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Abstract— This work is the first attempt to investigate the

neural dynamics of a simulated robotic agent engaged in
minimally cognitive tasks by employing evolved instances of the
Kuramoto model of coupled oscillators as its nervous system.
The main objectives are to shed new light into the role of
neuronal synchronization and phase towards the generation of
cognitive behaviours and to initiate an investigation on the
efficacy of such systems as practical robot controllers. The
first experiment is an active categorical perception task in
which the robot has to discriminate between moving circles and
squares. In the second task, the robotic agent has to approach
moving circles with both normal and inverted vision thus
adapting to both scenarios. These tasks were chosen for being
considered as benchmarks in the evolutionary robotics and
adaptive behaviour communities. The results obtained indicate
the feasibility of the framework in the analysis and generation
of embodied cognitive behaviours.

I. INTRODUCTION

Oscillatory phenomena have been formally studied since

at least the 1650s when Christiaan Huygens invented the

pendulum clock, leading to his analysis of pendulum motion

and his later development of the wave theory of light. Since

then it has been noticed that many events in nature can

be understood in terms of their oscillatory properties, with

examples ranging from firefly blinking patterns [1] to the

synchronisation of multiple laser beams [2]. Following the

birth of modern neuroscience at the turn of the last century,

it wasn’t long before researchers started looking at neuronal

dynamics from an oscillatory perspective [3]. The consensus

nowadays is that cognitive processes have a close non-trivial

relationship to neuronal rhythms and oscillations [4]. The

importance of considering temporal relations among groups

of neurons (temporal coding), either by external influences

or sustained by internal mechanisms, has been stressed by

various researchers in recent years [5, 6, 7, 8].

According to Varela et al. [9] it is essential to investigate

the temporal dynamics of neural networks in order to under-

stand the emergence and integration of neuronal assemblies

by means of synchronisation. These dynamic assemblies,

which are related to large-scale neuronal integration, can

influence every cognitive act an agent might eventually

perform. In studying these temporal dynamics, Varela and

collaborators opted to focus on the phase relationships of

brain signals, mainly because these contain a great deal
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of information on the temporal structure of neural signals,

particularly those relating to the underlying mechanism for

brain integration. Other authors have emphasized the rela-

tionship between phase information and memory formation

and retrieval [10, 11, 12].

It is now well established that robotics models

are highly suited to capture essential elements of the

brain/body/environment interactions that underlie the gener-

ation of behaviour, in a way that studies of disembodied

neuronal dynamics cannot achieve [13, 14]. Evolutionary

robotics has an important role in this context as it allows

the exploration of classes of mechanisms, and the automatic

creation of working models when there are insufficient

details to fully specify a system in advance. Hence it has

been recognized as a useful tool in investigating biological

hypotheses [15, 16, 17]. Although there has been much

work on coupled oscillator based control of complex motor

behaviours, particularly locomotion [18], to date there has

been very little research on the wider issues of neuronal

synchronisation and phase information in the generation of

embodied cognitive behaviours. Hence the work presented

in this paper sets out to explore the neural dynamics of a

simulated robotic agent, employing a network of oscillators

as its nervous system, engaged in minimally cognitive tasks,

i.e. tasks that are simple enough to allow detailed analysis

and yet are complex enough to motivate some kind of

cognitive interest. The work has dual aims: both to shed new

light on the role of neuronal synchronisation and phase in the

generation of cognitive behaviours, and to begin investigating

the efficacy of such systems as practical robotic controllers.

For the first time, we apply evolved instances of the

Kuramoto model of coupled oscillators [19] to the generation

of minimally cognitive behaviour, studying two tasks. The

first is an active categorical perception task [13, 20, 21]

in which the robot has to discriminate between moving

circles and squares. In the second task, the robotic agent has

to approach moving circles with both normal and inverted

vision, adapting to both conditions. Even though these tasks

don’t strictly require a network of coupled oscillators to be

solved, they have been chosen for being regarded as bench-

marks in the evolutionary robotics and adaptive behaviour

communities [22, 13, 21, 20].

