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Synonyms 
Nitric oxide volume signalling 
 
Definition 
Neuromodulators are a class of neurotransmitter that diffuse into the region surrounding an 
emitting neuron and affect potentially large numbers of other neurons by modulating their 
responses, irrespective of whether or not they are electrically connected to the modulating 
neuron. Nitric Oxide (NO) is a particularly interesting example of a neuromodulator because 
of its very small size and gaseous state.  The type of modulatory signalling NO is involved in, 
sometimes known as volume signalling, is in sharp contrast to the connectionist point-to-
point electrical transmission picture that dominated thinking about the nervous system for 
many decades, whereby neural signalling could only occur between electrically connected 
neurons.   
 
Detailed Description 
 
Background 
 
The discovery that the toxic gas nitric oxide (NO) is synthesised in biological systems and 
functions as a physiological signalling molecule earned Robert Furchgott, Louis Ignarro and 
Ferid Murad the Nobel Prize in 1998.   By showing that physiological functions could be 
regulated by information carried from cell to cell by a gas, their research suggested an 
entirely new way of thinking about how cells communicate with one another.    
 
Increasing blood flow was the first physiological function attributed to NO.  It was known 
that the cells of the endothelial lining of blood vessels released a factor which caused the 
relaxation of circular muscle leading to vessel dilation and increased blood flow. The 
endothelial factor was unstable and thus elusive.  But the combined work of the three Nobel 
laureates showed conclusively, if unexpectedly, that this factor was NO.    
 
If this were the whole story, there would be of little or no relevance for our understanding of 
brain function.  When however Solomon Snyder and colleagues isolated an enzyme from the 
mammalian brain that synthesised NO and showed that it was present in sub-populations of 
neurons (Bredt and Snyder 1990), interest in NO’s signalling functions switched from 
endothelial cells to neurons.  
 
Three forms of the NO synthesising enzyme, known as NOS, have been identified; it is the 
neuronal form (nNOS) which attracted most interest among neuroscientists (Bredt and 
Snyder 1990, Bredt et al. 1990, Mungrue and Bredt 2004).  Since NO is both a signalling 
molecule and a toxic free radical gas, its generation by nNOS must be strictly controlled.  The 
primary regulator of nNOS activity is the concentration of calcium inside the nNOS 
expressing neurons (Bredt and Snyder 1990).  Intracellular calcium concentration in resting 
neurons is very low – below that required for the synthesis of NO.  However, as a 



consequence of electrical activity calcium enters the neuron via voltage gated calcium 
channels and the concentration rises transiently from micro-molar to milli-molar levels.  At 
these elevated levels the synthesis of NO is triggered.  Calcium therefore neatly links the 
synthesis of NO in the brain to the electrical activity of neurons.  Because NO is so small (the 
10th smallest molecule of the Universe) and non-polar it can diffuse more or less freely away 
from its source, unimpeded by the lipid bi-layer of the cell membrane. Thus for NO, release 
is an inevitable consequence of NO synthesis.    
 
Calcium influx in electrically excited neurons both triggers NO release and also is the trigger 
for the release of conventional neurotransmitters from synaptic vesicles.  The two modes of 
release, diffusive and vesicular, are not mutually exclusive alternatives at the neuronal level.  
Neurons capable of NO synthesis also store conventional neurotransmitters in synaptic 
vesicles.  NO is therefore best regarded as a co-transmitter, acting in conjunction with 
classical inhibitory and excitatory transmitters. 
 
Clearly NO signalling violates some of the classical tenets of synaptic transmission and there 
has been an understandable reluctance to regard NO as a genuine neurotransmitter.  Perhaps 
the term neuromodulator is more appropriate.  Neuromodulators are a class of 
neurotransmitter that, rather than causing excitation or inhibition directly, modulate the 
responses of neurons to direct excitatory and inhibitory transmitters. A modulator may for 
example enhance or facilitate the inhibitory effect of an inhibitory neurotransmitter.  In this 
way modulators are synaptic gain-control agents.  Whereas direct inhibition and excitation is 
mediated by transmitter-gated ion channels, modulators bind to receptors that regulate the 
synthesis of so-called second messengers and it is these that can change the sensitivity of a 
neuron to other neurotransmitters. 
 
