network is based on the Conventional GasNet (type
6R) but uses the irregular sensor configuration. Another
difference is that bias values are set such that biε[−4, 4].

4.11 Conventional GasNet 32 Cell - type 11I

Other than the number of cells in this network, all other
parameters are the same as those of the 16 cell gas net

(type 10I). Note that of all the networks tested, this is
the only one that is comprised of 32 cells or nodes.

Given the nature of the the GasNet connectivity algo-
rithm 32 cell GasNets are likely to be more highly inter-
connected than 16 cell GasNets. The size of the plane
remains constant, so a higher number of cells means a
higher cell density. A larger number of cells will tend
to fall within a given connection arc, thus resulting in a
higher number of inter-cell connections per cell.

4.12 Fully Recurrent GasNet - type 12I

This network is based on the Fully Recurrent GasNet
(type 7R) but uses the irregular sensor configuration.
Another difference is that bias values are set such that
biε[−4, 4].

4.13 CTRNN/GasNet Hybrid no Gas - type
13I

This network is based on the CTRNN/GasNet Hybrid
without Gas (type 9R) but uses the irregular sensor con-
figuration. Another difference is that bias values are set
such that biε[−4, 4].

4.14 CTRNN/GasNet Hybrid with Gas - type
14I

This network based on the CTRNN/GasNet Hybrid with
Gas (type 9R) but uses the irregular sensor configura-
tion. Another difference is that bias values are set such
that biε[−4, 4].

5. Results

Table 2 shows the peak fitness of the best individual in
the ten evolutionary runs for each network type, together
with the standard deviation of the fitness of the fittest
individual across all ten runs. Table 3 shows the average
and median peak fitness value across all runs for each
network type.

To put these fitness values in perspective 2.5 meters is
attainable through a fast walk in about 10 seconds (at-
tained by the Conventional GasNet type 10I), and a slow
walk in about 20 seconds (attained by the Conventional
GasNet type 6R). Bipeds that have traveled around 1
meter have typically taken around two steps. The worst
performing Basic PNN typically only extended one leg,
before slightly drawing the lagging leg forward.

Figure 1 shows three snapshots of the biped walking.
This rendering is based on the results obtained from the
16 cell GasNet (type 10I).

5.1 Principal Results Summary

We can summarize the most important results as follows:



1. Conventional GasNets were the only networks to
achieve cyclical bipedal locomotion.

2. Center-Crossing CTRNNs achieved the second high-
est peak fitness after the conventional GasNets.

3. Center-Crossing CTRNNs and CTRNNs attained the
highest average fitness values.

4. Center-Crossing CTRNNs marginally outperformed
conventional CTRNNs in peak and average fitness.

5. Basic PNNs without dynamic attributes performed
the worst.

6. Both a CTRNN/PNN Hybrid and a Gas Modulated
PNN improved on the performance of the Basic PNN.

7. The CTRNN/PNN Hybrid achieved comparable re-
sults to the Conventional CTRNN.

8. Fully Connected GasNets perform badly compared to
Conventional GasNets. GasNet performance seems
to decline with increased inter-connectivity ( see type
11I vs 10I and 6R ).

9. Conventional GasNets exhibit a higher variation in
phenotype fitness than other network types. Con-
ventional CTRNNs exhibit relatively low phenotypic
variation.

10. Gas Modulated networks generally outperform their
un-modulated counter-parts (see type R8 vs R9 and
I13 vs I14).

11. GasNet performance is largely unaltered by minor
sensorimotor configuration changes (see R vs I sensor
configurations).

These results are generally consistent with those re-
ported by GasNet researchers and the comparative stud-
ies cited earlier.

6. Discussion

An obvious question to ask when considering the rela-
tive performance of these networks is whether or not the
relative performance differences are primarily a conse-
quence of the number of degrees of freedom in param-
eter space. Table 1 lists the number of parameters per
node. The basic PNN (3R) has the lowest number of pa-
rameters and displays the worst performance. However,
the CTRNN/PNN Hybrid (5R) has the largest number
of evolvable parameters, but it does not have the best
performance. Whilst degrees of freedom in parameter
space may be a contributing factor in the results de-
scribed here, the internal dynamics of each network also
play a significant role. The 16 cell GasNet (10I) has
substantially superior peak fitness performance to the
32 cell GasNet (11I) and fully connected GasNet (12I),

Figure 1: GasNet Biped Kinematic Data (Upper; Left Hip

and Right Hip, Lower Right Knee and Left Knee).