The rationale behind the choice of the Kuramoto is that it

describes the phase evolution of a set of connected oscillators

and with some adjustments can be associated with groups of

neurons firing at a periodic rate [23]. Therefore, instead of

focusing on single neuron activations, the model resembles

the behaviour of groups of neurons. By using the phase



dynamics as the central feature of the model, the focus is

on short-term temporal activity, which has been previously

shown to be successful in pattern recognition tasks [24, 2].

Furthermore, the model allows for easy inspection of the

phase and frequency of each of the elements, which makes it

especially suitable for studying synchronisation of groups of

oscillators [25], a key factor when analysing communication

and information processing in neuronal assemblies [26, 27].

Izhikevich [11] shows that depending on changes in phase

relationships caused by external/internal stimulus, neurons

can reorganize and synchronize themselves with different

neurons, thus changing their response without the need to

change its synaptic weights. This points towards new kinds

of behaviour generating mechanisms that are explored in the

work presented here.

This paper is organized as follows: section II defines the

Kuramoto model and its adaptation for use in our evolution-

ary robotics studies; section III describes the experiments

and their implementation procedures; section IV shows the

results and provides some analysis and section V presents

the final discussion, conclusions and proposes further work.

II. THE KURAMOTO MODEL

Among many models proposed to study oscillatory be-

haviour, Winfree’s model [28] is one of the most explored

and has been applied to investigate large populations of

biological oscillators (e.g. fireflies, crickets, circadian pace-

maker cells and eventually neurons). The essence of his

model is represented by a lattice of coupled oscillators,

each with a possible different natural frequency drawn from

some distribution, modulated according to a function that

depicts their sensitivity to the phase in each other node. The

Kuramoto model [19] is defined when this influence function

from a node i to a node j assumes the form of sin(θj − θi),
where θ stands for the phase of the node.

Kuramoto observed that under certain conditions the in-

fluence function could be represented by the first term of

its Fourier series, the rest of it being suppressed, hence the

sin(θj − θi) substitution. It has been widely investigated

in the literature, with successful approaches ranging from

superconductor’s physics [29] to pattern recognition [2].

Some mathematical analysis can be carried on the Kuramoto

model, but its dynamics can easily scale up in complexity.

The model has the form of Equation 1. It can present a large

variety of synchronisation patterns and can be adapted to

many different scenarios. However, it is considered to be

intractable analytically.

dθi
dt

= ωi +
k

n

n∑

j=1

sin(θj − θi) (1)

where: θi is the phase of the ith oscillator, ωi is the natural

frequency of the ith oscillator, k is the coupling factor

between nodes and n is the total number of oscillators.

Basically, if the frequency of any two given nodes i and

j (i, j = 1, 2...n) are equal, i.e. dθi − dθj = 0 or θi − θj =
constant, the model is said to be globally synchronized.

Fig. 1. Framework for application in evolutionary robotics. The oscillatory
network is represented by a set of nodes connected by a thick line, in the case
of the ring topology, or by dashed lines, in the case of the fully connected
topology.

It is possible to calculate a synchronisation index, which

would give a better idea on how synchronized the set of

oscillators are [19]. Consider Equation 2, where r stands for

the synchronisation index (1 meaning high synchronisation,

0 meaning incoherent oscillatory behaviour) and ψ stands for

the mean phase of the system.

reiψ =
1

n

n∑

j=1

eiθj (2)

The Kuramoto model presents a series of properties that

makes it suitable for the study of different types of syn-

chronisation problems. Our work focuses on a particular

property known as partial synchronism. Consider a network

composed of 4 nodes, where each node is connected to

its immediately two neighbours in a shape similar to a

ring. Depending on the coupling factor k and the natural

frequency wi of each node, the network can present a global

synchronous behaviour. Monteiro et al. [30] showed that by

changing the frequency of one node the resultant network

may exhibit partial synchronism, i.e., some of the nodes

become synchronized while other nodes are not. Moreover,

the oscillatory behaviour of one node can be influenced by

another node in the network not necessarily connected to it.

