Noise and The Reality Gap: The Use of
Simulation in Evolutionary Robotics

Nick Jakobi and Phil Husbands and Inman Harvey
School of Cognitive and Computing Sciences
University of Sussex

Brighton BN1 9QH, England

email: nickja or philh or inmanh@cogs.susx.ac.uk

Abstract

The pitfalls of naive robot simulations have been recognised for areas such as evolution-
ary robotics. It has been suggested that carefully validated ispell slides.tex simulations with
a proper treatment of noise may overcome these problems. This paper reports the results
of experiments intended to test some of these claims. A simulation was constructed of a
two-wheeled Khepera robot with TR and ambient light sensors. This included detailed math-
ematical models of the robot-environment interaction dynamics with empirically determined
parameters. Artificial evolution was used to develop recurrent dynamical network controllers
for the simulated robot, for obstacle-avoidance and light-seeking tasks, using different levels
of noise in the simulation. The evolved controllers were down-loaded onto the real robot and
the correspondence between behaviour in simulation and in reality was tested. The level of
correspondence varied according to how much noise was used in the simulation, with very
good results achieved when realistic quantities were applied. It has been demonstrated that it
28 possible to develop successful robot controllers in simulation that generate almost identical
behaviours in reality, at least for a particular class of robot-environment interaction dynamics.

Keywords: Evolutionary Robotics, Noise, High Fidelity Simulations, Artificial Evolution.

1 Introduction

A number of New-Wave roboticists have consistently warned of the dangers of working with over-
simple unvalidated robot simulations [2, 1, 16]. Indeed, as Smithers has pointed out [16], the word
simulation has been somewhat debased in the fields of AlI, robotics, and animat research. Many
so-called simulations are abstract computer models of imaginary robot-like entities, not carefully
constructed models of real robots. Whereas these abstract models can be very useful in exploring
some aspects of the problem of control in autonomous agents, great care must be taken in using
them to draw conclusions about behaviour in the real world. Unless their limitations are recognised,
they can lead to both the study of problems that do not exist in the real world, and the ignoring of
problems that do [1]. Behaviours developed in a simulation worthy of the name must correspond
closely to those achieved when the control system is down-loaded onto the real robot.

One area of New-Wave robotics where these issues may be particularly pertinent is evolutionary
robotics [8]. This is the development of control systems (and potentially morphologies) for au-
tonomous robots through the use of artificial evolution. Populations of robots evolve over many
generations in an open-ended way under the influence of behaviour-based selection pressures. Two
of the earliest papers on this topic both stressed the likelyhood of having to work largely in simu-
lation to overcome the time consuming nature of doing all the evaluations in the real world [3, 8].
However, both discussed the potential problems with simulations and remarked on the great care
that would have to be taken. In [3], Brooks was highly sceptical®:

There is a real danger (in fact, a near certainty) that programs which work well on
simulated robots will completely fail on real robots because of the differences in real

1Tt is likely that these comments were influenced by experiences with devices rather different to the robot used
in the experiments described later. This issue is returned to in the Conclusions.

world sensing and actuation — it is very hard to simulate the actual dynamics of the
real world.

and later,

...[sensors] ...simply do not return clean accurate readings. At best they deliver
a fuzzy approximation to what they are apparently measuring, and often they return
something completely different.

But since the aim of evolutionary robotics is to produce working real robots, if simulations are to
be used, these problems must be faced. The question is how. In [8] (with further elaborations in
[9]) it is argued that:

e The simulation should be based on large quantities of carefully collected empirical data, and
should be regularly validated.

e Appropriately profiled noise should be taken into account at all levels.

e The use of networks of adaptive noise tolerant units as the key elements of the control systems
will help to ‘soak up’ discrepancies between the simulation and the real world.

e Noise added in addition to the empirically determined stochastic properties of the robot may
help to cope with the inevitable deficiencies of the simulation by blurring them. A control
system robust enough to cope with such an envelope-of-noise may handle the transfer from
simulation to reality better than one that cannot deal with uncertainty over and above that
inherent in the underlying simulation model.

This paper reports the results of experiments that were intended to explore the validity of some
of these assertions and claims. Network-based control systems for generating simple behaviours
were evolved in simulations of different levels of fidelity and then down-loaded onto the real robot.
Comparisons were made between behaviours in the simulations and in the real world.

In [8] it was argued that as the robot’s sensory coupling with its environment becomes more
complex, simulations would become extremely difficult to construct and would be slower than real
time unless highly specialised hardware were available. This problem resulted in the development
of the Sussex gantry-robot which allows evolution in the real world [7]. This issue is revisited in
the present paper in the light of the experiments outlined above.