Because they act indirectly via a neuron’s metabolic machinery, the temporal dynamics of 
neuromodulator effects are delayed and more long-lasting than the quick and transient effects 
of the classical transmitters.  The spatial dynamics of neuromodulation are also noteworthy 
with respect to signalling by NO.  As noted above, the physical properties of NO allow it to 
diffuse into the volume surrounding an emitting neuron.  Therefore, depending on the size of 
the affected volume, a NO emitting neuron may modulate large numbers of other neurons 
within the affected volume. Importantly then, a nNOS expressing neuron may communicate 
with other neurons irrespective of whether or not they are connected by synapses. In this way 
NO is a particularly interesting example of a neuromodulator because it can act as a non-
synaptic volume signal.  This clearly is in sharp contrast to the connectionist point-to-point 
synaptic transmission picture that dominated thinking about the nervous system for many 
decades.   
 
In the traditional connectionist model of neuron-to-neuron communication, neurons generate 
brief electrical signals (action potentials), which propagate along wire-like axons 
terminating at highly localized junctions (synapses) on other neurons, where the release of a 
neurotransmitter is triggered. The neurotransmitter is confined to the region of the synapse, 
and here the receiving neuron is equipped with receptors that directly translate the chemical 
signal into a brief electrical signal, either excitatory or inhibitory (Purves 1997, Brazier 
1961). Hence in standard artificial neural network (ANN) models based on this incomplete 
picture, chemical signalling can be safely factored out, leaving only the idea of electrical 
signals flowing between nodes in a network. 
 



However, the discovery of non-synaptic chemical signalling by NO has potentially greatly 
extended the spatial scale over which neurons can communicate. The most important feature 
of this derives from the ability of NO to diffuse away from its site of release and to occupy a 
volume of the nervous system perhaps containing many other neurons and synapses 
(Edelman and Gally 1992).  Crucial to understanding the functional significance to volume 
signalling by NO (and perhaps other gases) is a measure of the spatial and temporal dynamics 
of NO diffusion.  We need to know how large is the affected volume and how long does it 
take for NO to occupy it?  As these questions have proven to be difficult to answer 
empirically (Philippides et al. 2003), an important alternative approach has been to develop 
realistic computational models of diffusion to illuminate the parameters of NO mediated 
volume signalling.  
 
The following section looks at how NO diffusion in the nervous can be modelled 
computationally and how this can be used to illuminate neuromodulatory mechanisms.  We 
will also explore how volume signalling can now be added to the growing list of phenomena 
in the nervous system that might be a source of inspiration for new and perhaps improved 
styles of ANNs. This is probably especially true for ANNs intended for use as artificial 
nervous systems in robots or simulated autonomous agents, an area where biomimetic 
techniques are often particularly fruitful. Classes of ANN directly inspired by NO signalling, 
which can be used in robotic applications or to shed light on biological questions, will be 
discussed later in this article.  
 
 
Modelling NO diffusion in the nervous system 
 
The features that make NO different to a standard neurotransmitter – it’s free diffusion 
through neural structure with no discrete target receptor and thus inactivation – make the 
basis of a model relatively straightforward. Movement is governed by Fick’s second law of 
diffusion; essentially molecules move from high concentration to low concentration. NO does 
not have a specific inactivating mechanism, and is lost through reaction with oxygen species 
and metals as well as with heme-containing proteins (Lancaster 1996, Vaughn et al. 1998a). 
This means that the movement of other molecules and receptors and their interactions need 
not be modeled and instead a more general loss function can be used, typically as 
concentration-dependent decay throughout the volume being modeled. These features were 
the basis of the first wave of models of diffusion (Gally et al., 1990, Edelman and Gally, 
1991, Montague et al., 1991, Lancaster, 1994, 1996, 1997, Wood and Garthwaite 1994) 
which prompted key insights into the action of this kind of messenger, for instance, noting it 
as a ‘four-dimensional volume signal’ (Edelman and Gally, 1991), and highlighted the 
potential range of action of a diffusible signal (e.g. Wood and Garthwaite, 1994).  
 