The importance of this property in mimicking brain re-

lated dynamics relies in the fact that different neuronal

blocks could synchronize and influence other blocks, and

in consequence different cortical areas could flexibly estab-

lish communication channels depending on their temporal

activity. This is in agreement with some recent findings in

neuroscience [4], reinforcing the feasibility of applying the

Kuramoto model to study cognitive processes.

A. Framework for application in evolutionary robotics

The model studied here is inspired by the aforementioned

Kuramoto model, with some modifications made to it so that

it could be applied to control a simulated robotic agent.

The framework is composed of a set of oscillators, con-

nected in two possible ways: to its immediately two neigh-

bours, giving the structure the shape of a ring (see Figure 1),

or fully connected. In his original work, Kuramoto suggested

a fully connected set-up, but other structures, including the

ring shaped one, have been studied and proven to have a



Fig. 2. Experiments 1 and 2 scenario. The agent (gray circle in the bottom)
has to catch falling circles and avoid squares in Task 1 and catch falling
circles with normal and inverted vision in Task 2. The robotic agent has
7 ray sensors, symmetrically displaced with relation to the central ray in
intervals of ±pi/12 radians, and two motors that can move it horizontally.

direct influence over the synchronisation properties of the

model [31, 23, 32].

In our approach, the frequency of each node is the result

of the sum of its natural frequency of oscillation, wi, with

the value of the sensory input related to that node, scaled by

a factor zi. The natural frequency wi could be associated to

the natural firing rate of a neuron or a group of neurons, and

the sensory inputs mediated by zi would alter its oscillatory

behaviour according to the environmental context, improving

the flexibility of the model to study cognitive processes and

its neural correlates [23].

At each iteration the phase differences from a given node

in relation to all other nodes it is connected to are calculated

according to Equation 3. Based on the approach suggested by

Schmidhuber et al. [33], the output of the network is given

by the sine of the aforementioned phase differences linearly

combined by the output weight matrix W . The sine function

aims at reducing the phase differences instabilities caused

by the phase resetting of each oscillator when it exceeds 2π.

Therefore, there are n inputs to n correspondent nodes in the

network, with Cn,2 phase differences being multiplied by a

Cn,2 × o matrix W, where o is the number of outputs.

dθi
dt

= (ωi + ziI(t)) + k
∑

j∈Ci

sin(θj − θi) (3)

where Ci is the set of nodes connected to node i.
In this way, the overall behaviour of the network will be

dictated by the phase dynamics and the environmental input

to the robotic agent. It is important to stress that, as shown

in the previous section, nodes that are not directly connected

can influence each other, depending on the frequency they

have.

III. METHODS

To investigate the framework presented in this paper, two

tasks are studied, following the works of Beer [13] and

Izquierdo [21].

In the first experiment an active categorical perception task

is performed. It consists of a circular robotic agent able to

move horizontally in a 250 × 200 rectangular environment

(Figure 2). The robotic agent’s body consists of 7 ray sensors,

symmetrically displaced in relation to the central ray in

intervals of ±pi/12 radians, and two motors. An intersection

between each sensory ray and an object reflects a reading

between 0 and 10, 0 when the ray length is greater than 200
units and 10 when the ray length is 0. In all experiments,

there is a saturation of the sensors (they are clamped) when

their value is above 9. The robotic agent has to discriminate

among circles and squares as they move from the top of

the arena to the bottom (only one object at each trial),

where the robotic agent is located. The square’s diagonal,

the robotic agent and the circle’s radius measure 15 units. At

the beginning of each trial, a circle or a square is dropped

at the top of the scenario in a random horizontal position

within a maximum of 50 units from the robotic agent,

and moves vertically with a velocity of 3 units/step. The

robotic agent, while being at the bottom, has to approach the

circles and avoid the squares, adjusting its horizontal velocity

accordingly.