The next section discusses related work. Following that is a description of the robot simulation
and then an outline of the experimental setup. After detailing the evolutionary techniques used,
experimental results are presented and discussed. Finally conclusions are drawn.

2 Related Work

Recently there have been a number of reports on experiences with transferring control systems from
simulation to reality. These have met with varying degrees of success. Mondada and Verschure
[14] describe the development, through the use of a learning algorithm, of a network-based control
system both in simulation and in reality. They used the Khepera robot, the same device involved
in the study described later in this paper (see Section 3). Qualitatively similar behaviours were
observed in simulation and in reality. However, behaviour on the real robot was significantly less
robust and a far greater number of learning steps were needed to achieve reasonable results. This
appears to be partly due to the fact that noise was not modelled in the simulation. Miglino, Nafasi
and Taylor [13] evolved recurrent network controllers for a very crude computer model of a simple
Lego robot. Not surprisingly the evolved controllers generated significantly different behaviours in
the real robot. Nolfi, Miglino and Parisi evolved network-based controllers for a simulation of the
Khepera robot (described in [15]). Behaviours developed in simulation did not transfer at all well to
the robot, but if the GA run was continued for a few generations in the real world (using techniques
similar to those described in [5]) successful robust controllers were obtained. This was probably
due to the fact that the simulation was based on empirically sampled sensor readings. Sampling
appears to have been too coarse, and possibly not enough readings were taken at each point to
accurately determine the statistical properties of the sensors. We feel a better approach is to use
large amounts of empirical data to set parameters and mappings in a continuous mathematical

model of the robot-environment interactions. This technique seems to be vindicated by the results
presented later in this paper. In [18] Yamauchi and Beer describe an experiment in which dynamical
neural networks were evolved, in a manufacturer supplied simulation of a Nomad 200 robot, to
solve a landmark recognition task using sonar. When the evolved controllers were used on the real
robots, behaviours were very similar, although not quite as successful, as in the simulation. The
simulator was probably very accurate and the highly dynamical networks used are likely to be good
at ‘soaking up’ discrepancies between simulation and reality. Thompson had significant success
(although there were some discrepancies) in transferring evolved hardware controllers developed
in a semi-simulation (the robot’s sonar-environment interaction was simulated, the real hardware
and actuators were used) [17]. This was despite the fact that the robot involved is much more
cumbersome and less ‘clean’ than devices such as Khepera, and the sonar simulation was rather
crude (although noise was added to the underlying model).

3 The Robot Simulation

3.1 Khepera

The robot used in this project was the Khepera robot developed at E.P.F.L. in Lausanne, Switzer-
land. Tt has been specifically designed as a research tool allowing users to run their own programs
and control algorithms on the powerful 36 MHz Motorola 68331 chip carried on board (see [11]).
The robot is cylindrical with a diameter of 5.8 cm and a height of 3.0 cm. Tt has eight active IR
proximity sensors mounted six on the front and two on the back. The receiver part of these sensors
may also be used in a different mode to passively measure surrounding ambient light. The wheels
are driven by extremely accurate stepper motors under P.I.D. control. Each motor incorporates a
position counter and a speed of rotation sensor. It should be noted that it is probably far easier
to build an accurate simulation of this sort of robot than it would be for many others.

3.2 The Simulation

The simulation of the Khepera was built using empirical information obtained from various experi-
ments. The simulation is based on a spatially continuous, two dimensional model of the underlying
real world physics and not on a look-up tabl approach as in [15]. This affords greater generality with
respect to new environments and unmodelled situations although at some computational expense.
The simulation is updated once every 100 simulated milliseconds: the rate at which the inputs and
outputs of the neural network control architectures are processed. This results in relatively coarse
time slicing, some of the effects of which may be moderated by noise.

3.2.1 Modelling Methodology

The decision on which level of detail to pitch the simulation was arrived at intuitively. The idea
was to build into the simulation all the important features of the Khepera’s interaction with its
environment without going into so much detail that computational requirements became excessive.
After initial experimentation, it became clear which features were important to model (as fields in
a state vector) and which could be left out. For example the distance from an TR sensor to the
nearest object is an important feature model whereas the height of objects is not.

An idealised mathematical model was constructed by applying elementary physics and basic control
theory to the interactions between these environmental variables. More specifically, generalised
equations (with unassigned constants) were derived capable of producing values proportional to
the ambient light intensities, the reflected infra red intensities and the wheel speeds.

