Neuronal Assembly Dynamics in Supervised and Unsupervised Learning Scenarios

Renan C. Moioli, Phil Husbands

Abstract—The dynamic formation of groups of neurons - neuronal assemblies - is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronised oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labelled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators, and allows one to fine tune the network synchronisation dynamics and assembly configuration. The experiments explore the computational power, redundancy, and the generalisation capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network, and showing that the framework can be exploited to generate minimally cognitive behaviours, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions.

I. INTRODUCTION

Since Hebb’s seminal work on brain activity (Hebb, 1949), the transient formation of neuronal groups or assemblies is increasingly linked to cognitive processes and behaviour. In fact, there is a growing consensus that ensembles of neurons, not the single neurons, constitute the basic functional unit of the central nervous system in mammalians (Averbeck & Lee, 2004; Nicolelis & Lebedev, 2009). However, labelling a certain group of neurons as constituting an assembly is a challenging task that only recently has been alleviated by more advanced recording techniques and analysis tools (Buzsaki, 2010; Lopes dos Santos et al., 2011; Canolty et al., 2012). Also, it is still unclear how neuronal groups form, organize, cooperate and interact over time (Kopell et al., 2010, 2011).

One hypothesis that has gained considerable supporting experimental evidence states that groups of neurons have their functional interactions mediated by synchronised oscillations, so-called “binding by synchrony” (Singer, 1999; Varela et al., 2001; Uhlhaas et al., 2009). As structural connectivity is relatively static at the time-scale of perception and action, the central idea is that the synchronisation of neuronal activity by phase locking of network oscillations is exploited to define and encode relations between spatially distributed groups of neurons, and information dynamics and computations within the network relate to the timing of individual spikes rather than their rates. Indeed, phase relationships contain a great deal of information on the temporal structure of neuronal signals, module neuron interactions, are associated with cognition and relate to memory formation and retrieval (Izhikevich, 1999; Womelsdorf et al., 2007; Masquelier et al., 2009; Kayser et al., 2009). Moreover, recent works have shown that specific topological properties of local and distant cortical areas support synchronisation despite the inherent axonal conduction delays, thereby providing a substrate upon which neuronal codes relying on precise interspike time can unfold (Vicente et al., 2008; Pérez et al., 2011).

Based on the concepts above, in this paper we focus on a pragmatic investigation of three aspects of computations in neuronal assemblies. Given a computational task and a neural network model, comprised of many neurons that are organised in an arbitrary number of assemblies, (1) does increasing the number of neural assemblies improve performance? (2) Does the number of neurons per assembly affect performance? (3) Can dynamic assembly reorganization alone, leaving aside other plasticity mechanisms, be exploited to solve different tasks?

We approach these questions employing a neural network model based on the Kuramoto model of coupled phase oscillators (Kuramoto, 1984). It has been extensively studied in the Statistical Physics literature, with recent applications in a biological context due to its relatively simple and abstract mathematical formulation yet complex activity that can be exploited to clarify fundamental mechanisms of neuro-oscillatory phenomena without making too many a priori assumptions (Ermentrout & Kleinfeld, 2001; Cumin & Unsworth, 2007; Kitzbichler et al., 2009; Breakspear et al., 2010; Moioli et al., 2012). The model explicitly captures the phase dynamics of units that have intrinsic spontaneous oscillatory (spiking) activity and once connected can generate emergent rhythmic patterns. The correspondence between coupled phase oscillators and neuronal models is grounded in the phase reduction approach (Ermentrout & Kopell, 1986), according to which analysis of neuronal synchronisation phenomena based on complex models can be greatly simplified by using phase models.

However, in addition to modelling constraints (described to appear Neural Computation 25(11), 2013.
in Section II), the original Kuramoto model has limited spectral complexity compared to that of more biologically plausible neuronal models (Bhowmik & Shanahan, 2012); for this reason, recent extensions have been formulated to enhance its suitability to study a variety of neurobiological phenomena, incorporating e.g. spatially embedded couplings, transmission delays, and more complex phase response curves (Breaksppear et al., 2010; Wildie & Shanahan, 2012). Nevertheless, it is possible to represent neurons as simple phase oscillators, model the spiking of individual cells, and results can still be of relevance. Indeed, this is exactly the objective, to avoid physiologically precise models that could make the analyses laborious and instead use a model that despite all the simplifications still presents complex and relevant spatiotemporal activity. One particular extension, presented in Orosz et al. (2009), allows one to fine tune the synchronisation regime, the number of assemblies, and the number of neurons per assembly, thus suiting our study, whilst also avoiding any problems in obtaining phase information (an issue in other models which consider frequency and amplitude dynamics (Pikovsky et al., 2001)).

Hence the extended Kuramoto model is highly relevant, at a certain level of abstraction, to modelling neuronal mechanisms underlying adaptive and cognitive behaviours and is used in the studies presented here.

The experiments were set-up to encompass supervised and unsupervised learning scenarios (Dayan & Abbott, 2001). In supervised learning, there is an explicit target or supervisory signal mapping each set of inputs to expected outputs. In unsupervised learning, the system exploits the statistical structure of the set of inputs and operates as a self-organised, goal-oriented process. Although the latter is regarded as being more common in the brain, evidence suggests that both learning paradigms overlap and may be implemented by the same set of mechanisms (Knudsen, 1994; Dayan, 1999).

The first experiment, a supervised learning scenario, follows a method described in Maass et al. (2003) and Legenstein & Maass (2007) to assess computational performance in generic neuronal microcircuits. More specifically, we analyse the computational power and generalization capability of neuronal networks with diverse assembly configurations in a generic spike pattern classification task. The method is specially suited to our goals because it proposes a measure to test the computational capability of neural microcircuits that is not exclusive to the task investigated here but to all computational tasks that only need to have in common which properties of the circuit input are relevant to the target outputs. In networks with the same number of neurons, we show that the performance of architectures constituted by many assemblies (and fewer neurons per assembly) is higher than the ones with fewer assemblies (and more neurons per assembly). We also show that in networks of varied size performance saturates as soon as a given number of assemblies is formed, and the addition of neurons in each assembly does not influence performance in the classification task. In both scenarios, an analysis of redundancy and synergy, based on concepts of information theory, supports and provides further insights into the properties of the system.

The pattern classification task mentioned above may reflect or mimic some of the computations that are actually carried on in a real-world cognitive scenario, nevertheless it does not capture the main task of cognition, which is the guidance of action. As pointed out in Engel et al. (2001), “the criterion for judging the success of cognitive operations is not the correct representation of environmental features, but the generation of actions that are optimally adapted to particular situations”. Therefore, in the second experiment, an unsupervised learning scenario, we investigate evolved embodied cognitive behaviours in a simulated robotic agent. Following an Evolutionary Robotics approach, we show that the same network architecture of Experiment 1 can be used as a control system for a simulated robotic agent engaged in a minimally cognitive task, and that assembly reconfiguration can account for good performance in multiple, possibly conflicting tasks. The analysis is centred both on the system’s variables dynamics, illustrating the interplay between dynamic assembly formation and the action being displayed by the robot, and the information dynamics between some components of the system, which complements the former analysis by quantifying and emphasizing the non-linear relationships that are present in the brain-body-environment interactions.

As a consequence of approaching different learning paradigms, the analyses for the two experiments use distinct, but appropriate, tools. However, it is important to stress that the above experiments are conceptually connected by the emphasis on neuronal assembly dynamics and its impact on task performance. The methods employed to explore supervised learning tasks struggle to operate in unsupervised scenarios because the former rely on coordinated, time-specific perturbations and measurements, with a focus on precise classifications, whilst the latter are mainly concerned with the behaviour of the evolved robots. Notwithstanding, the first experiment provides insights into the system’s dynamics which contribute to the comprehension of the more elaborated second experiment. In this sense, the supervised and unsupervised learning tasks and the respective methods of investigation do not contradict but rather reinforce the flexibility of the framework in addressing diverse learning problems.

This paper is organized as follows: Section II presents the neural network model, including the rationale behind neural network models using coupled phase oscillators and the extension to the Kuramoto model which facilitates the study of assembly dynamics, and a brief introduction to Information Theory, which is the basis of some analysis carried on in the experiments; Sections III and IV contain task-specific analysis methods and the results of the first and second experiment, respectively; the paper concludes in Section V by highlighting the main contributions and giving a general discussion of the results obtained.
II. THEORETICAL BACKGROUND

A. Neural Network Model

Neural network models based on the dynamics of voltage-dependent membrane currents (among which the Hodgkin-Huxley model is perhaps the most well known) can be described by a single phase variable θ provided that the neurons are assumed to spike periodically when isolated, their firing rates are limited to a narrow range, and the coupling between them is weak (Hansel et al., 1995). In fact, many neural oscillatory phenomena can be captured and analysed by studying the dynamics of coupled phase oscillators (Izhikevich, 2007), provided that the above conditions hold. In this sense, the Kuramoto model (Kuramoto, 1984) of coupled phase oscillators has been shown to be a useful tool in studying oscillatory phenomena in a broad range of fields, from semiconductor physics to fireflies’ blinking pattern. The model is described by Equation 1:

$$\dot{\theta}_n = \omega_n + \frac{K}{N} \sum_{m=1}^{N} g(\theta_n - \theta_m), n = 1, \ldots, N. \quad (1)$$

where θ_n is the phase of the nth oscillator, ω_n is the natural frequency of the nth oscillator, K is the coupling factor between the nodes of the network, $g(\theta_n - \theta_m) = \sin(\theta_n - \theta_m)$ represents the interaction between nodes, and N is the total number of oscillators.

