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Abstract. Several models have been proposed for visual homing in in-
sects. These work well in small-scale environments but performance usu-
ally degrades significantly when the scale of the environment is increased.
We address this problem by extending one such algorithm, the average
landmark vector (ALV) model, by using a novel approach to waypoint
selection during the construction of multi-leg routes for visual homing.
The algorithm, guided by observations of insect behaviour, identifies lo-
cations on the boundaries between visual locales and uses them as way-
points. Using this approach, a simulated agent is shown to be capable
of significantly better autonomous exploration and navigation through
large-scale environments than the standard ALV homing algorithm.

1 Introduction

Many models of insect navigation have been devised which reproduce the ani-
mal’s visual homing capabilities in simple environments [1]. However, they do
not cope well with large-scale environments containing several visual locales, or
areas, without significantly increasing computational and storage demands. In
this context, large-scale environments are defined as those in which the visual
input at any location does not define the entire environment - as in most natu-
ral settings. Whether a scene is cluttered (e.g. dense woodland) or sparse (e.g.
desert) there will be objects at a variety of spatial frequencies and distances
which will not all be visible at any one time. This means that a single room
with no features of a size less than the agent’s visual acuity is not a large-scale
environment, whereas an environment containing objects far enough away that
they cannot be resolved by the agent is large-scale. The scale of the environment
can therefore be varied by changing the size of objects whilst keeping the size of
the environment and the visual acuity of the agent fixed.

Importantly, as an agent passes though large-scale environments landmarks
will enter and exit its visual field. They therefore present difficulties for nav-
igation as visual landmarks which define the goal location may not be visible
from other locations. If a subset of visual landmarks remains visible through-
out the environment, navigation methods relying on this subset can be used. In
large-scale environments, however, this feature set will change as landmarks exit
or enter view and a new visual locale is entered. The navigational information
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from the previous locale will very likely be useless in navigating from the cur-
rent locale to the goal and navigation methods relying on this information will
fail. In addition, navigation strategies will fail if distinct locations are visually
indistinguishable, with the probability of such perceptual aliasing increasing in
large-scale environments.

If a navigation algorithm is to function robustly in the real world, it must
account for the problems arising from large-scale environments. To date, a major
focus of biomimetic strategies capable of dealing with such environments has
been on constructing databases or graphs that associate a given location with
a navigational action (reviewed in [2]). On recognising the current location, an
agent selects the associated action that leads to the next goal location. This
approach replaces local navigation with a recognition-triggered response and
enables navigation through large-scale environments. As visual input is only used
to evaluate whether the agent has reached a goal location, landmarks which exit
and enter the agent’s perceptual field have no effect on navigation.

While they work in certain situations, associative databases have several se-
rious shortcomings. If a location is incorrectly identified the error is not evident
until the agent fails to find the next goal location. To compound matters, the
agent does not know whether its failure to reach the goal was due to incorrect
identification of the previous location or for some other reason. Thus, for clar-
ification, the agent must attempt to return to the last known location. These
problems arise from the ballistic nature of the navigational action stored in
associative databases. A compass direction or vector (compass direction and
distance) provide no feedback until followed to completion - the cost of ignoring
available navigation cues between goals.

We have attempted to overcome the problems presented by large-scale envi-
ronments by augmenting the average landmark vector (ALV) model [3] in two
ways. We use a novel approach to waypoint selection during the construction of
multi-leg routes for visual homing. The method recognises entry into a new visual
locale and incorporates this information in the automatic creation of a series of
intermediate goals, or waypoints, between which local navigation methods can
be used. Navigation along the whole route is accomplished by navigating to each
waypoint in turn. In this way, the larger visual environment becomes segmented
into areas where a subset of visual features remain in view as the individual
moves. Waypoints are only selected when required by the agent, resulting in the
minimum number for successful navigation being used. The model also makes
use of path integration information to ‘scaffold’ the visual learning of the route.
The resulting algorithm achieves high performance despite very low computa-
tional and storage requirements. A comparative study of the ALV and augmented
models was carried out in a series of environments of gradually increasing scale
with the augmented model demonstrably superior in all instances.