The second experiment consists of an orientation task. In

the same environmental set-up, the robotic agent has to adjust

its horizontal position and catch circles, with normal and

inverted vision. When submitted to visual inversion, sensory

readings from an object at the right side of the agent are

perceived by the agent’s left set of sensors, and vice-versa.

Therefore, different scenarios can cause similar sensory stim-

ulus to the robotic agent thus requiring a different strategy

depending on the current situation.

In this sense, the first task aims at investigating the

performance of the proposed architecture in discriminating

between two objects, whereas in the second task the robotic

agent has to develop a strategy to overcome the disruption

caused by the inversion of the visual field. In both scenarios,

the focus will not be solely on the behaviour displayed by the

robotic agent but also in the dynamics and synchronisation

patterns of the proposed framework.

A genetic algorithm is used to determine the parameters

of the system: the frequency of each node, wi ∈ [0, 10], the

coupling factor k ∈ [0, 5], the input weights zi ∈ [0, 3], the

matrix WCn,2,o with elements in the interval [−2, 2] and a

motor output weight s ∈ [0, 10], resulting in a genotype of

length 58 for the tasks studied here.

The network’s genotype consists of an array of integer

variables lying in the range [0, 999] (each variable occupies

a gene locus), which are mapped to values determined by the

range of their respective parameters. For all the experiments

in this paper, the population size was 49, arranged in a

7 × 7 grid. A generation is defined as 100 breeding events

and the evolutionary algorithm runs for a maximum of

100 generations. There are two mutation operators: the first

operator is applied to 20% of the gene and produces a change

at each locus by an amount within the [−10,+10] range

according to a normal distribution. The second mutation

operator has a probability of 10% and is applied to 40%

of the genotype. A randomly chosen gene locus is replaced
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Fig. 3. The generalization performance of the agent over 100 aleatory runs for the ring topology (a) and the fully connected topology (b). The red colour
is related to the circle catch behaviour and the blue colour to the square avoidance behaviour. The plot illustrates the value of the horizontal separation of
the agent and the object along 80 iterations.

with a new value within the [0, 999] range in an uniform

distribution. For further details about the genetic algorithm,

the reader should refer to [34].

In the first experiment, an evolutionary run corresponds to

28 trials with randomly chosen objects (circles or squares),

starting at an uniformly distributed horizontal offset in the

interval of ±50 units from the robotic agent. Fitness is

defined as the robotic agent’s ability to catch circles and

avoid squares, and is calculated according to the following

equation: fitness =
∑N

i=1
ifi/

∑N

i=1
i, where fi is the ith

value in a descending ordered vector F1,N , and is given by

1−di, in the case of a circle, or by di in the case of a square.

di is the horizontal distance from the robotic agent to the

object at the end of the ith trial (when the object reaches

the bottom of the scenario), limited to 50 and normalized

between 0 and 1. Therefore, a robotic agent with good

fitness maximizes its distance from squares and minimizes

its distance from circles. Notice that the fitness function

pressures for a good performance in all trials in a given

evolutionary run, instead of just averaging the performance

of each trial, which could bias the mean fitness of a given

robotic agent leading to a poor generalization behaviour.

In the second experiment, the evolutionary run corresponds

to 20 trials with normal vision scheme followed by 20 trials

with inverted vision. The circles are dropped at an uniformly

distributed horizontal offset in the interval of ±50 units from

the robotic agent. Fitness for each part of the run is defined

as above but considering just the circle catch scenario. The

final fitness is calculated by averaging the fitness obtained

under normal and inverted vision. Therefore, a robotic agent

with good fitness minimizes its distance from circles, in both

normal and inverted vision situations.

The next section presents the results, considering the high-

est fitness individual evolved for each proposed experiment.