The phase interaction function (PIF) g assumes the mutual influence among the symmetrically coupled oscillators to be periodic, i.e. $g_{nm}(x + 2\pi) = g_{nm}(x)$; it can thus, be expanded into a Fourier series. The Kuramoto model considers only the first term of this series, but when g incorporates more complex interactions between the nodes rather than the first harmonic only, the model displays a more complex spatio-temporal behaviour and the synchronisation patterns observed are closer to the ones measured in real brains (Hansel et al., 1995; Breakspear et al., 2010).

In particular, Ashwin et al. (2007) and Wordsworth & Ashwin (2008) showed, when adopting a specific g, that the model is able to display heteroclinic cycles, a fundamental mechanism of cognition according to some authors (Ashwin & Timme, 2005; Rabinovich et al., 2012). Additionally, Orosz and collaborators (Orosz et al., 2009) demonstrated how to design g so that the network organizes itself in an arbitrary number of stable clusters with a given phase relationship between clusters. These clusters, which emerge as an attractor of the system, remain stable up to a certain level of perturbations, applied in the form of inputs, above which a reorganization occurs, maintaining the same number of assemblies but with different membership configurations. Therefore, considering the aims of our study, this latter extension will be used in the subsequent experiments and is used as an abstract representation of interactions between spiking neurons. Equation 2 describes the model for N oscillators (Orosz et al., 2009):

$$\dot{\theta}_n = \omega_n + \frac{K}{N} \sum_{m=1}^{N} g(\theta_n - \theta_m) + \epsilon_n I_n(t), \quad n = 1, \ldots, N, \quad (2)$$

where $I_n(t)$ is an input scaled by a factor ϵ_n, and the PIF $g(\gamma)$ has the form of Equation 3:

$$g(\gamma) = f_M(\gamma) + f_M(\gamma - \xi) \quad (3)$$

where $f_M(\gamma) = -2\tanh(M\sin(\gamma/2))\text{sech}^2(M\sin(\gamma/2))\cos(\gamma/2)$ and $\xi = 2\pi/M$.

This PIF is obtained by a suitable choice of g and its derivatives to ensure that a system with N oscillators will present M stable assemblies separated equally in phase, with oscillators grouped according to their initial phases (which will dictate their position in the attraction basin determined by the total number of assemblies and parameter M). Assembly membership, i.e. which oscillator belongs to which assembly, can be changed if one applies an input to a given oscillator with a minimum magnitude and length. These will depend on the number of oscillators and assemblies ($parameter M$) of the network. Nevertheless, small perturbations still affect the overall behaviour of the system. Observe Figure 1, which illustrates the main properties of the model.

The network is composed of 9 fully connected neuronal oscillators with unitary couple (without loss of generality, the PIF is assumed to capture any effect due to larger or smaller couplings). The initial phases are uniformly distributed in the interval $[0, 2\pi)$, and the oscillators organize in $M = 3$ different (but with equal number of members) assemblies after a settling period (Figure 1(e)). As the focus is on neuronal assembly in terms of phase relationships, we set the natural frequency ω_n of all neurons to 1. In Figure 1(d), the raster plot shows the neuronal spikes that occur every time the phase of each oscillator reaches a given threshold (0 in the example, but any other marker is acceptable). Notice from both aforementioned figures the formation of three assemblies of three neurons each.

After a settling period the system stabilizes in M assemblies and presents a periodic firing behaviour. However, inputs to one or more neurons can change the network dynamics in two ways: it can modulate the ongoing activity in all assemblies without changing their organization or it can cause the assemblies to rearrange. Figure 1(e) illustrates the effect (see the caption for simulation parameters). At the beginning of the simulation, the initial phase values of each neuron will determine to which assembly each neuron will be associated. The number of assemblies ($parameter M$) determine the size of the attraction basin and hence the necessary input amplitude and length to cause a given node to switch assemblies. In the example, the phase of an oscillator has to be perturbed by an absolute value greater than $\pi/3$ to change to a different stable cluster. At time $t = 30$, an input of sufficient duration and magnitude is applied to one neuron causing it to “jump” and take part in a different
Fig. 1. Model simulation using the PIF described by Equation 3, with parameters $N = 9$, $M = 3$, $K = 1$ and $w_n = 1$. Oscillators form 3 clusters, and inputs to a given oscillator cause a transition to a different cluster, if the magnitude is high enough, or a modulation of the network behaviour, if the input is small enough. (a) Network topology model. (b) PIF diagram (Equation 3). (c) Phase dynamics of each oscillator. The initial phases are uniformly distributed in $[0, 2\pi)$, and as the simulation progresses the oscillators form $M = 3$ assemblies (assembly membership is represented by different grey tones in the plot). The small plot shows the moment ($t = 30$, see the black arrow) one oscillator moves from one assembly (solid light grey line) to another (dashed light grey line). (d) Raster plot showing the neuronal spikes that occur every time the phase of each oscillator reaches 0. (e) Effects of inputs on the system’s dynamics, portrayed as the phase difference $\gamma_{n,1}$ of each node n to node 1: inputs can cause an oscillator to change assemblies (black arrows) or modulate its ongoing activity within the same assembly (grey arrow).

assembly. At iteration $t = 50$, an input of the same duration but smaller amplitude than the one at $t = 30$ perturbs the overall dynamics of the network but does not result in a change in assembly membership. Lastly, at iteration 70 an input of the same duration but opposite magnitude as the first causes the related neuron to jump to another assembly. Notice, in the insert plot of Figure 1(c) and in the raster plot in Figure 1(d), the changes in phase dynamics and spiking activity due to different forms of inputs.

B. Information Theory

Information Theory provides a framework for quantifying and emphasizing the non-linear relationships between variables of the system, hence its suitability in Biology and Robotics studies (Rieke et al., 1997; Lungarella & Sporns, 2006). According to the standard definition, information is not an absolute value obtained from a measurement but rather a relative estimation of how much one can still improve on the current knowledge about a variable.

Commonly, transmitter-receiver modelling involves random variables, and the inherent uncertainty in trying to describe them is termed entropy (Shannon, 1948; Cover & Thomas, 1991). It is an intuitive notion of a measure of information, described by Equation 4:

$$H(X) = - \sum_{x \in A} p(x) \log p(x)$$

where X is a discrete random variable defined for an alphabet A of symbols and probability mass function $p(x)$.

In Experiment 1 and 2 we will present different measures of information, based on the concept of entropy, to gain further knowledge on the relationship between input spike trains, neuronal responses, and motor behaviour.

III. EXPERIMENT 1

Maass et al. (2005) proposed a method to evaluate the computational power and generalization capability of neuronal microcircuits which is independent of the network set up. In this first experiment, the model described in the last section is used to analyse the computational performance of networks structured in various assembly sizes with diverse numbers of neurons per assembly. In all of the following analysis, different network configurations are obtained varying the value of M (Equation 2) and the initial phase of each neuron.

A. Methods
works comprised of a complete description of the method. Comparisons between the measurements, the system should ideally produce outputs given the ongoing activity. Also, Buzsaki (2010) argues that cell assembly activity can relate to the action being performed (Lebedev et al., 2005). Relating to the activity encoded by a given pair of neurons is greater than the information encoded by a single neuron. An estimate of the generalisation performance, the procedure was similar to that just described but instead of using a rate of 2 Hz integration time-step of 2 to node s, a finite set S of s inputs consisting of many noisy variations of the same input signal. One can build a n × s matrix M whose columns are the state vectors θt0(u), i.e. each column consists of the phase value of each node n at time t0 after the system has been perturbed by an input stream ut. The rank r ≤ m of matrix M can then be considered as a measure of the computational power of circuit C. Based on linear algebra, the rationale is as follows: if M has rank m, a linear readout unit of microcircuit C can implement any of the 2m possible binary classifications of the m inputs, i.e. any given target output yt at time t0 resulting from the input ut can be mapped by a linear readout unit (Maass et al., 2005).

Another important measure regarding a neuronal microcircuit is its ability to generalise a learnt computational function to new inputs. Consider a finite set S of s inputs consisting of many noisy variations of the same input signal. One can build a n × s matrix M whose columns are the state vectors θt0(u), i.e. each column consists of the phase value of each node n at time t0. The rank r ≤ m of matrix M can then be considered as a measure of the computational power of circuit C. Based on linear algebra, the rationale is as follows: if M has rank m, a linear readout unit of microcircuit C can implement any of the 2m possible binary classifications of the m inputs, i.e. any given target output yt at time t0 resulting from the input ut can be mapped by a linear readout unit (Maass et al., 2005).