After developing these general equations, several sets of experiments were performed to find actual
sensor values and noise levels for specific settings of environmental variables. Using curve-fitting
techniques it was then possible to produce mappings from the predictions of light intensities, wheel
speeds and so on produced by the model to the actual sensor values observed during experimen-
tation. As part of the same process values were also attributed to all unassigned constants to
produce the set of equations (given below) that are used by the simulation to calculate specific
values for the TR sensors, ambient light sensors and wheel speeds.

3.2.2 Modelling the Khepera’s Movement, Motors and PID controllers

All experiments performed on the Khepera’s motors, PID controllers and general movement were
carried out with the aid of the in built position and speed sensors. By connecting the Khepera to
a host computer using the supplied serial cable, accurate statistics on the Khepera’s current speed
and position could be gathered while the robot was moving. In this way a profile of the Khepera’s
response to motor signals was calculated and mapped onto the model given below.

When one of the motors on the Khepera is set to run at a certain target speed V' its actual speed,
U, will in fact oscillate around this figure due to axle noise, irregularities on the ground surface
and so on. Khepera uses a PID control algorithm [12] that ensures that U never varies significantly
from V. It also has the important consequence that each wheel, over time, travels approximately
the correct distance.

The PID algorithm changes the motor torque T according to the equation:

dV-U0)

TocKp(V—U)—i—Ki/V—Udt—i—Kd -

where K, K; and K4 are the proportional, integral and derivative constants.

In the simulation, the integral and derivative terms could only be approximated due to the relatively
coarse time slicing involved. The proportional error, P, at time ¢ is calculated as P, = (V —
U)/0.1 since the simulation is updated every 0.1 seconds. The integral term, I}, is the sum of the
proportional terms over the last five time steps. The derivative term, Dy, is proportional to the
force applied to the wheels on the last time step. It is calculated by dividing the change to the
wheel speeds on the last time step, dv;—1, by an empirically found constant of 50000, equivalent
to the robot’s mass. Once these terms have been calculated then the change to the wheel speed at
time t, dvy 1s calculated as:

(SUtI[(pXPt-F[(Z'XIt"I'[(dXDt

The simulated robot’s movement was found empirically to best match that of the Khepera when
K, K; and K were set at 3800, 800 and 100 respectively. These values are, in fact, the same as
those used by the PTD controller on the Khepera (see [11]).

Static friction (the force that has to be overcome to start an object moving) is modelled by noisily
thresholding the integral term. The path taken by each wheel during a simulation update is
modelled as an arc of a circle.

3.2.3 Modelling the Khepera’s Infra Red Sensors

Ray tracing techniques are used to calculate values for the TR sensors (see [6]). Ten rays are used
for each sensor arranged in an arc spanning 180°. If the distance from a particular sensor along a
ray 1 to an object is d;, then the sensor value is calculated as

10

I= Zcosﬁi(a/d? +b)

i=1

where f; is the angle at which the ray i leaves the sensor and a and b were set empirically (see
above) to 3515.0 and -91.4 respectively.

3.3 The Ambient Light Sensors

In reality there are many factors that have a measurable effect on the ambient light sensor values.
The model used in the simulation is, therefore, correspondingly complicated. Ray tracing to a
depth of two rays (the TR sensors are calculated from a depth of one) the intensity of the ambient
light at a sensor is calculated as a sum of direct illumination and reflection. Experiments using the
ambient light sensors were carried out in an environment with one major light source (see Section
4). The light source (in reality a 60W desk lamp) is modelled by five point sources. For each point
at which one of the rays leaving the sensor hits the wall, five lamp-rays are calculated between
this point and the five point sources approximating the lamp. The number of unobstructed lamp-
rays is used to calculate the brightness of the reflection. Similarly direct illumination of a sensor

is calculated from the number of unobstructed lamp-rays between that sensor and the five point
sources.

Because the light source is brighter in the middle than at the edges, lamp-rays originating from the
centre play a greater role in determining sensor illumination than those at the edges. The direct
illumination D of a sensor is calculated as:

5
D= (-415+ L; x k;)/d’

i=1

where d 1s the average of the distances from the sensor to each point source. L; is 0 if the lamp-ray
from the sensor to point source number 7 is occluded and 1 otherwise. k; are the empirically derived
weights for each point source: 4.19 for the point source on each edge, 4.24 for the pair inside each
of these and 8.24 for the point source at the centre.

If D; is the direct illumination of ambient sensor ¢ and I);; is the direct illumination of the point
at which ray j of length d;; from sensor ¢ hits an object, then the total illumination A; of sensor ¢

1s calculated as:
10

A, =D; + Z(D” X cos’ 62']' X 1.5)/d?j
ji=1
where 3;; is the angle at which ray j leaves sensor 1.
Finally the simulated sensor value V is calculated from the total illumination A according to the
empirically determined mapping;:

V=550+1/VA4

4 The Experimental Setup

In order to test the assertions outlined in the introduction, two sets of evolutionary runs were
carried out, each involving the evolution of a different behaviour.