Our aim was to produce a robust visual navigation system for autonomous
robotics which is based on biological observation and attempts biological plau-
sibility. The advantage of this constraint is twofold: it provides a successful and
efficient model on which to base our algorithm and it retains the possibility of
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generating biological hypotheses from the work. To this end, in the algorithm
presented we have reduced the level of computation, duration of route learn-
ing, and storage requirement found in current biomimetic models of navigation
in large-scale environments. We have also taken note of the fact that ants and
bees integrate several navigational cues (vision, compass, odometery, olfactory)
during the trajectory between two locations of interest [4,5,6,7].

The paper proceeds as follows. Section 2 details key components of current
insect visual navigation models and describes the ALV model. Our augmented
algorithm is described in Section 3. The experimental setup used to evaluate
the algorithm is described in Section 4 and Section 5 presents the experimental
results. Lastly future directions for the work and conclusions are discussed.

2 Models of Insect Navigation

The visual navigation algorithm presented in Section 3 incorporates two ex-
tensively researched aspects of insect navigation - path integration and visual
homing. Brief details of these processes are given here as background before the
ALV model is described.

Path integration (PI), or dead-reckoning [8], is a pervasive strategy in nature,
occurring in both vertebrate and invertebrate species. PI enables an individual,
who may have travelled a tortuous outbound journey, to return to the starting
location via a direct route. In its simplest form, direction and distance to home
are continually integrated as the individual moves, creating a ‘home vector’ which
can be followed to return to the starting location. PI is a continuous iterative
estimate, and is therefore susceptible to cumulative error. To mitigate this, both
bees [9] and ants [6,10] use visual information for homing within an area local to
a target location. PI can provide an initial means of navigating a path, enabling
the ‘scaffolding’ of more reliable visual learning of the route [5]. It is used in this
context in the algorithm presented here.

Several models of insect visual homing use a comparative process to match the
current view to that expected at the target location (see [1] for an overview). The
basic model works by storing a (possibly parameterised) view at a location of
interest. As an individual returns to that location the stored image is repeatedly
compared with the current visual input, with a close match indicating that the
individual has returned to the location where the view was stored. Several models
extend this simple comparison procedure to produce the direction of movement
that will increase similarity between views and thus guide the individual to the
location of the original view. One such example is the ALV model [3], a highly
parsimonious simplification of the ‘snapshot’ model proposed by Cartwright and
Collett to describe navigation behaviour in bees [9].

The primary difference between the snapshot model and the ALV model is the
visual information stored at the location of interest. The snapshot model stores
a rather unprocessed image which is later compared to the current retinal image
to produce a movement direction. The ALV model, however, processes the visual
image into an abstract representation of the view - a single two-component vector
- before it is stored. To calculate this vector, features (landmarks) are selected
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from a 360 degree panoramic view1, each represented as the unit vector from
the individual to the landmark. By averaging these individual landmark vectors
a single vector (the ALV) that characterises the visual scene at a particular
location is derived.

As an individual moves, landmark positions change relative to the individ-
ual and the ALV changes accordingly. To return to a location of interest, an
individual compares the stored ALV from that location to the current ALV. It
then moves so that the subsequent ALV is closer to the stored one. Since the
difference between the ALVs gives the approximate direction of goal, iteration
of this process brings the individual to the goal [3].

The ALV model is very cheap in terms of computation and memory, and has
been shown to be effective for visual navigation in both computer simulation
[12,3] and on autonomous mobile robots [13]. It works well in simplified small-
scale environments in which the task is to home to a single location following a
displacement. In such environments, however, all visual features are within the
visual field of the agent. This is not the case in large-scale environments and we
later show that the ALV fails in such situations.

3 The Augmented Navigational Algorithm

The augmented navigational algorithm developed in this research preserves the
attractive qualities of the ALV method (very low computational and memory
requirements) while adding capabilities that allow large-scale environments to
be handled. The behavioural scenario used to evaluate the algorithm is food
foraging from a nest (home) to which the agent must return. The algorithm
contains three components: foraging, visual route learning and visual navigation.
The foraging component is little more than random search. Initially, the agent
is set to foraging from the nest location where the agent wanders randomly
in directions sequentially chosen from a gaussian distribution about its current
heading (σ = 0.2). While foraging, a global vector to the nest is maintained by
the agent through path integration, as proposed for Cataglyphid ants [5]. This
home vector is later used to return to the nest after food is found.