To make these general points it was not important to model in detail the structure of either the 
volume within which the neuron was diffusing (meaning that space and time were typically 
handled coarsely) or the source neuron itself which was typically taken to be a point in space. 
This meant they were unable to capture two very important features of NO signalling. 
 
The first regards the production of NO and follows from the fact that nitric oxide synthase 
(NOS, responsible for the production of NO) is soluble and thus highly likely to be 
distributed throughout a neuron’s cytoplasm. This means that the volume containing NOS is 
the source and the whole surface of the neuron is a potential release site for NO, in marked 
contrast to conventional transmitter release. These properties suggest that the 3D structure of 



the NO source will have a profound influence on the dynamics of NO spread. Hence an 
accurate structure-based model of neuronal NO diffusion is an indispensable tool in gaining 
deeper insight into the signalling capacity of the molecule. The second is that depletion of 
NO might also be spatially heterogeneous. While a general decay rate can be assumed for 
most tissue, reflecting background oxidization and binding events, certain structures 
(importantly including blood vessels containing very high concentrations of NO-binding 
hemes) can have a much higher decay rate and effectively act as NO sinks. The kinetics of 
these reactions are not understood perfectly (Wood and Garthwaite 1994), but empirical data 
indicates either first or second order decay (Laurent et al. 1996,Lancaster 1996,Vaughn et al. 
1998b, Liu et al. 1998,Thomas et al. 2001).  
 
These considerations gave rise to a second set of more detailed NO diffusion models 
(Philippides et al., 1998, 2000, 2005a, Vaughn et al., 1998a, 1998b, Ott et al., 2007) based on 
the modified diffusion equation shown in Equation 1. The terms on the left-hand side 
describe the general diffusion process and those on the right-hand side model NO production 
and depletion mechanisms. 
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where x is a point in space, C(x, t) is the concentration at point x, and time t, D is the 
diffusion coefficient, typically 3300µm2 s-1 and P(x, t) is the concentration of NO produced 
per second at point x, and time t. λ C(x, t) models background inactivation of NO at all 
locations in the modelled volume as first-order decay with an inactivation rate (half-life) of λ. 
In contrast, S(x) (C(x, t))n models spatially localised NO sinks such as blood vessels where 
the decay-rate is greatly elevated within a discrete region. Decay can be modelled as first-
order (n=1) or second-order (n=2), though the latter is mainly used for very strong blood 
flow such as when modelling diffusion of NO from endothelial cells surrounding large blood 
vessels (Vaughn et al., 1998a, 1998b).   
 

 
 
Figure 1: Concentration of NO plotted against distance from the centre of a hollow spherical 
source neuron of inner radius 50μm and outer radius 100μm for a 100ms burst of synthesis 



starting at time t = 0. The graphics underneath each plot depict the source structure. A. 
Concentration of NO at times t = 25, 50 and 100ms, two time points during and one at the 
end of synthesis. B. Concentration of NO after synthesis at times t = 175, 300 and 1.5s. The 
reservoir effect following the end of synthesis is clearly seen as the centrally accumulated NO 
is trapped by the higher surrounding concentrations. Figure used with permission from 
Philippides et al., 2000. 
 
Armed with these equations, the time-course of NO diffusion from neurons of different 
shapes and sizes was modeled in the presence of different levels and types of decay. Figures 
1 and 2 shows the results generated by the first accurate model of NO diffusion from a 
continuous biologically realistic structure (Philippides et al., 1998, 2000, 2003). The source 
was a large neuron-like structure modelled as a hollow sphere as NO is synthesized 
throughout the cytoplasm but not in the nucleus. In this case, there are no sinks and thus 
S(x)=0 in equation 1 and decay rate λ is set so the NO half-life is 5s and P(x, t) is a constant 
value for all points inside the hollow spherical source during synthesis (the amount of NO 
produced per second by a single NO-producing unit multiplied by the density of these units) 
and 0 elsewhere and thus the solution is radially symmetric. (For full details of modeling 
methods and biological justification for parameter values, see Philippides et al., 2000, 2003, 
2005a.) 
 