In the first set of experiments, obstacle avoiding behaviours were sought. The task here was to move
around the environment covering as much ground as possible without crashing into objects. The
environment, shown in figure 1, consisted of a square arena with sides of length 50cm constructed
from yellow painted wood and four grey cardboard cylinders with a radius of 4cm.

N Y

T

Figure 1: The environment used in obstacle
avoiding experiments

L~

Figure 2: The environment used in light-seeking experi-
ments

In the second set of experiments an ordinary sixty watt desk lamp was placed at one end of a
110cm by 70c¢m arena again made from yellow painted wood (Figure 2). A light seeking behaviour
was sought which would enable the robot to move towards the lamp when started from random
orientations and positions at the other end of the arena.

Before describing the experiments in detail, the evolutionary techniques will be explained.

5 Evolutionary Machinery

5.1 The Genetic Algorithm

In order to try and avoid some of the problems of premature convergence associated with more
traditional genetic algorithms, a distributed GA was used [4]. The population was distributed over
a two dimensional grid, and local selection was employed. Each member of the population breeds
asynchronously with a mate chosen from its eight immediate neighbours on the grid. The mate
is selected probabilistically using a linear fitness-rank-based distribution. The offspring replaces
a member of the neighbourhood (this could potentially be either of its two parents) according to
a linear inverse fitness-rank-based probability distribution. The genetic operators employed were
mutation and crossover at rates of 0.05 (mutations per piece of information stored on the genotype)
and 0.8 respectively. Neurons and links were also added and/or deleted from the offspring genotype
(see below) on each breeding with probabilities of 0.05 and 0.1 respectively.

5.2 The Encoding Scheme

The encoding scheme is the way in which phenotypes (in this case neural nets) are encoded by
genotypes (the structure on which the genetic algorithm operates). The most commonly used en-
coding schemes involve direct one to one mapping between genotype and phenotype. The genotype
consists of a series of fields expressed in bits, real numbers or characters. Separate fields specify
the characteristics of each neuron and the connections associated with it. Networks encoded using
a direct scheme can suffer gross distortions when their genotypes are allowed to grow or shrink.
The encoding scheme used in this research was designed to resolve some of these problems. The size
of the phenotype is under genetic control but the addition or deletion of neurons and connections
has minimal effect on the structure of the original network. The main difference between the
encoding scheme used here and more normal direct encoding methods is that while phenotype
size 1s under evolutionary control genotype size stays fixed. Instead of using a series of fields that
specify neuronal characteristics, each genotype is made up of a series of ‘slots’; each one of which
may or may not define a particular neuron on the phenotype and the links associated with that
neuron. Connections address neurons by the absolute address of the slot they are associated with.
Provided the genotype does not run out of spare slots to store new neurons in, any addition or
deletion of neurons has minimal consequences on the rest of the network. In the runs described
below there were 30 slots per genotype, of which typically 10-12 were used.Full details of the
scheme can be found in [10].

5.3 The Neural Networks

A form of arbitrarily recurrent dynamical network was used in this research. The activation
function of each neuron 1s defined as a simple linear threshold unit with fixed slope and a genetically
determined lower threshold. Connections had genetically set time delays and weights.

In general, the smaller the number of parameters there are that need to be set in order to define
a particular neural network, the quicker most learning algorithms or search techniques will be in
finding suitable values for solving a particular problem. For this reason network parameters were
restricted to a small number of integer values. Connection weights and delays were restricted to the
interval 4, where the unit of time delay is ten milliseconds. Activation thresholds were restricted
to the interval £10 and neuron output values to the interval £10. All inputs and outputs of the
network were scaled to the interval 10 in order to maximise network response and were updated
every hundred milliseconds.

6 Experimental Results

Once a good underlying simulation model had been developed, it was found that in general, a
neural network evolved in simulation evoked qualitatively similar behaviour on the real robot.
During the entire period of this research there was never a negative instance in the sense of no
similarity at all. The correspondence between simulated and situated behaviour turns out to be a
matter of degree rather than binary valued. The following experiments were designed to inspect

two factors that affect this correspondence: the nature of the behaviour itself and the level of noise
present in the simulation.