Table 2: Peak fitness across all evolutionary runs, and Stan-

dard Deviation of the peak fitness (meters).

Network Peak SD.
6R Conventional GasNet 2.63 0.70
10I Conventional GasNet 16 Cell 2.62 0.66
2R Center-Crossing CTRNN 1.63 0.24
11I Conventional GasNet 32 Cell 1.31 0.29
5R CTRNN/PNN Hybrid 1.27 0.33
14I CTRNN/GasNet Hybrid with Gas 1.25 0.21
1R Conventional CTRNN 1.24 0.15
9R CTRNN/GasNet Hybrid with Gas 1.22 0.25
8R CTRNN/GasNet Hybrid no Gas 1.18 0.23
4R Gas-Modulated PNN 1.06 0.30
7R Fully Recurrent GasNet 0.98 0.09
13I CTRNN/GasNet Hybrid no Gas 0.72 0.13
12I Fully Recurrent GasNet 0.53 0.21
3R Basic PNN 0.24 0.01

Table 3: Average and median of distances traveled by the

fittest individual at the end of each run (meters).

Network Avg. Med.
2R Center-Crossing CTRNN 1.13 1.19
1R Conventional CTRNN 1.11 1.18
6R Conventional GasNet 0.97 0.82
9R CTRNN/GasNet Hybrid with Gas 0.95 0.96
11I Conventional GasNet 32 Cell 0.94 1.08
14I CTRNN/GasNet Hybrid with Gas 0.92 0.96
10I Conventional GasNet 16 Cell 0.92 0.93
5R CTRNN/PNN Hybrid 0.90 1.00
8R CTRNN/GasNet Hybrid no Gas 0.90 0.95
13I CTRNN/GasNet Hybrid no Gas 0.61 0.66
4R Gas-Modulated PNN 0.57 0.72
12I Fully Recurrent GasNet 0.47 0.36
7R Fully Recurrent GasNet 0.35 0.38
3R Basic PNN 0.23 0.23



Figure 2: Renderings of the fittest GasNet biped at 5.0, 5.875

and 6.25 seconds.

despite having the same number of evolvable parame-
ters. The number of parameters for a given network is a
consequence of the network formulation, and whilst the
low number of parameters used in the basic PNN may
lead us to believe that it is under-specified in comparison
with other networks, the key determinant is the saliency
of a given parameter to the exploration of phenotype
space. This is not something that can be easily deter-
mined without referring to the underlying dynamics of
the alternative network formulations. As a consequence,
the discussion in this section focusses largely on the un-
derlying dynamics, rather than specifically address the
issue of differences in paramater space.

6.1 Temporal Adaptivity and Evolvability

It is claimed that GasNets have a high evolvabil-
ity due to their high capacity for temporal adaptation
(Smith et al., 2002). A significant factor determining
the activity of the network is the coupling of electri-
cal and gas dynamics (Philippedes et al., 2002). In this
work the authors showed that reducing the likelihood
that a node pair are both chemically and electrically cou-
pled, can improve the evolvability of the GasNet network
even further. In particular they state;

.. systems involving distinct yet coupled processes
are highly evolvable when there is a bias towards
loose coupling between the processes; this allows
the possibility of ’tuning’ one against the other
without destructive interference.

The relatively poor performance of fully connected Gas-
Nets, where a high degree of coupling is forced into
the network, tends to support this claim. Philippides
et al. also refer to the multiple redundancies inher-
ent in loosely coupled GasNets which potentially lead
to increased numbers of routes through the evolutionary
search space. These factors may help to account for the
relatively high variance in GasNet fitness in comparison
with CTRNNs, as well as the significantly higher peak
fitness. The inherent dynamics are being shaped and
explored in a very different way.

In the case of the one of the fittest GasNet bipeds
(type I10) the reactive response of the right hip to the
transition from non-contact to contact of the left foot
appears to be primarily gas-mediated. In contrast the
joint angular displacement dynamics are governed pri-
marily by electrical activation signals. Whilst this may
be an over-simplification (GasNets are integrated sys-
tems with co-dependencies between both gas and elec-
trical signalling), it is easy to imagine circumstances in
which there are independent phenotypic processes that
have intrinsic time dynamics associated with them. The
ability to explore these phenotypic temporal dynamics
in parallel may be a significant factor in the evolvability
of GasNets.