Complete description of the method.

In the experiment, we evaluate oscillatory neuronal networks comprised of 80 ± 4 neurons organised in different assembly configurations. Ideally, for consistency in the comparisons between the measurements, the system should always have the same number of states across different trials; however, as we are interested on the gradient of performance when comparing different assemblies set up, we have used architectures with a few more or a few less states to allow for a broader set of configurations.

In this way, for a variety of possible architectures of microcircuits C, the task consists of classifying noisy variations u of 20 fixed spike patterns which were arbitrarily divided into two classes (0 or 1). For one randomly chosen classification task (there are 220 possible classifications of the spike patterns), the objective is to train a linear readout unit to output at time t = 4s the class of the spike pattern from which the noisy variation input had been generated. Each spike pattern u consisted of a Poisson spike train with a rate of 1 Hz and a duration of 4s. Inputs are always applied to node 2 of the network, according to Equation 2. An Euler integration time-step of 0.02s is used.

At the beginning of a simulation, 20 fixed spike patterns are generated. For each pattern, we produced 30 jittered spike trains by jittering each spike in each spike train by an amount drawn from a Gaussian distribution with zero mean and standard deviation of 0.1s. If after jittering a spike was outside the time interval of [0, 4] seconds, it was discarded. 20 of the jittered sequences are used for training and 10 are used for testing the performance. Figure 2(a) shows some examples of input spike trains and the respective jittered versions. For each simulation, we randomly classified 10 spike patterns as belonging to class 1 and 10 to class 0 (recall that there are 220 possible forms of classifying the patterns).

To calculate the computational power, we generated 76 different spike patterns in the same way as for the classification task described above. The state vectors of the neuronal circuit at time t = 4s (θ(t0 = 4)) with one of the 76 spike patterns as input were stored in the matrix M, and its rank r was estimated by singular value decomposition. To calculate the generalisation performance, the procedure was similar to the one just described but instead of using 76 spike patterns as inputs to the network we used 38 jittered versions of two different spike patterns, following the recommendation that the number of network states should be superior to the size of S (Legenstein & Maass, 2007).

2) Redundancy and Synergy: Another insight into the activity of neuronal assemblies can be given by measurements of redundancy and synergy (Reich et al., 2001; Schneidman et al., 2003; Narayan et al., 2005). In a given network composed of many interacting neurons arranged in assemblies, if the information encoded by a given pair of neurons is greater than the sum of the information encoded by the individual neurons, we say that there is a synergistic interaction; if it is less, we say that the interaction is redundant.

Consider a neuronal network, with an activity set A, an individual neuron n composed of a states, and a finite set S of s inputs. The mutual information (in bits) between the stimuli and the responses, I(S; A), i.e. the reduction of uncertainty about the stimuli given that the neuronal activity A is known, is given by Equation 5:

\[
I(S; A) = H(S) - H(S|A) = \sum_{s \in S} \sum_{a \in A} p(s, a) \log_2 \left(\frac{p(s, a)}{p(s)p(a)} \right)
\]

The equation for a pair of neurons is thus:
Fig. 2. Simulation results for Experiment 1. (a) Examples of spike trains used as inputs. In each of the four panels, five spike trains are presented: the original spike pattern (top train of each panel) and 4 respective jittered versions (subsequent trains in each panel). (b) Classification performance (fraction of correct classifications) obtained by architectures consisting of approximately 80 neurons arranged in diverse number of assemblies; computational power, calculated as the value of $\text{rank}(M_{n,m})$, where each column of M is the state $\theta_u(t_4)$ of the network at time $t = 4s$ when submitted to an input u_m - the higher this value, the better a linear readout unit can discriminate between different input spike patterns (values are normalised between 0.6 and 1 to improve visualisation); generalisation capability, similar to the computational power, but the inputs are now jittered versions of the same spike train - the smaller this values, the more likely the variations in a spike train will be interpreted as noise instead of consisting of a different spike train; performance prediction, calculated as the difference between the computational power and generalisation capability. (c) Impact on the classification performance of three different architectures (6, 16, and 39 assemblies composed of 13, 5, and 2 neurons, respectively) caused by variations in three parameters of the input spike train (each parameter is varied whilst keeping the other two constant): the standard deviation of the Gaussian jitter in the spike trains j (in s), the spike firing rate f (in Hz), and the number of patterns to classify N_p. (d) State separation and Synergy (rescaled to vary between 0 and 2 to improve visualisation). Higher values of the first indicate that the network state $\theta(t)$ reflects more details of the input stream that occurred some time in the past, higher values of the latter indicate a more synergistic (less redundant) system. All the previous results are mean values over 20 different simulations, and shaded areas are the 95% confidence interval.

$$I(S; A_1, A_2) = \sum_s \sum_{a_1,a_2} p(s,a_1,a_2) \log_2 \frac{p(s,a_1,a_2)}{p(s)p(a_1,a_2)}$$

(6)

Given the two equations above, the synergy between a pair of neurons is then defined as (Schneidman et al., 2003):

$$S_{\text{syn}}(A_1, A_2) = \frac{I(S; A_1, A_2) - I(S; A_1) - I(S; A_2)}{I(S; A_1, A_2)}$$

(7)

Notice that if the mutual information between the two neurons is 0, i.e. if they have unrelated activity, Equation 6 reduces to $I(S; A_1, A_2) = I(S; A_1) + I(S; A_2)$, and the synergy value given by Equation 7 is 0. Synergy varies from -1, if the interaction between the neuronal pair is completely redundant, to 1, when the information conveyed by the pair activity is greater than the information conveyed individually by the neurons.

To estimate the synergy value, stimuli consisted of 8 noisy variations of 8 different spike patterns, lasting for 200 iterations and with the same characteristics as detailed before, and the neuronal activity A_n is the phase value of neuron n at the end of simulation. We performed 20 experiments for each pair of neurons, and a total of 10 different randomly
chosen pairs were used. The results were then averaged. The sets S and A were discretised into 8 equiprobable states, which improves the robustness of the statistics (Marchisinski & Kantz, 2002), and finally the joint probabilities associated to the information related measures were estimated using histograms (Lungarella et al., 2007a). In this way, at the end of each experiment, a table whose columns are all the possible combinations of $[a_1, a_2]$ and whose lines are all the possible stimuli s_1, \ldots, s_k is formed, and each field of this table contains the probability $p(a_1, a_2|s_n)$, from which the synergy calculations were performed (Equations 5 to 7). An important point to stress is that ideally we should have tested all possible neuron pairs and assembly combinations, but that would have been computationally prohibitive. Nevertheless, considering the standard deviations observed in the experiments that follow, we believe the results are informative.

B. Results

Figure 2(b) shows the results for the classification performance, the computational power, and the generalisation capability of the system. Notice the increase in performance as one moves from networks with fewer assemblies (and more neurons per assembly) to architectures constituted by many assemblies (and few neurons per assembly). The computational power and the generalisation capability have the same values until a critical architecture is reached, after which they start to behave differently. Recall that both measures are based on calculations of matrices’ ranks, which indicate the maximum number of linearly independent rows or columns (whichever is smaller). With just a few assemblies composed of several neurons, each assembly works as a single, large oscillator, and inter-assembly modulations due to external perturbations are minimum. The rank value, thus, is directly connected with the number of assemblies in the system. As the assemblies increase in number and decrease in size, inter-assemblies modulations become more prominent, and this is captured by the rank of the state matrix. The results indicate, therefore, that networks with more assemblies have the potential to classify a greater number of input patterns. In contrast, the greater the value of the rank of the state matrix M, the worse the generalisation of the circuit is likely to be, which means that small perturbations in spike times for a given spike pattern tend to be classified as belonging to a different spike pattern.

Maass et al. (2005) and Legenstein & Maass (2007) showed that, combined, the above two measures may provide a good estimate of the computational capabilities of a given neuronal microcircuit and may also be used to predict its performance in a classification task. There’s no ultimate method for combining them both, but simply using the difference between the computational power and the generalisation performance can be a good indicator. Figure 2(b) shows the result. As explained in the previous paragraph, due to properties of the model the matrix ranks calculated for each measure differ only for architectures with higher number of assemblies; the prediction of computational performance, therefore, is only applicable for a subset of all possible configurations of our model. Nevertheless, the prediction points at the correct region of possible architectures where performance is maximum.

Consider Figure 2(c), which shows the response of three different network configurations to variations in some simulation parameters: the number of different spike patterns presented to the network for classification, the frequency of the input spike trains, and the noise rate used to generate the jittered spike trains. Notice that increasing the value of the first or the latter result in a fall in performance, whilst the performance peaks at an intermediate value of the input frequency. This shows that classifying 60 different patterns (2^{60} possible classifications) is harder than classifying 20 using the same framework. Also, the relatively small variation in performance due to the input frequency indicates that the model has a good spike pattern discrimination time resolution.