 
 
Figure 2: Concentration of NO plotted against time after synthesis for a hollow spherical 
source of inner radius 50μm and outer radius 100μm for a 100ms burst of synthesis. Here the 
solid line depicts the concentration at the centre of the cell (0μm), whilst the dotted line 
shows the concentration at 225μm from the centre. Because the absolute values attained at the 
two positions differ from one another markedly, the concentration is given as a fraction of the 
peak concentration attained. These peak values are 7.25μM (centre) and 0.25μM at 225μm. 
The cell and the points at which the concentration is measured are depicted to the left of the 
main figure. Note the high central concentration, which persists for a long time (above 1μM 
for about 2s. Also, there is a significant delay to a rise in concentration at distant points which 
is more clearly illustrated in the expanded inset figure. The square-wave beneath the inset 
figure represents NO synthesis. Figure used with permission from Philippides et al., 2000. 
 



Examination of the time-course of the evolution of NO concentration during and after 100ms 
of NO synthesis shows two very interesting observations. Firstly, the NO concentration 
remains elevated within and throughout the cell for significant lengths of time after the end of 
synthesis; a ‘reservoir’ effect (Fig 1). Second, when viewed over time, there is a delay before 
the concentration peaks at points where NO is not synthesised, both within the neuron itself 
and outside it (Fig 2). Further, the delay increases, while peak concentration decreases, with 
distance from the NO source neuron. To determine the volume affected by NO, we would 
need to know the physiologically effective NO concentration, which is likely to vary 
depending on a number of factors. However, taking a threshold of 0.1 µM (close to the 
equilibrium dissociation constant for the NO receptor soluble guanylyl cyclase, Stone and 
Marletta, 1996), with 100ms of NO synthesis within the walls of hollow spherical neurons 
with radii over 10µm, a volume approximately 3 times the source radius would be affected. 
Although, importantly, the concentration time-course would depend on distance from the 
source. While spatially localised NO sinks such as small blood vessels do affect diffusion, 
they do not alter these overall properties (Philippides et al., 2000). 
 

 
Figure 3: Sparse activity in the nitric oxide (NO) synthase (NOS)-positive outer region of the 
mushroom body (MB) yields a strong volume signal in the NOS-negative core. The MB is 
made up of a parallel array of 30,525 Kenyon cell axons represented as 0.5 µm diameter 
fibres within a tubular region of 99 µm diameter. Axons within the inner 33µm diameter 
tubular core of the MB are NOS-negative and designated as targets. The remaining 27, 212 
NOS-positive axons form  an annular ‘wall’ (shown as a dark gray cut-out in the upper part) 
around the core and are potential NO sources. In 10 independent runs of the diffusion model, 
a random 5% of these peripheral NOS-expressing Kenyon cell axons in the tube wall 
synthesize NO simultaneously for 50 ms. NO half-life is 5 s though results are qualitatively 
similar for other values. The resultant NO concentrations are shown along a line through the 
centre of the stalk as 10 superimposed plots (upper part) and, for a single run, in a cross-
section through the MB (lower part) at the end of synthesis, and 50 and 200 ms later. Figure 
used with permission from Ott et al., 2007. 



In many instances, however, NO is not produced in one source but in multiple distinct 
sources. For instance, the mushroom bodies (MB) of the locust (Schistocerca gregaria), are 
composed of parallel axons of intrinsic neurones (Kenyon cells, KCs) arranged in a tubular 
structure in which peripheral NOS-positive KC axons form NO-producing zones, the tube 
‘walls’, surrounding central cores of NO-receptive KC axons, which do not produce NO. This 
segregated architecture requires NO to spread at physiological concentrations up to 60 µm 
from the outer regions of the tube where it is synthesised to the target axons in the inner NO-
receptive cores (Fig 3). Despite NO being produced by small numbers of distinct sets of KCs 
in response to odours, and that single KCs in the tube walls cannot produce enough NO to 
generate effective signals in the central targets, they act co-operatively and a reservoir of NO 
builds up in the NOS-negative cores. During synthesis, NO is highest in the tube walls 
containing the NOS-positive axons and the resulting concentration gradient drives NO into 
the centre where it accumulates. About 50 ms after the end of synthesis, the peak 
concentration is in NOS-negative cores where NO remains locally elevated for several 
hundred milliseconds. Further, NO signals in the core of the MB are highly invariant for a 
given percentage of randomly selected active sources. Importantly, the general features of the 
diffusion dynamics illustrated here are unaffected by the strength or duration of the synthesis 
pulse, showing that an effective volume signal can be produced by segregated small sources.  
 