For each of two behaviours, obstacle avoiding and light seeking, three sets of five evolutionary runs
were performed, one set for each of three different noise levels. These three noise levels were set
at zero noise, observed noise and double observed noise. Observed noise (on sensors, motors etc.)
refers to a roughly Gaussian distribution with standard deviation equal to that empirically derived
from experiments. Double observed noise refers to the same distribution with double the standard
deviation.

Because of the stochastic nature of the evolutionary process thirty runs were performed in total in
order to acquire some statistical support for the conclusions that may be drawn from them. After
the runs were complete, the evolved behaviours were subjectively marked by the authors on their
optimality (how close they came to the ideal strategy/behaviour) and the correspondence between
behaviours in simulation and reality?. The results for both behaviours are displayed in Tables 1
and 2.

Figure 3 and 5 both contain pictures showing paths taken by the Khepera in the real world. These
were made by applying image processing techniques to short films of the Khepera, moving around
its environment, with a specially constructed black and white disk placed on its uppermost face.
Each frame underwent convolution operations using D.O.G. 3 center-surround masks specifically
designed to respond maximally to the white patches at the centre and front of the disk placed
on the Khepera. The positions of the peaks in the resultant intensity arrays were then used to
pinpoint precisely the position and orientation of the Khepera in each frame. After processing an
entire sequence, the lines, one per frame, joining the centre of the Khepera to its leading edge,
were overlaid on the final frame to produce an image of the Khepera with a white ‘tail’ behind it.
The pictures of paths taken by the simulated robot contain a ‘tail’ of the same form. These were
constructed by failing to erase a line, plotted on each previous time step, also joining its centre to
its leading edge.

6.1 Obstacle Avoidance

Nolfi et al. [15] were the first to try evolving behaviours in simulation for the Khepera robot. In
their work, outlined in Section 2, they were attempting to evolve obstacle avoiding behaviours. As
already discussed, they did not achieve close correspondence between simulation and reality.
They 1dentified three distinct components to such behaviours: moving forwards as fast as possible,
moving in as straight a line as possible and keeping as far away from objects as possible. The
fitness function they employed reflects this. During a trial three normalised sums are calculated:
V', the sum of the wheel speeds at each time step, D, the signed sum of the absolute differences
between the speeds of the two wheels at each time step and I the sum of the largest of the eight
sensor values at each time step. These are combined to give a score F' according to Equation 1:

F=V(1-VD)(1-1) (1)

A slight variation of this fitness function was used in the experiments reported here. The (1 —T)
term in Equation 1 was found to be implicit if the environment is cluttered enough. This is because,
in the environment used (Figure 1), the robot will have to learn to avoid objects if it is to go as
fast and as straight as possible. Also the D term in Equation 1 was changed to the unsigned sum
of the signed differences between the wheel speeds. This was thought to be a more effective way of
forcing the robot to turn both ways to avoid objects while traveling in as straight a line as possible.
Slight variations to left and right will tend to cancel out whereas variations biased either to the
left or to the right will add. Thus the fitness equation actually used was:

F=V(1-VD) (2)

where D is now the absolute value of the sum of the signed differences between the wheel speeds.
Each evolutionary run consisted of one thousand fitness evaluations with the GA operating upon
an initially random population of sixty four individuals. Each evaluation consisted of two trials

2Tt is possible that some objective scoring system could be devised based on statistics of agent-environment
interactions, but because of the nature of the problem it is not clear what this system would look like.

3A three dimensional mask constructed from the rotation of the difference between two Gaussian curves, of
appropriate widths, around the vertical axis

Observed Noise #1

¥
b
o i
Pt -
)

! N
i

/

Q Q /\\
\ i
v

4 /

B ——|
.

2O O

=L

Figure 3: Obstacle avoidance: from simulation to reality. These six pictures display the situated and simulated
behaviours of three different neural network controllers, one taken from each noise class. The #s refer to Table 1.

®
* Double Noise

n Zero Noise

wo 20 0 40 S0 s 70 ew S0 00

w0 o 0 40 S0 0 W0 0 w0 1000 0

Figure 4: Obstacle avoidance. The average fitnesses, over each set of five trials, of the fittest individuals on each

evaluation in simulation.

started from a random position and random orientation near the centre of the environment shown
in Figure 1. The fitness value was derived from the average of the scores resulting from the two
trials. The trial time was twenty simulated seconds. Each run on a single user SPARC-10 took
about 40 minutes.

Figure 4 shows the average fitnesses, over each set of five trials, of the fittest individuals on each
evaluation. Table 1 shows the results of the subjective scoring process as described above. Figure 3
shows the correspondence between simulation and reality for some of the controllers listed in the

table. See Section 7 for a discussion of these results.