On locating food, the agent starts the process of visually learning the nest-
bound route. The agent first stores its global home vector and starts on its nest-
bound trajectory. During the inbound journey, the ALV (discussed in Section
2) is calculated at each time-step and compared to that of the previous time-
step. When the ALV changes significantly, defined as an object appearing or
disappearing from the visual array, the agent is deemed to have moved into a
new visual locale and the previous ALV is stored. In this manner an ordered
series of ALVs is accumulated - each representing a significant discontinuity in
the ALV space. When the agent reaches the nest, the series is terminated with
the current ALV.
1 Prerequisites for the ALV are a 360o visual system and an ability to align views with

an external reference (eg a compass direction). Ants and bees have near spherical
vision and both gain compass information from (at least) celestial cues [11].
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Outbound trajectories proceed in much the same manner as inbound route
learning. The global vector previously stored at the food location is now used
to determine the goal direction back to the food object. En route, continuity
of the ALV is monitored and the ordered series of vectors is terminated with
the ALV at the food object. After completion of one direct inbound and one
direct outbound trip, inbound and outbound routes are stored as two series of
waypoints (represented by the ALVs). The agent then enters the final behavioural
component of visual navigation between nest and food regions. When leaving the
food for the second time, the agent uses the standard ALV algorithm to home
to the first location represented in the series of ALV’s compiled in the previous
inbound trajectory. As the agent approaches this location the difference between
the current ALV and goal ALV approaches zero. At this point, the agent sets
the next ALV in the series as the goal and repeats the process until it reaches
home. The algorithm is summarised in Figure 1.
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Fig. 1. Simplified flow diagram of the navigation algorithm. There are three primary
behavioural components: foraging, route learning and visual navigation.

4 Computer Simulation: The Experimental Setup

Navigational runs were performed in a two dimensional computer simulated
environment. The environment contained three object types - landmarks, nest
and food. The landmarks are black cylinders as used in both simulated and real
ant visual navigation experiments [6,4,7]. Nest and food regions were circular
areas detectable only upon entry and therefore not used in navigation. The
environment was 1000×1000 units and unless stated otherwise, object diameters
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were randomly selected in the range 30-95 units while nest and food are 20 units
in diameter (Figure 2). 25 objects are placed randomly within each environment
together with a randomly positioned nest and food item. However, to avoid
the biologically implausible scenario of nest or food being on the edge of the
environment and thus having no objects ‘behind’ them, they are constrained to
lie within the central 500×500 area of the arena. We also ensured that nest and
food do not overlap and that no object is placed over nest or food.
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Fig. 2. Plan view of the computer simulated environment with nest and food regions
denoted by N and F respectively. Inset: an enlargement to indicate agent dimensions.

The agent is circular with wheels tangential to its body. Movement is resolved
into translation and rotation dependent upon the distance travelled by each
wheel. A wheelbase of 10 units, and wheel circumference of 4 units (diameter =
4/π) characterise both maximum speed and rate of turn. Motor output is in
the range [−1.0, 1.0] and represents the percentage of wheel rotation for a given
time-step, with a maximum wheel travel of ±100% of wheel circumference (i.e.
±4 units). Motor output is calculated as the cosine of the angular difference
between current heading and goal heading - skewed by 0.25π and −0.25π for
right and left motors respectively 2. The motor output equation produces turn-
ing proportional to the angular difference of the current and goal headings
(Figure 3). Large angular differences produce a three point turn; with smaller
angular differences, output converges to produce straight line travel.

Agents cannot move through landmarks and must perform rudimentary ob-
stacle avoidance. This is implemented by a ring of simulated infra-red proximity
sensors which go high when either a landmark or the edge of the simulation area
is within 5 units. A vector opposite to the direction of the detected object is then
added to the movement vector calculated from visual input. As well as obstacle
avoidance, this procedure constrains the agent to the simulation area.