Not surprisingly, noisier spike trains result in more classification mistakes, for an otherwise noisy train is now viewed as a different spike pattern, but notice that the drop
in performance is sharper for networks composed of more assemblies (22.6% for a network with 40 assemblies in contrast with a 10% fall for a network with 10 assemblies), in agreement with what the generalisation analysis predicted. One of the reasons this might occur is illustrated in Figure 2(d). It shows the state separation of the system, a measure that captures how much the state $\theta(t)$ of one network reflects details of the input stream that occurred some time back in the past. Consider two input patterns u and v over 3000 iterations that differ only during the first 1000, with the same properties as described before. The state separation is given by $\|\theta_u(t) - \theta_v(t)\|$ for $t = 3000$. Notice that the architectures with fewer assemblies have a lower value of state separation than the ones with more assemblies, which means that perturbations caused by earlier input differences persist more in the latter configurations. For noisy spike trains, such amplified differences may impact in the overall pattern classification performance. The results also highlight that networks with more assemblies are affected more by inputs, which can be explained considering that in the latter case the network state $\theta(t)$ at a given time t is less influenced by the activity of a single neuron and more a product of the whole network interaction.

The synergy analysis confirms this last point (see Figure 2(d)). Notice that for architectures with fewer assemblies the level of redundancy is high ($\text{Syn} = -1$, Equation 7), but it reduces as the number of assemblies grow. The vast majority of networks with higher numbers of assemblies present information independence ($\text{Syn} = 0$), i.e., the information conveyed by the pair of neurons is the sum of the information they convey separately. Importantly, Schneidman et al. (2003) make the point that information independence may relate to neurons being responsive to different features of the stimulus, but the synergy measurement reflects an average over the whole set of stimuli S; for that reason, the neuronal pair may be redundant, synergistic, or independent for different subsets of S. Also, Reich et al. (2001) found neuronal pairs in nearby cortical neurons presenting varied forms of interactions - more specific, independent and redundant interactions. Thus, the results portrayed in the figure may vary depending on which pair is recorded and the measurements may be a result of averaging, not from independence, across the whole trial.

In the results above, we investigated networks with roughly the same number of states ($N_{\text{assemblies}} \times N_{\text{neurons/assembly}} \approx \text{constant}$). This constraint had to be imposed in order for the calculations of computational power and generalisation capability to hold. However, another interesting aspect of assembly computations is how performance and synergy change as one varies the number of neurons within each assembly for a given number of assemblies in the network. Figure 3(a) shows the results. Performance is predominantly higher in networks with more assemblies, regardless of the number of neurons within each. In other words, performance increases as the number of assemblies increases, but given a certain network with fixed number of assemblies, adding neurons to each assembly does not cause a salient increase in performance (e.g. networks with 2 assemblies with 1 or 5 neurons within each have a classification performance of approximately 0.6 whereas networks with 20 assemblies with 1 or 5 neurons in each cluster have a classification performance of approximately 0.85). In contrast, the level of redundancy or independence is related mainly to the number of neurons within each assembly, regardless of the total number of assemblies (see Figure 3(b)). For example, neurons in a network with 20 assemblies with 1 neuron in each assembly present a much more independent activity than neurons in a network with 20 assemblies composed of 10 neurons each. This is in accordance with results obtained in motor cortex studies, which show that the synergistic or redundant interactions depend on the size of each neuronal assembly, and redundancy increases with the size of assemblies (Narayanan et al., 2005).

Recall that assemblies are formed by their phase relationship, i.e. two neurons belong to the same assembly only if they are synchronised with near zero phase lag. In this sense, the synchronisation properties of the network (dictated by the phase interaction function defined in Equation 3) make the dynamics of neurons constituting the same assembly similar and the dynamics of neurons constituting different assemblies dissimilar. Thus, increasing the number of assemblies, not the number of neurons, impact more on performance, and that is possibly due to an increase in entropy. However, the rationale is not simple because of nonlinear effects and the intrinsic dynamics of the network responding to inputs. Notably, the Kuramoto model presents second-order phase transitions and a given node can influence in different ways other nodes in the network, depending on the relationship between natural frequencies and on whether nodes are directly connected or not. Some of these effects may be in place, given the saturation in performance and the nonlinear impact on classification to adding assemblies or neurons to the network. In this sense, it is not trivial that adding neurons maximizes the classification performance because this is determined by the way these neurons are organised (assemblies) and limited by non-linear effects (highlighted by the saturations depicted in Figures 2(b) and 3(a)).

To conclude Experiment 1, we explore the experimental evidence (Steinmetz et al., 2000; Lakatos et al., 2008) which suggests that attentional mechanisms can promote phase resetting and modulate the ongoing neuronal oscillations to respond differently to stimuli to investigate whether the system can cope with multiple tasks by just relying on the phase dynamics, without any changes in the readout unit after training. Therefore, as described in Section II, we manipulate the phase relationship between nodes (emulating attention mechanisms) and investigate the performance in opposite versions of a classification task. The network architecture has been arbitrarily chosen to have 10 clusters of 8 neurons each, with similar results obtained for other configurations.

To begin with, we present to the network spike patterns that have to be classified. At the end of each pattern presentation, the network state $\theta(t)$ is stored, representing
the system’s response for this given input. After all the patterns are shown, the phase relationships in the network are reorganised (see Figure 4(a)). Then, we present the same spike patterns once more, the network state is stored, but the corresponding classification label (1 or 0) for each pattern is made exactly the opposite from the ones previously used. Finally, an output readout unit is trained by linear regression using the network state and the desired classification label for each pattern. Essentially, the procedure replicates the previous experiment but with the classification task changing upon a reorganisation of the nodes’ phase relationship.

Figure 4(a) presents the resulting network dynamics. First, the system goes through a washout phase (3000 iterations) and has its phase activity stabilized in 10 clusters of 8 neurons each. Then a spike train input to node 2, lasting 200 iterations, modulates the phase dynamics; at the end, the final network state is stored. In sequence, the phase relationships are rearranged by inputs to certain nodes, and the same classification procedure is executed, with the network state stored at the end. This process is performed for every spike pattern used for training, and finally the readout unit weights are calculated. Figure 4(b) shows the network performance obtained for different parameter configurations. Notice that the performance is comparable to the one obtained in the previous task (Figure 2(b)), which suggests that the phase reorganisation dynamics can be exploited to solve different tasks without the need for adaption or plasticity mechanisms at the readout unit level.

The results for experiment 1 suggest that neuronal assemblies and phase reorganisation dynamics can play a significant part in supervised classification tasks and, perhaps most relevant to cognition, can cope with multiple classification tasks without the need for additional adaptive mechanisms. However, the major part of (natural) neural and cognitive dynamics is bound up in the generation of unsupervised embodied behaviour. Hence, in order to explore the possible roles of neuronal assembly dynamics further, the properties of the model were investigated in a second experiment in which it was used in an unsupervised embodied learning scenario, as described in the next section.

IV. EXPERIMENT 2

Plasticity mechanisms are a common feature in the brain and mediate many (if not all) cognitive processes during learning and development (Turrigiano & Nelson, 2004; Masquelier et al., 2009). There is a rich literature exploring models of artificial neuronal networks with some kind of synaptic plasticity in the context of real or simulated agents engaged in a behavioural task (Urzelai & Floreano, 2001; Sporns & Alexander, 2002; Di Paolo, 2003; Edelman, 2007; Shim & Husbands, 2012), but normally the techniques involve the modulation of the electric connections between nodes of the network as a response to the agent’s actions and the environment. Here, we explore the way in which neurons and assemblies relate to each other, and how a modulation of this relationship alone, without other plasticity mechanisms, can be exploited to generate adaptive behaviour.
We conduct the analysis following an Evolutionary Robotics approach (ER), where an evolved simulated robotic agent controlled by a variation of the system investigated in Experiment 1 has to solve multiple tasks. In the following sections, we first present the concepts of Transfer Entropy, an information theoretic measure used to analyse the results; then, we explain the ER approach, the robotic model used, the control system framework, the unsupervised learning task, and conclude with the outcomes of the experiment.

A. Methods

1) Transfer Entropy: Agent-environment systems pose extra challenges in devising and interpreting a sensible measurement of information flow, for they normally have noisy and limited data samples, asymmetrical relationships among elements of the system, and temporal variance (i.e. sensory and motor patterns may vary over time). Transfer Entropy (TE) (Schreiber, 2000), in this context, is suggested as a suitable and robust information theoretic tool (Lungarella et al., 2007a,b), and has also been applied to investigate real neural assemblies and other neuroscience problems (Borst & Theunissen, 1999; Gourévitch & Eggermont, 2007; Buehlmann & Deco, 2010; Vicente et al., 2011); it will, thus, be used in our analysis.

TE is based on classical information theory and allows one to estimate the directional exchange of information between two given systems. The choice of TE in this work is based on a study conducted by Lungarella et al. (2007a), who compared the performance of different IT tools in bivariate time-series analysis, which will be the case here, and concluded that TE is in general more stable and robust than the other tools explored. The next paragraphs describe the technique.