6.2 Light Seeking

This behaviour is perhaps easier to evolve than obstacle avoidance as everything happens on a
much slower scale. An obstacle avoider using short range TR sensors must turn the moment (or
very soon afterwards) it senses an obstacle. A light seeking robot may employ a number of different
strategies that will take it to the light eventually. Tt may react instantly to the light or take slow
curving paths. The fitness landscape of such a task is therefore much smoother and light seeking
behaviour emerges fairly early on in the evolutionary process.

The fitness function for this behaviour was simply calculated as the reciprocal of the sum of the
squares of the distance from the light source at any particular time step. In other words if D; is
the distance to the light source at time step i, then the fitness F' after n time steps is calculated

Zero Noise
| type of behaviour | behaviour score | differences correspondence score
1 one way turner 5 a little noisier 8
2 wall follower 3 qualitatively similar 7
3 | one way turner 4 noisier 5
4 | one way turner 3 a little noisier 7
5 one way looper 5 noisier 4
average 4 average 6.2
Normal Noise
| type of behaviour | behaviour score | differences correspondence score
1 two way turner 8 a little noisier 8
2 one way looper 5 very similar 9
3 | wall follower 4 a little noisier 7
4 | wall follower 6 very similar 9
5 wall follower 7 a little noisier 7
average 6 average 8
Double Noise
| type of behaviour | behaviour score | differences correspondence score
1 one way turner 4 a little less responsive 8
2 two way turner 8 slightly less noisy 8
3 | one way looper 4 less responsive 5
4 | one way turner 5 less responsive 6
5 wall follower 3 less responsive 7
average 4.8 average 6.8

Table 1: Obstacle avoidance. This table shows the scores subjectively given by our panel of judges to the evolved
neural networks on the basis of the quality of their behaviours in simulation and the correspondence between their
behaviour in simulation and their behaviour in reality. All scores are out of a maximum of 10.

as:

g o

Again, each evolutionary run consisted of one thousand fitness evaluations with an initially random
population of sixty four individuals. A single evaluation consisted of two separate trials started
from a fixed position and random orientation near the opposite end of the environment (shown in
Figure 2) to the light source. The fitness value was the average of the two scores. The trial time
was twenty simulated seconds. Each run on a single user SPARC-10 took about an hour.

Figure 6 shows the average fitnesses, over each set of five trials, of the fittest individuals on each
evaluation. Table 2 shows the results of the subjective scoring process as described above. Figure 5
shows the correspondence between simulation and reality for some of the controllers listed in the
table. See Section 7 for a discussion of these results.

F

7 Discussion

7.1 The General Picture

The overall picture to be gleaned from a study of Tables 1 and 2 is perhaps not very surprising. In
general, networks evolved in an environment that is less noisy than the real world will behave more
noisily when downloaded onto the Khepera and, conversely, networks evolved in an environment
that is noisier than the real world will behave less noisily when downloaded. Simulation to situ-
ation correspondence seems to be maximised when the noise levels of the simulation have similar
amplitudes to those observed in reality. The behaviours shown in Figures 3 and 5 graphically
illustrate this.

Noise also plays a part in determining the quality (see Tables 1 and 2) of behaviours that evolve.
This was a score subjectively attributed to behaviours on the grounds of how robust and optimal
they proved to be in simulation after repeated testing. Since a fitness evaluation only involves
two trials, these scores do not necessarily correspond well to the fitness values ascribed by the
GA. This correspondence could be improved by increasing the number of trials that make up a
fitness evaluation, but at the expense of lengthening the time taken to perform an evolutionary

Zero Noise #1 Observed Noise #5 Double Noise #4

Figure 5: Light seeking: from simulation to reality. These six pictures display the situated and simulated be-
haviours of three different neural network controllers, one taken from each noise class. The #s refer to Table
2.

run. The behaviour scores, then, show which noise levels give the best ‘value for money’ in terms
of robustness against the number of trials that make up a fitness evaluation.

For both obstacle avoidance and light-seeking, the set of experiments running under observed noise
obtained the highest average behaviour score. In a zero noise environment, brittle ‘hit or miss’
strategies tend to evolve which either score incredibly well or incredibly badly on each fitness trial,
depending on their initial random starting positions. Although noise, in general, blurs the fitness
landscape, reducing the possibility of ‘hit or miss’ strategies evolving (since they are far more likely
to ‘miss’ rather than ‘hit’), too much randomness in the environment, as in the double noise case,
ensures that the same genotypes may again achieve very different scores on two otherwise identical
fitness evaluations. A balance between these two cases seems to be achieved at the observed noise
level. However, the fact that the particular level of noise that most favours the evolution of robust
behaviours in simulation is also the level of noise that achieves the highest simulation to reality
correspondence should probably not be regarded as anything other than a coincidence.