IV. RESULTS

A. Experiment 1

In the first experiment two network topologies were inves-

tigated, the ring topology and the fully connected topology.

We will first focus on the ring topology moving to the

analysis of the fully connected structure afterwards.

The training fitness of the best individual was 0.96 out

of 1.00, and the generalization fitness over 100 random runs

was 0.94, which resemble the results that are found in the

literature [13, 20]. Figure 3(a) illustrates the generalization

test.

In the first 10 iterations, the robotic agent remains prac-

tically motionless, as portrayed by the invariance of its

horizontal separation in relation to the agent. The subsequent

10 iterations show that the behaviour of the robotic agent is

very similar for both task scenarios, moving to one side of the

falling object (in this case, moving to the right side of the ob-

ject). From that iteration on, the discrimination process could

be better observed. The robotic agent approaches the circles,

centres itself in relation to the falling object, and continues

to move to one side of the scenario to avoid the squares. This

behaviour has been observed before in Izquierdo [21] for the

same task but with a different neural controller architecture.

One can attribute this behaviour to the asymmetric nature of

the neural controller, i.e. the neural connection weights and

other network parameters are not symmetric in relation to

the robotic agent’s body, which is the case of the controller

studied in this paper. It is also pointed out that the strategy

developed by asymmetric neural controllers are simpler than

the ones developed by symmetrical ones, and that they were

easier to evolve. However, that doesn’t mean they are less

capable of solving complex tasks. In fact, they achieved good

performance levels in the tasks under analysis.

Figures 4 and 5 show the detailed behaviour of the robotic

agent’s internal and external dynamics for the two task devel-

oped behaviours (circle catch and square avoidance). Figure

4(a) shows the robotic agent’s trajectory, the frequency of

each node of the network and the phase dynamics, respec-

tively. The upper part refers to the circle catch behaviour and

the bottom part refers to the square avoidance behaviour.

It is possible to observe that the robotic agent success-

fully solves the task, moving close to circles and far from



squares. The oscillatory pattern of each node, as explained

in Section II-A, depends on the sensory input and therefore

varies according to the object being detected and the robotic

agent’s position in relation to the object. However, as it is

going to be detailed in the next paragraph, the nodes can

interact with each other and as a consequence the resultant

global oscillatory behaviour is a combination of the perceived

environment and the internal oscillatory state of the network,

which means that the relevance of one node’s response

to an external stimulus will be modulated by the context

established by the other nodes in the network.

The phase dynamics, as expressed by Equation 3, changes

according to the frequency of each node and produces the

different behaviours observed in the task. Notice that the

network activity approaches the synchronized state in the

square avoidance task (centre graphic of the bottom part of

Figure 4(a)) as the robotic agent is receiving less stimulus

from the environment. Also, the phase activity is smoother,

when compared to the respective top part of the figure (circle

catch behaviour). However, it is important to highlight that

even without external stimulus there can be an oscillatory

activity in the network. Lastly, the aforementioned synchro-

nisation properties of the system are mainly dictated by the

parameters of the oscillatory ring network (see Equation 3),

such as the coupling factor k and the natural frequency of

each node wi [31, 32].

Figure 5 illustrates the detailed sensory input, the motor

output, and the frequency of each node (upper two graphics

for circle catch, bottom two for square avoidance, respec-

tively). It is possible to observe, in both situations, that the

oscillatory pattern of the network is not a direct product of

the external stimulus and the node’s natural frequency, but a

composition with the other nodes frequency. For instance, in

the top two graphics the sensory input tends to saturate as

the robotic agent gets closer to the circle but the frequency

of each node has a completely different behaviour. Notice

the almost synchronized state of nodes 2 (red), 3 (green)

and 7 (magenta) after iteration 70. This fact can also be

observed between nodes 1 (black) and 5 (yellow), despite

having different natural frequencies and not being all directly

connected. Another interesting case happens near iteration

56: the frequency of node 6 (cyan) changes even without a

direct environmental input to it, stressing the dependence of

the overall network state in the determination of each node’s

frequency.