Consider two time series, \(X = x_t \) and \(Y = y_t \), and assume they can be represented as a stationary higher-order Markov process. Transfer Entropy calculates the deviation from the generalised Markov property \(p(y_{t+1}|y^m_t, x^n_t) = p(y_{t+1}|y^m_t) \), where \(x^n_t \equiv (x_t, x_{t-1}, \ldots, x_{t-m+1})^T, y_t \equiv (y_t, y_{t-1}, \ldots, y_{t-n+1})^T \) and \(m \) and \(n \) are the orders of the higher-order Markov process (note that the above property holds only if there is no causal link between the time series). Schreiber (Schreiber, 2000) defines Transfer Entropy as:

\[
TE(X \rightarrow Y) = \sum_{y_{t+1}} \sum_{x_t} \sum_{y_t} p(y_{t+1}, x^m_t, y^n_t) \log \frac{p(y_{t+1}|y^m_t, x^n_t)}{p(y_{t+1}|y^m_t)}
\]

(8)

Therefore, from Equation 8 one can estimate the information about a future observation \(y_{t+1} \) given the available observations \(x^m_t \) and \(y^n_t \) that goes beyond the information of the future state \(y_{t+1} \) provided by \(y^n_t \) alone. It is thus a directional, non-symmetrical estimate of the influence of one time series on another.

The original formulation of Transfer Entropy suffers from finite sample effects when the available data is limited, and the results obtained may not be correctly estimated. To attenuate these limitations, Marschinski & Kantz (2002) introduced an improved estimator, “Effective Transfer Entropy” (ETE), which is calculated as the difference between the usual Transfer Entropy (Equation 8) and the Transfer Entropy calculated after shuffling the elements of the time series \(X \), resulting in the following equation:

\[
ETE(X \rightarrow Y) \equiv TE(X \rightarrow Y) - TE(X_{shuffled} \rightarrow Y)
\]

(9)

The ETE formulation is the one used in this paper. We adopt the orders of the Markov processes as \(m = n = 1 \) (Equation 8), and the conditional probabilities are calculated by rewriting them as joint probabilities which are then estimated using histograms.

2) Evolutionary Robotics: Evolutionary Robotics (ER) is a relatively new field of interdisciplinary research grounded in concepts from Computer Science and Evolutionary Biology (Harvey et al., 2005; Floreano et al., 2008; Floreano & Keller, 2010). Originally devised as an engineering approach to automatically generate efficient robot controllers in challenging scenarios, where traditional control techniques have limited performance, ER is now well regarded among biologists, cognitive scientists, and neuroscientists, as it provides means to simulate and investigate brain-body-environment interactions that underlie the generation of behaviour in a relatively unconstrained way, thus penetrating areas that disembodied studies cannot reach.

Consider a real or simulated robot, with sensors and actuators, situated in an environment with a certain task to accomplish. Each solution candidate (individual) is represented by a genotype, which contains the basic information of the agent’s body and/or its controller’s parameters (e.g. the number of wheels the robot has and/or the values of the weights of an artificial neuronal network acting as its controller). According to some criteria, normally the previous performance of that individual in solving the task (fitness), parents are selected and undergo a process of mutation and recombination, generating new individuals which are then evaluated in the task. This process is repeated through the generations, eventually obtaining individuals with a higher performance in the given task.

In this sense, ER is a reasonable approach to studying embodied and situated behaviour generation, because it can be used as a powerful model synthesis technique (Beer, 2003; Husbands, 2009). Relatively simple, tractable models can be produced and studied in the context of what have been called Minimally Cognitive Tasks (Beer, 2003), which are tasks that are simple enough to allow detailed analysis and yet are complex enough to motivate some kind of cognitive interest.

3) Robotic model: The robot is based on the Khepera II model (K-Team Corporation). It has two wheels with independent electric motors, 8 infrared sensors and a camera (see Figure 5). The sensors measure the environmental luminosity (ranging from 65 to 450 - 65 being the highest luminosity that can be sensed) and the distance to nearby objects (ranging from 0 to 1023 - the latter value represents...
Fig. 5. (a) Real Khepera II robot and (b) its schematic representation, including the IR sensors and the camera.

Fig. 6. Framework for application in evolutionary robotics. The oscillatory network is composed of 12 fully connected neuronal oscillators, with nodes 2, 6 and 10 connected to the robot’s infrared sensors and nodes 3, 7 and 11 connected to the visual sensors. Nodes 4, 5, 8 and 9 receive internal inputs only. The phase differences $\theta_n - \theta_{n-1}$, $n = 2 \ldots 12$, plus a bias term, are linearly combined by a weight matrix W and fed into two nonlinear output units that have as activation function the \sin function, which can be interpreted as two output neurons that capture the ongoing network activity. The activation of each output neuron is used to command the motors M_1 and M_2.

the closest distance to an object). The camera provides a 36 degrees, 64 pixels gray-scale horizontal image from its field of view. These 64 pixels are grouped into 3 mean inputs for the system: the mean value of pixels 0 - 13 representing the left reading, the mean value of pixels 24 - 39 representing the central reading and the mean value of pixels 48 - 63 representing the right reading. The readings range from 50 to 175 - the first value representing the maximum perception of a black stripe. In all experiments, a sensorimotor cycle (time between a sensory reading and a motor command) lasts 400ms. The KiKS Khepera robot simulator was used (Storm, 2004); it simulates with great fidelity motor commands and noisy sensory readings that are observed in the real robot.

4) Framework: The model studied in Experiment 1 was adapted so that it could be applied to control a simulated robotic agent. The framework, illustrated in Figure 6, is composed of 12 fully connected oscillators, with some nodes connected to the robot’s noisy sensors (1 sensor per node). The rationale for a network with 12 nodes relates to richer dynamical behaviour in the Kuramoto Model with this number of nodes (Popovych et al., 2005). The frequency of each node is the sum of its natural frequency of oscillation, w_n, and the value of the sensory input related to that node (0 if there is no input), scaled by a factor ϵ_n. The natural frequency w_n can be associated with the natural firing rate of a neuron or a group of neurons, and the sensory inputs mediated by ϵ_n alter its oscillatory behaviour according to environmental interactions, thus improving the flexibility of the model to study neuronal synchronisation (Cumin & Unsworth, 2007) within a behavioural context.

At each iteration the phase differences γ from a node n to nodes $n-1, n=2 \ldots 12$, are calculated following Equation 2. Then, the phase differences plus a bias term are linearly combined by a weight matrix W and fed into two nonlinear output units that have as activation function the \sin function, which can be interpreted as two output neurons that capture the ongoing network activity - according to Pouget et al. (2008), nonlinear mappings (such as the one developed here) can be used as a comprehensive method to characterize a broad range of neuronal operations in sensorimotor contexts. The calculation results in two signals that will command the left and right motors of the agent (Equation 10):

$$M = \sin(W \gamma)$$

where $M = [M_1, M_2]^T$ is the motor state space, with M_1 corresponding to the left motor command and M_2 to the right motor command.

In this way, the phase dynamics and the environmental input to the robotic agent will determine its behaviour. It is important to stress that nodes that receive no input participate in the overall dynamics of the network, hence their natural activity can modulate its global activity.

5) Task: The robot described in Section IV-A.3 has two main objectives: it has to explore the environment whilst avoiding collisions (O_1) and it has to ensure that its battery level remains above a threshold (O_2), actively searching for the recharging area otherwise. The environment is a square arena with a recharging area represented by two light sources located next to a black stripe tag (Figure 7(b)). Whenever the robot’s light sensory readings are below 100, it is considered to be inside the recharging area. The battery level BL dynamics is given by Equation 11:

$$BL(t+1) = \begin{cases} BL(t) - \alpha(BL(t) - \text{Min}(BL)), & \text{if ROCA} \\ BL(t) + \beta(\text{Max}(BL) - BL(t)), & \text{if RICA} \end{cases}$$

(11)

where α and β control the battery consumption and recharge rate, respectively, $\text{Min}(BL)$ and $\text{Max}(BL)$ are the lower and upper limit of BL (set here to 0 and 100, respectively), and ROCA and RICA stand for Robot Outside Charging Area and Robot Inside Charging Area.

The network consists of $N = 12$ neurons with initial phases uniformly distributed in $[0, 2\pi]$. Nodes 2, 6 and 10 are connected to the robot’s infrared distance sensors, and nodes 3, 7 and 11 are connected to the camera sensors. We set $\epsilon_n = 4$ for $n = 4, 8$ and $\epsilon_n = -4$ for $n = 5, 9$ (for $n = 2, 3, 6, 7, 10, 11$, ϵ_n is evolved, 0 otherwise, see the next section for details). We also adopted $M = 3$ (Equation 3), which leads to the formation of 3 assemblies with 4 neurons.
in each, denoted \((1, 2, 3, 4)-(5, 6, 7, 8)-(9, 10, 11, 12) \) (Figure 8(a)).