 



 
Figure 4: Cooperative volume signals produced by ordered arrays of parallel NO-
synthesizing fibers at the end of a 1s burst of NO synthesis. Fiber diameters (2 µm) and 
spacing (10 µm) approximate that in the locust optic lobe (Elphick et al., 1996). A: NO 
concentration in slices across increasing numbers of active fibers (white dots). A single fiber 
is a relatively ineffectual NO source (1 fiber in A), but increasing numbers (4-36 fibers) result 
in cumulative build-up of NO. B: As the number of fibers increases, so does the volume of 
tissue over a particular concentration, here 100 nM. NO half-life t1/2 is 5s in A and B. C: The 
cooperative volume signal is robust to variation in NO half-life t1/2 within the limits reported 
in the literature, from top to bottom t1/2 =10, 100 and 500 ms. D: Strong cooperation is still 
observed when t1/2  is relatively short (100 ms) and D is reduced to 1100µm2 s-1, one-third of 
its standard value. Figure used with permission from Philippides et al., 2005a. 
 
 
Such co-operative volume signalling can again be seen in a model of NO production in the 
optic lobe of the locust (Fig 4). Here NO is again produced in multiple distinct fine fibers of 
approximately 2 µm diameter. As with the locust mushroom body, despite a single fiber 
producing an ineffective concentration, NO from multiple fibers summate to produce 
effective concentrations over large regions (Fig. 4A, B). This is also the case if sources are 
arranged irregularly instead of in parallel arrays and if their firing is asynchronous. Finally, 
the volume signal persists despite large changes to the parameters governing diffusion 
namely the half-life of NO, t1/2, and the diffusion coefficient, D. When half-life is reduced to 
100 ms (Griffiths and Garthwaite, 2001), 1⁄50 of the value used in Fig 4A, the concentrations 
in the target volume fall to only approximately one-third (250–475 vs 700 –1300 nM). 
Further reduction of t1/2 to 10 ms yields a more spiky concentration distribution with 100 nM 
peaks at the fibers. However, at least 50% or more of this peak concentration is still reached 
everywhere throughout the target volume. Similarly, while reducing the speed of diffusion 
dramatically by decreasing D to a third of its standard value and using a relatively short half-
life, t1/2 = 100 ms, means that the spread of the volume signal outside of the source array is 
limited (compare Fig 4D with bottom middle of 4A), a strong cooperative volume signal is 
still observed within the array. 
 
The examples in Figures 3 and 4 show that small discrete NO sources can act to produce a 
co-operative volume signal, despite asynchronous activity and irregular arrangement and 
spacing. In these contexts, the diffusion process can be seen as a spatio-temporal integrator of 
neural activity in discrete sources. Interestingly, while the two features seen in large 
continuous sources still exist: concentrations within the source neurons persist after the end 
of synthesis and central concentrations can peak after synthesis has ended; there is one key 
difference. With these dispersed sources, the dynamics of diffusion mean that the 
concentration quickly becomes quite uniform within and close to the volume containing the 
NO sources. This means that if the goal of the signalling system is to produce an even 
concentration within a volume, this is best achieved with a network or plexus of fine NO 
producing fibers, perhaps giving rise to a different type of volume signal (explored in abstract 
form in the plexus GasNet model described below and in Philippides et al., 2005b). In turn 
this work led to further theoretical and empirical investigations that have  provided 
experimental evidence for the kind of cooperative signalling predicted by the models 
described above (Steinert et al. 2008).   
 
 
 



 
GasNets: NO inspired ANNs 
Detailed models of long-range neurotransmitter diffusion in the nervous system are 
necessarily computationally expensive so the use of such models in the study of whole 
behaviour generating circuits has so far been beyond the state-of-the-art.  Hence to further 
investigate the functional roles of volume signals and related mechanisms in the generation of 
behavior, a number of authors have advocated the study of more abstract artificial robot 
nervous systems incorporating simplified models of volume signalling and related processes 
(Grand 1997, Husbands et al. 1998, Kondo et al. 1999, Eggenberger et al. 2000, Kondo 2007, 
Buckley 2008). These systems are computationally tractable and can generate sensorimotor 
behaviors in real time in simulations or in the real world. 
 