In the bottom two graphics, between iterations 30 and

50, even though sensors’ 6 (cyan) and 7 (magenta) readings

increase, the frequency of the correspondent nodes does not

because they are also interacting with the other nodes. For

instance, in the same time interval, node 1 (blue) has its

frequency altered without receiving any external stimulus.

The opposite happens in node 5 (yellow), between iterations

10 and 30, where in spite of the sensory reading the node’s

frequency remains almost unaltered.

Figure 6(a) shows the synchronisation index and the mean

phase of the network, calculated using Equation 2. The over-
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Fig. 4. Detailed behaviour of the agent’s internal and external dynamics in
Experiment 1 for the ring topology (a) and fully connected topology (b). The
top three graphics refer to the circle catch behaviour and the bottom ones
to the square avoidance behaviour. The leftmost illustrates the horizontal
coordinate of the agent and the object, the middle one shows the frequency
of each node of the network as the task progresses and the rightmost ones
present the 21 (C7,2) possible phase differences, calculated using Equation
3 (see text for details).

all behaviour of the network is almost equal until iteration

20, when a phase difference between both task scenarios

(circle catch and square avoidance) starts to appear and the

synchronisation index for the first case illustrates the lack of

synchronisation observed in the previous figures.

The following analysis will focus on the fully connected

topology. The training fitness of the best evolved individual

was 0.97 out of 1.00, and the generalization fitness over

100 aleatory runs was 0.92. Figure 3(b) illustrates the gen-

eralization test. Regarding the two architectures, the first

comparison that can be made is that the fully connected

topology presented a better performance in centring and
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Fig. 6. Experiment 1 synchronisation index and the mean phase of the network for the ring topology (a) and the fully connected topology (b) , calculated
according to Equation 2
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Fig. 5. Sensory input and the motor output, and the frequency of each node
(upper two graphics refer to circle catch, bottom two for square avoidance,
respectively) for the Experiment 1, ring topology case.

catching circles, but showed a poorer performance when

the circles started in a relatively distant position from the

robotic agent (note the poor catching behaviour when the

initial horizontal separation is near the maximum value of

50).

In Figure 4(b), it is possible to observe that the frequency

and phase dynamics for the circle catch behaviour (top 3

graphics of the figure) are similar to the ones observed in

Figure 4(a) and analysed in the paragraphs above. However,

the square avoidance behaviour, represented in the bottom

three graphics of Figure 4(b), presents a noticeable different

strategy. The robotic agent moves very fast to one side of

the scenario (leftmost graphic), eventually not having its

sensors stimulated by the square anymore. This lack of

stimulus drives the system to a much more synchronized

state than the one observed in the previous experiment, and

a near-synchronous state is obtained with mean frequency

of the order of 6rad/s (observe the middle graphic). As a

consequence, the phase differences (shown in the rightmost

part of the figure) become almost constant, and the robotic

agent’s motors speed, dictated by the phase differences and

the output matrix W , stabilize in a constant value (leftmost

graphic). Therefore, without external stimulus the network

has an internal dynamics with all nodes oscillating near the

same frequency. Internally generated brain activity, regard-

less of environmental inputs, is stressed by Engel et al. [5]

as one of the key elements in cognitive processes. Figure

6(b) gives an overall picture of the synchronisation index

and the mean phase of the network during the experiment,

corroborating with the previous analysis.

B. Experiment 2

In the second experiment, the robotic agent is controlled

by the fully connected network architecture, given its slightly

better performance obtained in the previous experiment in the

catching circles part of the task. Remember that the robot has

to catch falling circles under normal and inverted vision.