Whenever the battery level drops below 15 (\(t = t_{\text{low}} \)), an internal signal is generated which reorganizes the network in terms of neuronal synchronisation (Figure 8(b)). This signal consists of an input lasting 400\(\text{msec} \) (the same duration of a sensorimotor cycle) applied to nodes 4, 5, 8, and 9, i.e., considering Equation 2, \(I_{4, 5, 8, 9}(t) = 1 \) for \(t_{\text{low}} \leq t \leq t_{\text{low}} + 0.4 \), 0 otherwise. Given the set up of the network described in the previous paragraph, this input shifts the phase of oscillators 4 and 8 and lags the phase of oscillators 5 and 9 enough to move them from their original basin of attraction to a neighbouring assembly. The network final configuration is thus \((1, 2, 3, 5)-(4, 6, 7, 9)-(8, 10, 11, 12) \). Whenever the battery level increases above 95 (\(t = t_{\text{high}} \)), an internal signal \(I_{5, 8, 9}(t) = -1 \) for \(t_{\text{high}} \leq t \leq t_{\text{high}} + 0.4 \), 0 otherwise, brings the network back to its original configuration (Figure 8(a)). Recall, from the task description in the previous paragraph, that the goal is to investigate if dynamic assembly formation can underpin the coordination of different, possibly conflicting behaviours in an autonomous agent.

Tasks are conflicting in the sense that the first \((O_1) \) requires the agent to move and explore whilst minimizing sensory readings (and hence avoiding collisions), whereas in the latter \((O_2) \) it has to approach a certain area of the environment, maximize the inputs from the light sensors (to recharge) whilst suppressing its movement to increase the time spent in the charging area (until the battery is recharged above the threshold).

6) Genetic Algorithm: We used a geographically distributed genetic algorithm with local selection and replacement (Husbands et al., 1998) to determine the parameters of the system: the input weights \(\epsilon_n \in [-0.5, 0.5] \), \(n = 2, 3, 6, 7, 10, 11 \), and the two output neurons’ weights \(W_{N,o}, \ o = 1, 2 \), with elements in the interval \([-5, 5]\), resulting in a genotype of length 30.

The network’s genotype consists of an array of integer variables lying in the range \([0, 999]\) (each variable occupies a gene locus), which are mapped to values determined by the range of their respective parameters. For all the experiments in this paper, the population size was 49, arranged in a \(7 \times 7 \) toroidal grid. There are two mutation operators: the first operator is applied to 20% of the genotype and produces a change at each locus by an amount within the \([-10, +10]\) range according to a normal distribution. The second mutation operator has a probability of 10% and is applied to 40% of the genotype, replacing a randomly chosen gene locus with a new value within the \([0, 999]\) range in an uniform distribution. There is no crossover.

In a breeding event, a mating pool is formed by choosing a random point in the grid together with its 8 neighbours. A single parent is then chosen through rank-based roulette selection, and the mutation operators are applied, producing a new individual, which is evaluated and placed back in the mating pool in a position determined by inverse rank-based roulette selection. For further details about the genetic algorithm, the reader should refer to Husbands et al. (1998).

During evolution, we adopted a shaping technique (Dorigo & Colombetti, 1998; Bongard, 2011), in which the robot is required to execute and succeed in one task environment before proceeding to more complex scenarios. This technique has been shown to improve the evolvability of controllers in tasks that involve the accomplishment of many different objectives.

Therefore, considering the task previously described, the first phase of evolution, Phase 1, consists of 800 iterations of the algorithm where the fitness \(f \) is defined as the robot’s ability to explore the environment whilst avoiding collisions with the environment walls and obstacles (Equation 12, based
on Floreano & Mondada (1994)). Note that there is no influence of the battery level in this first stage of evolution. Figure 7(a) depicts the training scenario.

\[
f = V (1 - \sqrt{\Delta v})(1 - i)
\]

(12)

where \(V \) is the sum of the instantaneous rotation speed of the wheels (stimulating high speeds), \(\Delta v \) the absolute value of the algebraic difference between the speeds of the wheels (stimulating forward movement), and \(i \) is the normalized value of the distance sensor of highest activation (stimulating obstacle avoidance).

A generation is defined as 10 breeding events and the evolutionary algorithm runs for a maximum of 300 generations. If, at the end of this first evolutionary process, the agent attains a fitness above 0.4, it can proceed to the next phase.

During Phase 2 (scenario depicted in Figure 7(b)), robots are evaluated according to their ability to avoid collisions and the time they spend with the battery level below the threshold, i.e. if the battery level is above 15, fitness is scored following Equation 12, otherwise fitness is given by the fraction of time it took the robot to recharge its battery above 95. See Equation 13.

\[
f = \begin{cases}
V (1 - \sqrt{\Delta v})(1 - i), & \text{if } BL(t) \geq 15 \\
1 - t_b/T, & \text{if } BL(t) < 15 \text{ and } BL(t + \tau) < 15
\end{cases}
\]

(13)

where \(V, \Delta v \) and \(i \), and \(BL \), are as described in Equation 12 and 11, respectively; \(t_b \) is the number of iterations the robot spent with its battery level below 15 and \(T \) is the number of iterations counting from the moment the battery dropped below 15 until it reached a level above 95.

At each iteration of the trial, the corresponding fitness value is calculated, and the final fitness is given by the mean fitness obtained across the whole trial. Notice that there is a selective pressure towards agents that reach the recharging area as fast as possible and remain in the area until the battery is recharged. Also, the learned behaviour in Phase 1 cannot be completely overwritten in Phase 2, as part of the evaluation function still accounts for the robot’s ability to avoid collisions and explore the environment. Importantly, the second part of the fitness function described in Equation 13 does not reward a specific sequence of actions, only the final behaviour of the robot (reach the recharging area as fast as possible and remain there until recharged). There is no influence of the light or camera sensors in the calculations, thus the robot has to associate the distance sensors and vision information to find the area where recharge occurs.

B. Results

Robots successfully evolved to execute Phase 1 and Phase 2. Figure 7(a) portrays one of the evolved agents that navigates throughout the environment whilst avoiding collisions (Phase 1). Notice that because the agent is surrounded by walls and obstacles, sensory readings are nearly always present, thus the maximum fitness obtained is less than the maximum 1. Figure 7(b) shows the same agent after Phase 2 of evolution and Figure 9 shows the spiking activity (based on the phase dynamics) for every node of the network, the battery level, the distance and camera sensors, and the motor commands. The next paragraphs will explore in details the results of this latter phase.

At the beginning of the task, the agent wanders around the environment in straight lines, adjusting its trajectory only when faced by a wall. Notice from Figure 9 that both motor outputs are close to the maximum value of 10 and only change in response to the distance sensors’ stimuli - the motors remain unresponsive to changes in the camera input (recall that the network receives input from all sensors at all times, and there are no ontogenetic plasticity mechanisms). Incidentally, the robot passes near the recharging area (grey arrow near iteration 50), but because its battery level is still above the threshold the predominant behaviour remains “explore and avoid collisions”.

However, near iteration 300 the battery level drops below 15 (point A in Figures 7(b) and 9), which triggers an internal signal that reorganizes the network configuration. The agent now should stop exploring the environment and drive towards the recharging area as fast as it can to maximize its fitness. Notice that at the moment this occurs, the robot is far from the recharging area so it has to use its visual information to orient and move towards the correct direction. The adopted strategy is to move in circles until the visual
Fig. 9. Experiment 2 variables dynamics. Downwards from the top: network raster plot (the dark and light grey shaded areas relate to different network configurations, the small plot shows details of the phase dynamics, the black arrow shows how sensory stimulus modulate the ongoing dynamics, the grey arrow points at a moment of assembly reorganisation); the battery level, with dashed lines indicating when the agent is within the recharging area (0 is outside, 100 is inside); the distance sensors (0 when there is no obstacle, 1023 if very close to one); the camera sensors (175 if no black stripe is seen, 50 if all the camera pixels detect black); and the motor commands (positive values indicate forward movement, backward movement otherwise). Letters A, B and C refer to the trajectories displayed in Figure 7(b).
stimulus (black landmark) is perceived, and then progress in a straight line towards it. This can be seen in Figure 9, with the consistent camera readings. As the robot approaches the landmark, the distance sensory readings increase but they don’t cause the same response as before the network reorganization: the agent remains relatively still within the recharging area until the battery is recharged and does not display the characteristic turn around movement of obstacle avoidance. After the battery is above 95, another internal signal is triggered and assemblies are rearranged to their previous state. The robot hence returns to explore and avoid obstacles.

This same sequence of behaviour can be observed near iteration 500 (point B in Figures 7(b) and 9). The turning behaviour, brought about by differential wheel speeds, is much more noticeable here, and although the robot is closer to the recharging area, it does not have the visual stimulus at the time the battery drops below 15. When the first visual stimulus is perceived, the agent fixates on the landmark, and the sensory readings increase as it slowly moves towards the black stripe. A similar sequence of behaviour is displayed as the task continues, but the following moments when the battery drops below 15 occur when the agent has a visual stimulus, therefore there is no need to move in circles before heading towards the recharging area (points C).