Concepts such as of temporal adaptivity and system
coupling may be useful concepts in helping us to un-
derstanding the dynamics of such systems. However we
still need to try and identify the specific characteristics of
these networks that support temporal adaptivity. Two
of the most obvious areas to consider are the frequency
and phase characteristics of the GasNet.

6.2 Phase Space Exploration

Phase relationships between signals in an articulated
agent are extremely important to achieve coordinated
activity. One aspect of GasNets is that nodes are phys-
ically distributed in a virtual 2-dimensional space. A
variation in the distance between nodes (through muta-
tion for example) results in a phase lag or lead in the
modulation of gas-coupled nodes. In this sense phase re-
lationships are under direct evolutionary control. None
of the other networks investigated in this study embody
these characteristics. Simply put, in GasNets, node posi-
tion mutations are operating directly in phenotype phase
space (where nodes are chemically coupled).

In direct encoding, if a single parameter maps onto a
specific phenotypic attribute that is largely independent
of other attributes, this is likely to aid the efficient explo-
ration of phenotypic space via mutation operators, since
it may result in a smoother fitness landscape. In the
case of articulated bipedal locomotion, we might imag-
ine that the phase relationship between hip joints is a
significant phenotypic attribute that affects overall fit-
ness. A network model that can explore this phase rela-
tionship through mutation operators may exhibit greater
temporal adaptation than one that cannot.

6.3 Frequency Space Exploration

Examination of the motor output signals of GasNets
compared to other networks indicates that GasNets gen-
erate a motor control signals with a wide range of fre-
quency components (particularly high frequency). It is
easy to imagine that a network that exhibits significa-
tion oscillatory behavior over a wide bandwidths may
have some advantages over networks in seeking to dis-
cover a solution suitable for articulated motion.

6.4 Temporal Dynamics and PNNs

It should be stated that there is no reason to expect that
the Basic PNN should have performed particularly well
in this problem domain. The environment remains con-
stant over evolutionary time. As such there is no addi-
tional benefit to be gained by in-trial learning. Limited
sensor stimulation may have resulted in a rapid decay
in node activity in this implementation. However, the
modification of the Basic PNN to incorporate richer time
dynamics (e.g. type 4R and 5R networks) can improve

the performance of PNN networks.

6.5 Complementary Study

A complementary study carried out by the authors
of this paper (McHale and Husbands, 2004) investi-
gated three of the network varieties described here
(Conventional GasNet, Center-Crossing CTRNN and
CTRNN/PNN Hybrid) in the evolution of locomotion in
a physically simulated quadruped. Network morpholo-
gies were constrained to resemble coupled-oscillators.
The initial population was comprised solely of symmet-
rical networks, with corresponding nodes connected by
mutually inhibitory connections. The Open Dynam-
ics Engine (ODE) physics simulation package was used,
without any restrictions on the degrees of freedom of the
quadrupeds kinematic root.

Whilst the GasNet network attained the highest fit-
ness, the CTRNN/PNN Hybrid (introduced in this
study) achieved comparable results, discovering sev-
eral gaits between them. Whilst the Center-Crossing
CTRNN also attained a high fitness level, it discovered
only one gait, and average fitness was approximately
half that of the other two networks. Qualitatively the
gaits discovered by the CTRNN/PNN Hybrid appeared
to more reactive than those discovered by the GasNet,
exhibiting some gaits that resembled ballistic walking.
The evolved GasNets discovered more stable gaits (that
continued if the trial period was extended), and gener-
ally appeared to rely more upon forced oscillations than
the CTRNN/PNN Hybrid.
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8. Conclusion

The results described here, taken in conjunction with
those of complementary studies, suggest that GasNets
offer a reliable solution in solving sensorimotor control
problems for physically simulated agents. This paper
also introduces new variants of conventional networks
that may merit further study, such as the gas-modulated
Hebbian network (4R) and CTRNN/PNN Hybrid (5R).
The results of the complementary study described ear-
lier remind us that we should be careful not to gen-
eralize from single experiments. The consideration of
alternative dynamic models should be an ongoing part
of the characterization of alternative network formula-
tions. Future work will seek to carry out additional
comparative studies for physically simulated hexapods
and bipeds with unconstrained kinematic roots in a con-



tinuation of the work described here.
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