This section describes a style of artificial neural network directly inspired by NO 
neuromodulation, making use of an analogue of volume signalling. The class of artificial 
neural networks developed to explore artificial volume signaling are known as GasNets 
(Husbands et al. 1998). These are essentially standard neural networks augmented by a 
chemical signaling system comprising a diffusing virtual gas which can modulate the 
response of other neurons. As outlined below, a number of GasNet variants, inspired by 
different aspects of real nervous systems, have been explored in an evolutionary robotics 
(Floreano et al. 2008) context as artificial nervous systems for mobile autonomous robots.  
Evolutionary robotics involves populations of artificial genomes (lists of characters and 
numbers, the members of which act as ‘genes’) which encode the structure and other 
properties of artificial neural networks that are used to control autonomous mobile robots 
required to carry out a particular task or to exhibit some set of  behaviors. Other properties of 
the robot, such as sensor layout or body morphology, may also be under ‘genetic’ control. 
The genomes are mutated and interbred creating new generations of robots according to a 
Darwinian scheme ( i.e. an evolutionary search algorithm) in which the fittest individuals are 
most likely to produce offspring. Fitness is measured in terms of how well a robot behaves 
according to some evaluation criteria; this is usually automatically measured. Evolutionary 
robotics can operate with fewer assumptions about neural architectures and behaviour 
generating mechanisms than other methods; this means that whole general classes of designs 
and processes can be explored (Floreano et al. 2008, Vargas et al. 2014). This makes it a 
particularly attractive technique for synthesizing models in neurobiology, allowing 
explorations of possible processes and mechanisms as in the work described here (Floreano et 
al. 2008).     
 
GasNets have been shown to be significantly more evolvable, in terms of speed to a good 
solution, than other forms of neural networks for a variety of robot tasks and behaviors 
(Husbands et al. 1998, McHale and Husbands 2004, Smith et al. 2003, Philippides et al. 
2005b). They are being investigated as potentially useful engineering tools and as a way of 
gaining helpful insights into biological systems (Philippides et al. 2000, 2003, 2005b, 
Husbands et al. 2010). 
 
By analogy with biological neuronal networks, GasNets incorporate two distinct signalling 
mechanisms, one ‘electrical’ and one ‘chemical’. The underlying ‘electrical’ network is a 
discrete time step, recurrent neural network with a variable number of nodes. These nodes are 
connected by either excitatory or inhibitory links with the output, t

iO , of node i  at time step 
t  determined by the following equation. 
 



 1tanh
i

t t t t
i i ji j i i

j
O k w O I b−

∈Γ

  
= + +      

∑  

 
where iΓ is the set of nodes with connections to node i and 1jiw = ± is a connection weight. 

t
iI is the external (sensory) input to node i  at time t , and ib is a genetically set bias. Each 

node has a genetically set default transfer function gain parameter, 0
ik , which can be altered at 

each time-step according to the concentration of diffusing ‘gas’ at node i  to give t
ik  (as 

described later). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to this underlying network in which positive and negative ‘signals’ flow  between  
units,  an abstract process loosely analogous to  the diffusion of gaseous modulators  is at 
play.  Some units can emit virtual ‘gases’ which diffuse and are capable of modulating the 
behaviour of other units by changing their transfer functions. The networks occupy a 2D 
space; the diffusion processes mean that the relative positioning of nodes is crucial to the 
functioning of the network. Spatially, the gas concentration varies as an inverse exponential 
of the distance from the emitting node with spread governed by a parameter, r , genetically set 
for each node, which governs the radius of influence of the virtual gas from the node as 
described by the equations below and illustrated in Figure 5. The maximum concentration at 
the emitting node is 1.0 and the concentration builds up and decays linearly as dictated by the 
time course function, ( )T t , defined below. 
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where C(d,t) is the concentration at a distance d from the emitting node at time t and s 
(controlling the slope of the function T) is genetically determined for each node. The range of 
s is such that the gas diffusion timescale can vary from 0.5 to 0.09 of the timescale of 

Figure 5: A basic GasNet showing excitatory (solid) and inhibitory (dashed) ‘electrical’ 
connections and a diffusing virtual gas creating a ‘chemical’ gradient. 