Figure 10 depicts the activity of the assemblies during the task, represented by the phase difference $\gamma_{n,1}$ of each node n to node 1. The oscillators rapidly synchronise and form three neuronal assemblies equally spaced according to their phase differences (see Figure 8). Each assembly has inputs from one distance sensor and one camera sensor. This sensory stimuli modulate the ongoing network activity, causing small phase deviations from the respective assembly’s mean phase (examples are indicated by light grey arrows in Figure 10), yet all nodes remain within the basin of attraction of their respective cluster - they do not change their assembly membership. The small phase modulations of each cluster are captured by both output neurons and are responsible for adjusting the agent’s motor commands and, consequently, its trajectory. Internal signals triggered by the battery level dynamics change the assemblies original arrangement (compare with Figure 9, top), and this new phase relationship, together with the sensory modulation, accounts for the change in the robot’s behaviour.

The relationship between the assemblies rearrangement and the different behaviours displayed by the agent can be seen by plotting the network’s phase differences together with the corresponding motor outputs at every sensorimotor time step. Because there are $\gamma_{i,1−1} = 11$ phase differences, we have to perform a dimension reduction to visualize the system’s dynamics. This is done by projecting the original phase differences into the first two principal components calculated using a Principal Component Analysis (PCA) (Jolliffe, 2002). A single time series is obtained from the two motor commands by subtracting the left from the right wheel commands. Figure 11(a) shows the results. Note that there are two clearly discernible regions in the state space, one comprising trial iterations 1 − 124, 356 − 503, 777 − 1039, and 1194 − 1465, and the other iterations 125 − 355, 504 − 776, 1040 − 1193, and 1466 − 1600. These regions relate to different assembly configurations (see Figure 9, top, and Figure 10), therefore rearranging the assemblies causes movement in the state space of the network-motor system, which has a direct correspondence with the behaviour of the robot.

As pointed out, the assembly reconfiguration is the main mechanism responsible for changing the way the robot behaves, there are no other plasticity mechanisms and both distance and visual sensors are always fed into the network. The effects of the inputs (or their relevance to the behaviour observed) vary depending on the assembly configuration. Observe the black arrows near iterations 900 and 1300 in the camera sensors panel in Figure 9. The battery level is above 15, the robot is exploring the environment and avoiding collisions (notice the distance sensors dynamics), but it also receives visual input. This input, however, does not affect the ongoing behaviour (see the motors dynamics). To highlight this effect, we conducted an information dynamics analysis, exploring how information flows from sensors to motors and from motors to sensors as the task progresses.

Figure 11(b) shows the transfer entropy between the robot’s distance and camera sensors and its motors for the duration of the trial, calculated according to Section IV-A.1. To obtain the time series, we used a sliding window containing data from the past 200 iterations, therefore note that the results reflect a history of interactions and are not an instantaneous measurement of information flow. More specific, the sensors’ time series (3 infrared sensors and 3 camera sensors) are submitted to a principal component analysis to perform a dimension reduction. The calculated principal component and the original time series of each sensor modality are used to create a single time series that
Fig. 11. (a) System dynamics depicted by the projection of the 11 phase differences $\gamma_{i,i-1}, i = 2 \ldots 12$, of the 12 node network into their first two principal components (PC_1 and PC_2), and the motor output represented by the difference between the values of M_1 and M_2 (Equation 10). Solid and dashed lines relate to different iteration intervals. Notice that, whenever there is an assembly rearrangement (Figures 9 and 10), there is a corresponding shift in the network-motor state space region, which relates to different behaviours displayed by the robot. (b) Transfer Entropy between the distance sensors time series and the motors time series (top panel), and between the camera sensors time series and the motors time series (bottom panel). A sliding window of length 200 iterations is used to obtain each time series at every iteration of the Transfer Entropy analysis. Results are smoothed using a Gaussian filter with time constant 0.08.

The information flow dynamics offers another perspective in the robot’s behaviour analysis. Notice that the information flow magnitude is nearly twice as much in the bottom panel as in the top panel. We saw in the previous dynamics and behaviour analyses that when the battery drops below 15, the robot moves towards the recharging area, but it does not display the otherwise natural obstacle avoidance behaviour when it eventually finds a wall. The transfer entropy analysis highlights that the visual information is the main source of behaviour modulation even though the distance sensors still have some influence. This is clear between iterations 1075 – 1250: the visual information flow (bottom panel) increases as the robot approaches the recharging area (higher visual input), and upon finding the wall there is an increase in the flow from motors to sensors in the top panel. This means that the robot’s trajectory, mainly influenced by the visual inputs, determine the incoming sensory readings - the robot actively “produces” its inputs - whilst the information flow from distance sensors to motors decrease, meaning that there is little influence of the distance sensors in the robot’s behaviour.

Finally, to stress the relevance of assembly reorganization in the evolutionary process, observe Figure 12. It shows the values at the end of Phase 1 and Phase 2 of evolution of the weights of the output unit neurons and of the input weights of nodes that have sensory input (see Figure 6). Notice that there are just minor adjustments in the value of a few parameters, most of them remain unchanged as evolution progress from one phase to another. This further supports the relevance and flexibility of dynamic assembly reorganization in multi-objective tasks.

V. DISCUSSION

It is now established that synchronisation mechanisms and dynamic assembly formation in neuronal networks have a relationship with cognitive processes and behaviour; however, the underlying computational functions and interplay with behaviour are still to be uncovered. In this work, we conducted experiments both in supervised and unsupervised learning scenarios exploring concepts drawn from the “binding-by-synchrony” hypothesis, which considers neuronal assembly computations from a spike time perspective. In fact, there is a growing body of literature attesting that
neuronal codes based solely on spike rates underperform or do not contribute in a variety of cognitive tasks (Borst & Theunissen, 1999; Carmena et al., 2003; Jacobs et al., 2009; Rabinovich et al., 2012).

The neuronal network model used is inspired by the Kuramoto model of coupled phase oscillators, and allows one to fine tune the network synchronisation dynamics and assembly configuration. The model has an intrinsic, ongoing oscillatory activity that can only be modulated - not determined - by external stimuli, in contrast with models which consider a static system with responses elicited only by stimulus onset. As reiterated throughout this work, cognitive processes unfold over time and therefore cannot rely only on external events. Also, one can precisely determine the number and constitution of assemblies in the model. Although evidence points at assembly formation as a result of the number and size of neuronal assemblies in the model.

The model has an intrinsic, ongoing oscillatory activity that can only be modulated - not determined - by external stimuli, in contrast with models which consider a static system with responses elicited only by stimulus onset. As reiterated throughout this work, cognitive processes unfold over time and therefore cannot rely only on external events. Also, one can precisely determine the number and constitution of assemblies in the model. Although evidence points at assembly formation as a result of the number and size of neuronal assemblies in the model.

In Experiment 1, a supervised learning task, we studied the influence of the number and size of neuronal assemblies in a spike pattern classification task. The input spike patterns and the network phase dynamics both had roughly the same spike count across the task, similar to what has been observed in real cortical neuronal ensembles (Carmena et al., 2003). A linear readout unit generated the circuit outputs based on the state of the network nodes at a particular time, which resembles the approach adopted in brain-machine interface studies (Lebedev et al., 2005; Hatsopoulos & Donoghue, 2009) but is also suggested as a more appropriate form to understand assembly activity (Buzsaki, 2010). Although it is still not clear how the temporal relations in the brain are organized, and thus how reading the network state at a predetermined time could be justified, there are some possible solutions that may have evolved in natural brains: a redundancy in the circuitry may exist so that at any time an event occurs, or a classification task is required, an output is produced (Ranhel, 2012); there can be an interaction of the external rhythms with internally generated ones, forcing synchronised firing events to occur in strict time windows (Masquelier et al., 2009; Kopell et al., 2010); attention mechanisms may also interfere and promote phase resetting (Steinmetz et al., 2000; Lakatos et al., 2008).

Considering a network with a total number of neurons equal to 80 ± 4, our results show that performance boosts as we increase the number of assemblies, and that can be predicted up to a certain extent by the computational power and generalisation capability of the system following the same procedure described in Legenstein & Maass (2007), although in our case it is possible that simply using the difference between these two measurements may not be the most appropriate form of combining them; this is an open problem which goes beyond the scope of this work. A further analysis, which varied the number and size of assemblies, revealed that the first impacts more on performance than the latter, a fact that can be attributed to the increased variability of possible network states due to a larger number of emergent clusters rather than fewer but larger assemblies. Also, the system presents a saturation in performance with respect to the number of clusters. Therefore, the results indicate that simply increasing the number of neurons or assemblies in the system does not necessarily originate a correspondent increase in performance. A similar phenomena is described in neuronal assembly physiology as “the neuronal mass principle” (Nicolelis & Lebedev, 2009), which states that a minimal number of neurons is needed in a neuronal population to stabilize its information capacity (captured by a readout unit) at a satisfactory level. Reducing the number of neurons causes an increasingly sharp drop in the information capacity of this population, whereas increasing the number of sampled neurons above a certain level does not increase the accuracy of predictions (Carmena et al., 2003; Lebedev et al., 2008).