To produce a large-scale environment for the agent to navigate within, visual
acuity of the agent is limited to 4o per sensor, with visual information collected
by 90 sensors, creating a 360 degree panoramic view. If an object covers more
2 The skew value (±0.25) was arbitrarily chosen to produce a reasonable turning rate

proportional to angular difference of the current and goal headings.
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Fig. 3. Graph of the angular difference between the agent’s current heading and its
goal heading (θ) versus motor output values. The right motor output is cos(θ + 0.25π)
and left motor output is cos(θ − 0.25π). (a) Shows an agent with initial heading (i),
the goal heading (ii), and their angular difference (θ). Forward motion of the right
wheel, and backward motion of the left results from the situation depicted.

0° 360°

(a)

(b)

100° 260°

Fig. 4. Translation of environment to visual input: a Three dimensional view from
agent’s centre. Here a 40 degree subset of sensors is represented. Sensor arcs containing
(visually) any portion of a landmark are set high (black). b The one dimensional
visual array corresponding to the above view. Sensor states are transferred to a one-
dimensional array with objects appearing as black segments.

than 50% of a sensor, the corresponding portion of the visual array is set to
high (Figure 4). This means that the visual range of the agent is determined by
the size of objects. The resulting visual input represents landmarks with black
segments within a one dimensional array. At any one time, the agent was unable
to see all landmarks within the environment. Landmarks would exit and enter
from view as the agent moved through the environment.

5 Experimental Results

In this section we present the results of a comparison of the ALV and augmented
ALV algorithms over a range of large-scale environments. A typical run of the
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navigational algorithm in the simulated environment is then looked at in detail
before discussing situations in which it fails.

5.1 Comparison of Algorithms in Large-Scale Environments

For a thorough exploration of the effect of scale on the performance of the
algorithms, we ran the ALV and augmented ALV on environments where all
objects had equal diameter and then incrementally decreased this parameter. As
discussed in the introduction, reducing the size of all objects while keeping other
factors fixed increases the ‘scale’ of the environment. Positions of objects, nest
and food were randomly selected and fixed while experiments were performed
for each object radius in the range 10-40. This procedure was repeated 30 times,
giving a total of 30 random environments for each object diameter value. As the
environments were entirely random, the results include pathological examples
where the task was impossible, such as when objects significantly obstructed
movement towards nest or food or when there were sections of the environment
where no objects are visible. The algorithm performance would be improved if
such environments were excluded or if the algorithm was augmented to deal with
these occurrences. The ALV homing algorithm was tested by providing the agent
with a single ALV (stored at the nest location) to navigate through a large-scale
environment. The augmented algorithm was run as described in Section 3.
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Fig. 5. Comparison of ALV (dashed line) and augmented ALV (solid line) on random
large-scale environments with objects of fixed diameter

The percentage of trials in which the agent successfully returned to the nest
using each algorithm are shown in Figure 5. As can be seen, the standard ALV
model fails to cope with almost all environments and only returns home 9 times.
The cases where it succeeds are not dependent on object diameter, but rather
are fortunate cases where food and nest fall within the same visual locale. The
augmented ALV performs significantly better over the entire range of diameters
tested. For larger objects this translates into fairly consistent success with the
agent returning to the nest in the majority of the trials. Failures are due to
the problem of mistaken context discussed in the next section, and encountering
visual locales not experienced during the single learning journey due to noise in
the agent’s trajectory. This occurs more frequently when there are many small
visual locales.
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5.2 Single Run

In this section we examine a single run of the augmented ALV algorithm in de-
tail. The run begins by placing the agent at the nest location. The agent starts its
outbound foraging journey on a random bearing. Foraging continues until a food
location is discovered, atwhich point the agent navigates nestward by path integra-
tion. The agent’s current ALV is monitored as it proceeds toward the nest. When
a significant difference between the current and previous ALV is detected, the lo-
cation is identified as a boundary between visual locales and selected as a route
waypoint. In Figure 6(a) centre, four peaks clearly differentiate from the baseline
and indicate visual locale boundaries. The causes of significant differences in ALV
are illustrated by the traces of visual input over time (Figure 6(a) right) which de-
pict landmarks entering and exiting perceptible range. Once the agent has reached
the nest, it starts the outbound journey to the food by path integration. In the same
way as in the nestbound journey, waypoints are selected (Figure 6(b)).