‘electrical’ transmission (i.e. a little slower to much slower). The total concentration at a node 
is then determined by summing the contributions from all other emitting nodes (nodes are not 
affected by their own emitted gases to avoid runaway positive feedback). The diffusion 
process is modelled in this simple way to provide extreme computational efficiency, allowing 
arbitrarily large networks to be run very fast. 
 
For mathematical convenience, in the original basic GasNet there are two ‘gases’, one whose 
modulatory effect is to increase the transfer function gain parameter ( t

ik ) and one whose 
effect is to decrease it. It is genetically determined whether or not any given node will emit 
one of these two gases (gas 1 and gas 2), and under what circumstances emission will occur 
(either when the ‘electrical’ activation of the node exceeds a threshold, or the concentration 
of a genetically determined gas in the vicinity of the node exceeds a threshold; note these 
emission processes provide a coupling between the electrical and chemical mechanisms). The 
concentration-dependent modulation is described by the following equation, with transfer 
function parameters updated on every time step as the network runs: 
 
 0
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t t t
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where 0

ik is the genetically set default value for ik , 1
tC and 2

tC are the concentrations of gas 1 
and gas 2 respectively at node i on time step t, and α and β are constants such that 

[ 4, 4]t
ik ∈ − .  Thus the gas does not alter the electrical activity in the network directly but 

rather acts by continuously changing the mapping between input and output for individual 
nodes, either directly or by stimulating the production of further virtual gas. The general form 
of diffusion is based on the properties of a (real) single source neuron as modelled in detail in 
Philippides et al. (2000; 2003). The modulation chosen is motivated by what is known of NO 
modulatory effects at synapses (Baranano et al. 2001). For further details see (Husbands et al. 
1998; Philippides et al. 2005b, Husbands et al. 2010). 
 
When they were first introduced, GasNets were demonstrated to be significantly more 
evolvable than a variety of standard ANNs on some noisy visually guided evolutionary 
robotics tasks ( Husbands et al., 1998). Typically the increase in evolvability, in terms of 
number of fitness evaluations to a reliable good solution, was an order of magnitude or more. 
The solutions found were often very lean with few nodes and connections, typically far fewer 
than were needed for other forms of ANN (Husbands et al. 1998, 2010). But the action of the 
modulatory gases imbued such networks with intricate dynamics: they could not be described 
as simple. Oscillatory sub-networks based on interacting ‘electrical’ and ‘gas’ feedback 
mechanisms acting on different timescales were found to be very easy to evolve and cropped 
up in many forms, from CPG circuits for locomotion (McHale and Husbands, 2004) to noise 
filters and timing mechanisms for visual processing (Husbands et al., 1998, Smith et al., 
2002). GasNets appeared to be particularly suited to noisy sensorimotor behaviours which 
could not be solved by simple reactive feedforward systems, and to rhythmical behaviours.   
 
Two recent extensions of the basic GasNet, the receptor and the plexus models, incorporated 
further influence from neuroscience (Philippides et al., 2005b). In the receptor model, 
modulation of a node is now a function of gas concentration and the quantity and type of 
receptors (if any) at the node. This allows a range of site specific modulations within the 
same network. In the plexus model, inspired by a type of NO signalling seen in the 
mammalian cerebral cortex (Philippides et al, 2005a), as described earlier in this article, the 



emitted gas ‘cloud’, which now has a flat concentration, is no longer centred on the  node 
controlling it but at a distance from it. Both these extended forms proved to be significantly 
more evolvable again than the basic GasNet. Other varieties include non-spatial GasNets 
where the diffusion process is replaced by explicit gas connections with complex dynamics 
(Vargas et al. 2007) and version with other forms of modulation and diffusion (Husbands et 
al. 2010). In order to gain insight into the enhanced evolvability of GasNets, detailed 
comparative studies of these variants with each other, and with other forms of ANN, were 
performed using the robot task illustrated in Figure 6 (Philippides et al. 2005b, Husbands et 
al. 2010).  
 