7.2 The Noise Level Has to Be Right

If the noise levels used in the simulation differ significantly from those present in reality, whole
different classes of behaviours become available which, while acquiring high fitness scores in simula-
tion, necessarily fail to work in reality. The zero noise behaviour shown in Figure 3 is one example.
Evolution has taken advantage of the fact that, in a zero noise environment, the simulated robot
will react identically in similar situations. By always turning through exactly ninety degrees, the
simulated robot circumnavigates the room, ad infinitum, scoring well on the fitness test. In reality,
the Khepera will never respond in exactly the same way twice. As can be seen from the picture,

Zero Noise " Observed Noise | Double Noise

Figure 6: Light seeking. The average fitnesses, over each set of five trials, of the fittest individuals on each
evaluation in simulation.

Zero Noise

| type of behaviour behaviour score | differences correspondence score
1 three point turner 6 noisier 4
2 straight looper 4 loops more 6
3 two way turner 6 similar 8
4 two way turner 8 noisier 4
5 two way turner 8 a little noisier 6

average 6.4 average 5.6

Normal Noise

| type of behaviour behaviour score | differences correspondence score
1 straight looper 5 a little noisier 8
2 two way turner 8 a little noisier 6
3 two way turner 9 very similar 9
4 two way turner 7 a little noisier 6
5 bobber 5 observably identical 10

average 6.8 average 7.8

Double Noise

| type of behaviour behaviour score | differences correspondence score
1 two way turner 7 much noisier 2
2 bobber 5 less noisy 6
3 straight looper 3 less noisy 7
4 two way turner 8 less noisy 6
5 bobber 6 less noisy 6

average 5.8 average 5.4

Table 2: Light seeking behaviours. This table shows the scores subjectively given by our panel of judges to the
evolved neural networks on the basis of the quality of their behaviours in simulation and the correspondence between
their behaviour in simulation and their behaviour in reality. All scores are out of a maximum of 10.

its behaviour is qualitatively similar, but the fact that its turns are never exactly ninety degrees
means that it cannot settle down into a steady state of circumnavigation. Instead, because the
neural network controlling it is ‘blind’ on one side, it ends up hitting objects and displaying far
from optimal behaviour.

It is perhaps less obvious that evolution can also take advantage of foo much noise in the simulation
to produce networks that rely on the extra noise and are thus incapable of reproducing their
behaviours in reality. The first double-noise light-seeker in Table 2 is one such example. Here a
network that displayed near optimal (if noisy) light-seeking behaviour in simulation proved totally
useless when downloaded onto the Khepera. It would jitter rapidly from side to side, approaching
the light only very slowly, and occasionally backing right away from it into the rear wall. The neural
network in question uses two sensors, one on either side, to find the light. Each sensor controls the
wheel on the opposite side of the robot in a Braitenberg fashion, but they are so arranged that,
when the Khepera exactly faces the light-source, they are both only just illuminated. Since each
input of the neural network is divided into bands, they are never both illuminated sufficiently (in
a low noise world) to provide positive input to the neural network at the same time, and thus the
robot jitters on the spot. However, in the double noise environment, there is enough noise present
to push each sensor input’s value up from the lowest band every now and then, thus providing
positive inputs from both sensors at the same time, driving the robot forwards.

The experimental results provided some (inconclusive) support for the envelope-of-noise conjecture
mentioned in the Introduction — that inevitable deficiencies in the simulation could be blurred by
noise. In this case, sensor noise profiles were not modelled, rather a simple distribution of noise at
the right level was used. Also differences between individual sensors were not modelled.

8 Conclusions

It has been shown that it is possible to artificially evolve successful network-based control systems
in simulation that generate almost identical behaviours in reality. However, great care must be
taken in building the simulation and appropriate levels of noise must be included.

The robot-environment interactions modelled here are relatively simple. Difficulties in simulating
interference between the TR and ambient light modes of the Khepera’s sensors, suggest that the
approach taken here rather quickly become less feasible as the interaction dynamics become more

complex. We still feel that real-world evolution techniques such as those described in [7, 5] are
necessary, at least for the time being, to deal with these more complex couplings. However, it does
appear that simulations are not quite the dead-end some had suggested. For simpler cases at least,
it has been shown that they can be made accurate enough. Their attractive qualities of speed and
ease of data collection can then be made use of.