On returning to the food for the second time, the agent begins the nest-
bound journey by visually navigating to the first waypoint along the route to
the nest. In comparing agent and waypoint ALVs, the agent is provided with
both the direction to the goal, and a measure of current visual similarity to the
goal location. When a significant difference between the agent ALV and way-
point ALV is detected, the agent moves a short distance in the direction of its
global vector, visual navigation recommences, and the next waypoint is sought
(Figure 7 centre). When the new goal becomes the next waypoint location, a
jump in difference between the agent and waypoint ALVs is observed. This dif-
ference is again reduced as the agent approaches the waypoint.

Following the selection of waypoints during the inaugural inbound and out-
bound journeys, the sequence of waypoint seek-advance-seek continues until in-
terrupted. The agent shuttles between nest and food, via the agent selected
waypoints.
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Fig. 6. Initial trips during which the route was learnt and visual navigation waypoints
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the set threshold, and the goal is advanced to the next waypoint (arrows). right: The
retinal image used to produce ALVs at selected waypoints.

Agents did mistake context if they failed to recognise they were sufficiently
close to the waypoint to advance to the next ALV in the series. Although infre-
quent, these situations cause the algorithm to fail. This confusion is caused by
the angle at which the agent approaches the visual locale boundary. In Section
6 we discuss ways of addressing this problem.

While the augmented algorithm performs well in may large-scale environments,
it can be seen from Figure 5 that it does degrade as the object size decreases, al-
though it is still much superior to the performance of the ALV. The reason for this
degradation is that with smaller objects, there is an increased probability of the bi-
ologically implausible situation of areas where there are no visual landmarks. This
necessarily results in failure of the algorithms. In addition, when there are fewer
objects in view, the possibility of perceptual aliasing is greatly increased.

Such failures are to be expected; our intention was not to produce perfect
navigation in these simulated environments, but rather to develop a strategy
which addressed the shortcomings of the ALV. We are satisfied that our results
demonstrate that we have a basic strategy that can be applied to navigation in
large-scale environments. From this point, rather than tweaking this particular
model to tune it to the environments used, improved algorithms will be built
from this general strategy, via modifications as discussed in the next section.

6 Conclusions and Future Directions

Our navigational algorithm enables successful autonomous exploration of large-
scale environments, and efficient selection of waypoints to connect separate vi-
sual locales. Several advantages are gained over current navigation models pro-
posed for robotic platforms: multi-legged routes can be traversed entirely by
non-ballistic navigation methods; continuous sensory feedback guides the agent
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to the next waypoint; and unlike ballistic navigation methods, errors can be
detected as soon as they occur.

We included amongst the goals for this work the possibility of biological hypoth-
esis generation. To this end, we have taken a model proposed for insect visual nav-
igation, and extended it to a form that remains biologically plausible in its com-
plexity. Although we have purposefully developed a model that operates at a low
level of computation, higher level processes such as topological mapping and route
planning could be added to the navigational algorithm presented here.

While the results reported here were achieved in simulation, we are currently
transferring the algorithm onto a real robot platform. The transfer requires the
algorithm to cope with sensory input noise not present in the simulated environ-
ment. The main problem is in the noise in visual input and in object segmentation
in particular, though compass readings and physical interaction also contribute
to the noise experienced by the robot. While the algorithm performs well in
hand-picked ‘un-noisy’ conditions, we are currently augmenting the visual pro-
cessing of the robot to aid object segmentation and recognition. In particular,
we will use higher order object features such as centre-of-mass as well as edge
information.

A second area of development is the identification and correction of mistaken
context. As mentioned in Section 5.2, the algorithmwill fail when an agent does not
recognise it has crossed into an adjacent visual locale. The agent continues to use
the visual information for a locale it is not in, and spurious movement vectors are
produced. By comparing the ALV movement vector (Section 2.3) to the movement
vector suggested by path integration, an indication of error can be obtained. If the
movement vectors diverge substantially, a navigational error has occurred and cor-
rective behaviour can take place at the point of divergence3. In some situations the
conflict could be caused by detours around obstructions, or changes in a dynamic
visual environment. In these situations, replacing, adding or deleting waypoints
could adapt a previously learned route. Recent work in these directions has been
successful. Finally, future plans include extension of the navigational algorithm to
accept visual input in three-dimensions. Landmarks would not be restricted to a
two-dimensional plane about the robot, which should improve accuracy and effi-
ciency as well as freeing the robot to traverse uneven ground.
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