Starting from an arbitrary position and orientation in a black-walled arena, a robot equipped 
with a forward facing camera must navigate under extremely variable lighting conditions to 
one shape (a white triangle) while ignoring the second shape (a white rectangle). The robot 
must successfully complete the task over a series of trials in which the relative position and 
size of the shapes varies. Both the robot control network and the robot sensor input 
morphology, i.e. the number and positions of the camera pixels used as input and how they 
were connected into the network, were under evolutionary control as illustrated in Figure 6. 
The network architecture (including number of nodes) and all properties of the nodes and 
connections and gas diffusion parameters were set by an evolutionary search algorithm. 
Because of the noise and variation, and limited sensory capabilities (only very few pixels are 
used), this task is challenging, requiring robust, general solutions. The gantry robot shown in 
the figure was used. The evolutionary search algorithm employed a special validated 
simulation of the robot and its environment to calculate fitness (by measuring behavioural 
performance) (Husbands et al. 1998, 2010). Neural controllers evolved in this manner 
generate the same behaviour when downloaded onto the real robot.  
 
The comparative studies revealed that the rich dynamics and additional timescales introduced 
by the gas played an important part in enhanced evolvability, but were not the whole story 
(Philippides et al. 2005b; Husbands et al. 2010). The particular form of modulation was also 
important – multiplicative or exponential modulation (in the form of changes to the transfer 
function) were found to be effective, but additive modulations were not. The former kind of 
modulations may well confer evolutionary advantages by allowing nodes to be sensitive to 
different ranges of input (internal and sensory) in different contexts. The spatial embedding 
of the networks also appears to play a role in producing the most effective coupling between 
the two distinct signalling processes (‘electrical’ and ‘chemical’). By exploiting a loose, 
flexible coupling between the two processes, it is possible to significantly reduce destructive 
interference between them, allowing one to be ‘tuned’ against the other while searching for 
good solutions. It has been suggested that similar forces may be at play in spiking networks, 
where sub-threshold and spiking dynamics interact with each other, which have been evolved 
to drive vision-based robot behaviours (Floreano et al. 2006; Floreano et al. 2008). In the 
most successful varieties of GasNet, dynamics, modulation and spatial embedding act in 
concert to produce highly evolvable degenerate (Tononi et al. 1999) networks. 
 



 

 

 

 

 

 

 

 

 
 

 
 
 
  
 
Conclusions 
 
Nitric Oxide neuromodulation is an important example of a non-classical neural signalling 
mechanism which reveals subtle new dimensions to the functioning of the nervous system. 
Simple connectionist point-to-point notions of information transfer are no longer valid: new 
understandings and new metaphors are needed.   
 
Detailed models of neural processes incorporating diffusing chemicals are computationally 
very expensive and to date have been restricted to small numbers of neurons rather than 
whole behavior-generating neuronal circuits. Computational studies of NO neuromodulation 
in functioning circuits have therefore been of a more abstract nature and have resulted in new 
styles of ANN that have direct engineering applications. However, recent advances in parallel 
computing, including the advent of general purpose GPU computing, mean that we are about 
to enter an era where larger-scale detailed models will be feasible. This will allow important 
advances in understanding the functional roles of NO neuromodulation through the careful 
integration of computational and experimental studies of (biological) neural circuits operating 
under the influence of NO modulation. 
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Figure 6: LEFT: The gantry robot. A CCD camera head moves at the end of a gantry arm allowing 
full 3D movement. In the study referred to in the text, 2D movement was used, equivalent to a 
wheeled robot with a fixed forward pointing camera. A validated simulation was used: controllers 
developed in the simulation work at least as well on the real robot. RIGHT: The simulated arena and 
robot. The bottom right view shows the robot position in the arena with the triangle and rectangle. 
Fitness is evaluated on how close the robot approaches the triangle. The top right view shows what 
the robot ‘sees’, along with the pixel positions selected by evolution for visual input. Only the values 
of these pixels from the camera image are fed into the neural network as visual input signals. All 
other pixel values are discarded. In this way the visual sensor morphology is effectively evolved.  The 
bottom left view shows how the genetically determined pixels are connected into the control network 
whose gas levels are illustrated. The top left view shows current activity of nodes in the GasNet. 
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