Acknowledgements

Nick Jakobi is supported by a COGS postgraduate bursary. Thanks to colleagues in the Evolu-
tionary and Adaptive Systems Group for useful discussions. Special thanks to David Young and
Bob Ives for help in conducting the experiments described in this paper.

References

[1] R.A. Brooks. Intelligence without reason. In Proceedings IJCAI-91, pages 569-595. Morgan Kauf-
mann, 1991.

[2] R.A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139-159, 1991.

[3] Rodney A. Brooks. Artificial life and real robots. In F. J. Varela and P. Bourgine, editors, Pro-
ceedings of the First European Conference on Artificial Life, pages 3—10. MIT Press/Bradford Books,
Cambridge, MA, 1992.

[4] R. Collins and D. Jefferson. Selection in massively parallel genetic algorithms. In R. K. Belew and
L. B. Booker, editors, Proceedings of the Fourth Intl. Conf. on Genetic Algorithms, ICGA-91, pages
249-256. Morgan Kaufmann, 1991.

[5] D. Floreano and F. Mondada. Automatic creation of an autonomous agent: Genetic evolution of a
neural-network driven robot. In D. Cliff, P. Husbands, J.-A. Meyer, and S. Wilson, editors, From
Animals to Animats 3, Proc. of 8rd Intl. Conf. on Simulation of Adaptive Behavior, SAB’94. MIT
Press/Bradford Books, 1994.

[6] A.S. Glasner, editor. An Inéroduction To Ray Tracing. Academic Press, London, 1989.

[7] 1. Harvey, P. Husbands, and D. CIliff. Seeing the light: Artificial evolution, real vision. In D. CIiff,
P. Husbands, J.-A. Meyer, and S. Wilson, editors, From Animals to Animats 3, Proc. of 3rd Intl. Conf.
on Simulation of Adaptive Behavior, SAB’94, pages 392-401. MIT Press/Bradford Books, 1994.

[8] P. Husbands and I. Harvey. Evolution versus design: Controlling autonomous robots. In Integrating
Perception, Planning and Action, Proceedings of 3rd Annual Conference on Artificial Intelligence,
Simulation and Planning, pages 139-146. IEEE Press, 1992.

[9] P. Husbands, I. Harvey, and D. Cliff. An evolutionary approach to situated AI. In A. Sloman et al.,
editor, Proc. 9th bi-annual conference of the Society for the Study of Artificial Intelligence and the
Simulation of Behaviour (AISB 93), pages 61-70. 1OS Press, 1993.

[10] N. Jakobi. Evolving sensorimotor control architectures in simulation for a real robot. Master’s thesis,
School of Cognitive and Computing Sciences, University of Sussex, 1994.

[11] K-Team. Khepera users manual. EPFL,Lausanne, June 1993.
[12] J. Kunt. An Introduction to Control Theory. Huddersfield and Wallstone, 1964.

[13] O. Miglino, C. Nafasi, and C. Taylor. Selection for wandering behavior in a small robot. Technical
Report UCLA-CRSP-94-01, Dept. Cognitive Science, UCLA, 1994.

[14] F. Mondada and P. Verschure. Modeling system-environment interaction: The complementary roles
of simulations and real world artifacts. In Proceedings of Second Furopean Conference on Artificial
Life, FCAL93, pages 808—817. Brussels, May 1993, 1993.

[15] S. Nolfi, D. Floreano, O. Miglino, and F. Mondada. How to evolve autonomous robots: Different
approaches in evolutionary robotics. In R. Brooks and P. Maes, editors, Artificial Life IV, pages
190-197. MIT Press/Bradford Books, 1994.

[16] Tim Smithers. On why better robots make it harder. In D. Cliff, P. Husbands, J.-A. Meyer, and
S. Wilson, editors, From Animals to Animats 3, Proc. of 3rd Intl. Conf. on Simulation of Adaptive
Behavior, SAB’94, pages 54-72. MIT Press/Bradford Books, 1994.

[17] A. Thompson. Evolving electronic robot controllers that exploit hardware resources. In F. Moran,
A. Moreno, J.J. Merelo, and P. Chacon, editors, Advances in Artificial Life: Proc. 3rd Furopean
Conference on Artificial Life, pages 640—-656. Springer-Verlag, Lecture Notes in Artificial Intelligence
929, 1995.

[18] B. Yamauchi and R. Beer. Integrating reactive, sequential, and learning behavior using dynamical
neural networks. In D. Cliff, P. Husbands, J.-A. Meyer, and S. Wilson, editors, From Animals to
Animats 3, Proc. of 3rd Intl. Conf. on Simulation of Adaptive Behavior, SAB’94, pages 382-391.
MIT Press/Bradford Books, 1994.