Also, the results showed that, in our model, most of the neuronal architectures were highly redundant, most of the neurons in the higher performance configurations presented independent activity, and that increasing the number of neurons in a network with fixed number of assemblies increased the redundancy. All these findings resemble the
results obtained in real cortical experiments, therefore a few remarks should be made: first, real neuronal ensembles are highly redundant, and that can be associated with resistance to error and natural mechanisms of probability distribution estimation (Barlow, 2001; Szczepanski et al., 2011); second, neuronal independence (as observed in our results) can be linked to code efficiency because the information capacity of individual neurons is not compromised by redundant scenarios (Schneidman et al., 2003); and third, there is still a lack of studies comparing the information flow dynamics due to neuronal interactions and due to single neurons alone - attesting the time-scales of the interactions as well as spurious effects such as averaging is still work in progress (Reich et al., 2001; Narayanan et al., 2005).

The computational power analysis emphasized that multiple readout units could be trained to perform different classification tasks based on the same network state. In contrast, to conclude Experiment 1, we investigated whether the system could cope with multiple classification tasks relying only on a manipulation of the phase dynamics by means of an internally generated signal, employing the same readout unit without any plasticity mechanisms. To support the approach, there are clinical studies suggesting that intracortical electrical stimulation can induce cortical plasticity (Jackson et al., 2006), but functional plasticity can also be obtained faster as a result of attentional processes (Steinmetz et al., 2000; Lakatos et al., 2008; Schroeder & Lakatos, 2009). Our results show that the system can be trained in multiple classification tasks upon rearrangement of assembly configuration.

Although the results of the first experiment show that such a temporal code carries information and suggest that it can be exploited in a variety of tasks, it is challenging to determine to what extent the brain uses a temporal code. Moreover, there is evidence that the neuronal activity evoked by the body’s sensorimotor interactions with the environment differs from the activity evoked by passive stimulus (Lungarella & Sporns, 2006; Eliades & Wang, 2008). Hence, research on temporal neuronal codes and assembly formation benefit if linked with behavioural studies (Engel, 2010; Panzeri et al., 2010); in this sense, evolutionary robotics (ER) emerges as a suitable technique to combine both approaches (Floreano et al., 2008; Floreano & Keller, 2010).

In Experiment 2, an ER unsupervised learning task, we evolved a simulated robotic agent, controlled by a variation of the system investigated in Experiment 1, to solve multiple tasks depending on its battery state. The results showed that the evolved framework together with the dynamic assembly formation can generate minimally cognitive behaviours. When working with increasingly complex tasks, the changes in the parameters of the system are relatively small, which indicate that the different assemblies formed dynamically also facilitate the evolutionary process. Finally, we highlighted the context-based neuronal dynamics showing that the phase space formed by the motors readings and the nodes’ phases have different orbits due to changes in assembly organisation, and an analysis of the information flow in the network reveals that such changes modulate the influence of the inputs in the robot’s behaviour (determined by the motor commands).

Taken together, Experiments 1 and 2 employed information theory and decoding methods to provide further evidence that the dynamic formation of assemblies and the relative neuronal firing times can mediate processes involving the classification of spike patterns, and can selectively modulate the influence of external signals in the current network activity. Ultimately, there is no guarantee that the brain makes usage of a time-based decoding procedure, neither that it is able to exploit the information content revealed by the synergy analysis and the transfer entropy approach; nevertheless, it may shed light on aspects of brain-body-environment interactions and provide upper bounds on code efficiency when testing hypothesis (Quiroga & Panzeri, 2009; Jacobs et al., 2009).

There are several directions for future research. First, it is common to construct the Kuramoto model (and its variations) having additive noise at the input level equivalent to noise applied at the network level (Acebrón et al., 2005). Based on Equation 2, the following equation shows the usual form of the Kuramoto model with inputs $I_n(t)$ and noise $\chi_n(t)$:

$$\dot{\theta}_n = \omega_n + \frac{K}{N} \sum_{m=1}^{N} g(\theta_n - \theta_m) + I_n(t) + \chi_n(t), \quad n = 1, \ldots, N,$$

(14)

In this sense, Experiments 1 and 2 had a subset of noisy neurons (only neurons that had inputs). Given the relevance of widespread noise to many neuronal and cognitive phenomena (Rolls & Deco, 2010), future investigations should explore in depth its impact on the framework. As a preliminary study, we have run two further simulations of Experiment 1 adding Gaussian noise of zero mean and standard deviation σ to all nodes of the network. The results are presented in Figure 13. Notice that classification performance falls with increasing noise magnitude (an effect also present in Figures 2(c) and 4(b)), but the trend observed in our original results is kept and higher performance levels are obtained in architectures with more assemblies. Thus, at least for this experiment, noise applied to all neurons alters the classification performance in a quantitative rather than a qualitatively way.

How would additive noise affect measures of redundancy and synergy? The intuition that noisy scenarios are better tackled with redundant architectures is justified - there are works showing that cortical circuits, which operate in an intrinsically noisy environment, are highly redundant (Narayan et al., 2005; Szczepanski et al., 2011). However, there is criticism regarding the interpretation of information theoretical measurements such as redundancy (Schneidman et al., 2003; Latham & Nirenberg, 2005), as well as findings showing predominantly synergistic or independent activity in neuronal circuits, instead of redundancy, depending on factors such as which area and which neurons are recorded or which kind of task is performed (Reich et al., 2001). Addi-
tionally, as shown by Szczepanski et al. (2011), neurons can dynamically switch their interactions during the execution of the task, thus synergetic, independent, or redundant activity may be masked by averaging processes. Finally, redundancy and synergy are found to be largely influenced by the network architecture and the decoding unit used (Schneidman et al., 2003). The conclusion is that redundancy is not necessary for good performance in noisy scenarios, but mostly important it depends largely on the experimental paradigm used.

One limitation encountered in the methods used in Experiment 1, chosen for their ability to assess computational performance in generic neuronal microcircuits independently of task paradigm, is that in some circumstances noisy neurons may make the computational power and generalization capability analyses inconclusive due to state matrices having complete rank most of the time (Legenstein & Maass, 2007). This was not an issue in previous works that used these methods (e.g. (Maass et al., 2005; Legenstein & Maass, 2007)) because emergent properties of the neural architecture resulted in highly silent networks with dynamics that were marginally affected by noise; conversely, the model in this article is composed of self-sustained oscillators which are always active. Considering that silence in the brain is still a point of much controversy (Shoham et al., 2006), the applicability of the methods used in Experiment 1 to a variety of problems and neural architectures remains an open question.

Another possible future extension to the model would be to substitute the continuously coupled oscillators used in this work with pulse-coupled oscillators, which are not only a more biologically plausible abstraction of neuronal synaptic activity, but also present rich metastable dynamics that can be exploited to compute arbitrary logic operations (Neves & Timme, 2009, 2012; Wildie & Shanahan, 2012). However, the network cluster states in the works just cited are emergent processes found numerically (despite the switching dynamics being controllable), whilst the model studied in this work can be systematically tuned into predefined assembly configurations.

Finally, it would be interesting to extend the model to include multiple assembly membership (i.e. entitle a given neuron to participate simultaneously in two or more assemblies), as it has been shown to enhance the computational power of a neuronal circuit (Izhikevich, 2006).

To conclude, implementing the methods or the experiments described in this work in a biological network is impractical at the moment for limitations in both recording and stimulation technologies: the best technologies are able to record and stimulate a limited number of neurons. However, more important than trying to implement the methods or experiments in a biological network are the insights and future work opportunities we gain. There are many open questions in neuroscience regarding neural assemblies, their properties, and relationship with behaviour. This very simple model, based on a model that is being increasingly applied to study neuroscience problems (the Kuramoto model), has shown promising results in supervised and unsupervised learning tasks. The point to stress is not solely performance levels - support vector machines, for instance, would surely excel in Experiment 1, attaining far better results than our approach - but the ability to solve relatively complex tasks mimicking mechanisms that current research suggests is exploited by the brain, namely neuronal assembly dynamics. Therefore, a better comprehension of the framework, its limitations and possible extensions, and ultimately understanding of the computational properties of neuronal assembly dynamics, whether at solving data mining tasks or as part of novel behaviour generation mechanisms, should precede biological implementations.

Acknowledgments
RM was partly funded by a Sussex TA scholarship and a de Bourcier scholarship. Special thanks to Bruno Santos, James Thorniley and other members of the CCNR for useful discussions relating to this work. We would like to thank two anonymous reviewers for their valuable comments.

REFERENCES
Bhowmik, D. & Shanahan, M. (2012). How well do oscillator models capture the behaviour of biological neurons?