Evolved robotic agents with good performance were ob-

tained. The training fitness for the best evolved individual

was 0.94 out of 1.00, and the generalization fitness over 100
random runs was 0.93. Figure 7 illustrates the generalisation

test. For both scenarios, the adopted strategy seems to

be: move to one side of the object (in this case the left

side), where robotic agents with normal visual have their

right sensors stimulated whereas robotic agents with inverted

vision have their left sensors stimulated, and then centre in

the object.

Looking at Figure 8 it is possible to see that the strategy for

the normal and inverted vision tasks is almost the same, but

the oscillatory activity of the network and its phase dynamics

are quite different, illustrating the multiple roles a single

oscillator can have in the network. For example, near iteration

60, in the normal vision scenario (upper part of the figure,

middle graphic), the frequency of each node is varying and

there is no apparent synchronisation. Near the same iteration,

for the inverted vision case (bottom part of the figure), one

can observe two almost synchronized clusters appearing: one

formed by 4 nodes, the other formed by 2 nodes and the

unsynchronized remaining node oscillating in a much higher

frequency.
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differences.

V. DISCUSSION AND FUTURE WORK

This work presents the first application of a widely

used model of phase interacting oscillators, known as the

Kuramoto model, to two different robotics tasks, which

are commonly studied in minimally cognitive evolutionary

robotics.

The first experiment, a categorical perception task, in-

vestigated the internal dynamics of the robotic agent, the

synchronisation of the network and the resulting behaviour

displayed by the robotic agent under two different network

topologies, locally (ring shape) or fully connected. The

experiment showed that nodes interact with each other and

different synchronisation patterns can be obtained depending

on the connectivity scheme, the environmental context and

the internal state of system. A possible explanation for why

the fully connected topology presents a higher synchronisa-

tion, compared to the ring topology, can be found in the work

of Cumin and Unsworth [23], which indicates that increasing

the connectivity of a network of oscillators increase their

synchronisation. Also, Niebur et al. [35] state that a sparse

coupling (i.e. few, possibly long-range connections) between

oscillators are much more likely to promote synchronism

than different coupling schemes such as nearest-neighbour or

Gaussian distributed. This is not a trivial topic, as stressed

by Wiley et al. [31], who mention the intractability and

the importance of understanding the conditions under which

a set of oscillators would synchronize. Understanding it

could shed light into many different research areas, from

the comprehension of the role of oscillatory properties in

some diseases (e.g. Parkinson)[9] to the establishment of new

parallel computing architectures [36].

The second experiment explored an inverted vision task

where the robotic agent had to respond differently under the

same sensory input conditions. It was possible to observe the

different phase dynamics and the different synchronisation

patterns of the nodes generating a very similar behaviour,

illustrating the robotic agent’s ability of tackling multiple

and conflicting situations, even though the networks are

composed of only 7 oscillatory nodes. All these observations

relate to Buszaki [4] and Friston’s [27] comments, which

stress that the brain is not simply a reactive system respond-

ing to stimulus, but has spontaneous activity and interacts

with the incoming sensory input, establishing dynamic cell

assemblies by synchronizing and desynchronizing different

groups of neurons.

We believe that exploring a simulated

brain/body/environment system, in addition to the existing

methods, could contribute to unveil important mechanisms

of the neural system which may not be easily identifiable

in living organisms and that could inspire the design of

new robotic controllers. In this sense, the work presented in

this paper devised a system that could eventually provide

insights on the role of neuronal synchronisation and phase

in the generation of cognitive behaviours, and to begin

investigating the efficacy of such systems as practical robotic

controllers.

There are many directions for future work, including: the

study of different neural topologies for the network, including

sparse connectivity schemes that would resemble with more

fidelity the brain cortical structure; changing the coupling

factor k so that it would vary depending on the activity and

synchronisation level of different oscillators, adding flexibil-

ity to the neural assembly formation; compare the results

obtained by large group, mean field neural approximation

models, such as the one studied here, with models that focus

on single neuron units; reproduce experiments with animals

using an evolutionary robotics approach and observe if the

results obtained could contribute somehow to the previous

conclusions.
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