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Abstract—In this paper, a new hybrid algorithm, GA-HIDMS-
PSO, is introduced by hybridising the state-of-the-art parti-
cle swarm optimisation (PSO) variant HIDMS-PSO with a
genetic algorithm (GA). The new hybrid model exploits the
heterogeneous features of HIDMS-PSO and the evolutionary
characteristics of the GA. In the GA-HIDMS-PSO architecture,
HIDMS-PSO acts as the primary search engine, and the GA
is employed as the secondary method to assist and slow down
the loss of diversity for selected proportions of homogeneous
and heterogeneous subpopulations of the HIDMS-PSO algorithm.
Both methods run consecutively. As the primary search method,
HIDMS-PSO runs for longer periods compared with the GA.
The HIDMS-PSO provides the initial solutions for the GA from
both homogeneous and heterogeneous subpopulations and final
solutions returned from the GA replace prior solutions in the
HIDMS-PSO which resumes the search process with potentially
more diverse particles to guide the swarm. The GA-HIDMS-PSO
algorithm’s performance was tested on the 30 and 50 dimensional
CEC’05 and CEC’17 test suites. The results were compared
with 24 algorithms, with 12 state-of-the-art PSO variants and
12 other metaheuristics. GA-HIDMS-PSO outperformed all 24
comparison algorithms on both test suites for both 30 and 50
dimensions.

Index Terms—particle swarm optimisation, genetic algorithm,
swarm intelligence, evolutionary algorithm, hybrid algorithm,
meta-heuristics

I. INTRODUCTION

Optimisation is a process of finding a feasible solution to
a given problem under certain constraints. Although various
practical methodologies are available for optimisation, the
most predominant class of algorithms, metaheuristics, are
frequently employed. The two most famous metaheuristics
categories are evolutionary algorithms (EAs) and swarm in-
telligence algorithms (SIAs). The two most distinguished and
widely applied algorithms from these classes are the GA and
PSO, respectively. Both algorithms have many variants [1] [2]
and applications [3] [4] in the literature. In the last decade,
researchers turned towards a new and highly effective class
of algorithms, namely the hybridisation of metaheuristics. The
hybridisation of EAs with other types of algorithms is popular
due to its practicality and competence in handling uncertainty
and noise. The problem of premature convergence is a core
issue in the metaheuristics literature, and it mainly occurs
due to lack of diversity. In a typical search process, initially,
diversity is high, and depletion of diversity ensues as the
population moves closer to the best-known optimum. Although

in theory, high population diversity may help to guarantee
finding the optimal solution, it may also result in slow con-
vergence, meaning that an algorithm is in theory capable of
finding the optimal solution but may never converge or meet
the termination criteria in a reasonable timeframe. In contrast,
in a search process with a low population diversity, fast
convergence is usually observed with poor solution accuracy
(convergence to local optima). The study [5] refers to the ideal
balance between convergence and accuracy as the trade-off
point. It is apparent that convergence is not guaranteed, even
with sufficient diversity, but maintaining the balance of ex-
ploration and exploitation may boost an algorithm to perform
at maximum capacity. To tackle this issue, hybridisation has
become a widely accepted method to promote diversity during
the search for the global optimum. HIDMS-PSO [6] is a state-
of-the-art algorithm with a dynamic topological structure that
possesses heterogeneous features and adopts several strategies
to delay the loss of diversity in the population to tackle the
problem mentioned above. In light of this, we aim to exploit
the heterogeneous qualities of HIDMS-PSO, while extending
its diversity-handling capabilities further, by hybridising it
with a GA in a collaborative architecture, thus boosting
particles’ abilities to escape local optima. To maintain the
aforementioned ideal trade-off point between convergence rate
and accuracy, in our hybrid model, we combine the approach
of sequential collaborative and partial manipulative integrative
hybrid frameworks to efficiently exploit the heterogeneous
features of HIDMS-PSO. In our model, the GA is employed
for short periods (50 iterations) to assist HIDMS-PSO (which
runs consecutively for 100 iterations) by evolving a proportion
of both the homogeneous and heterogeneous subpopulations
of the HIDMS-PSO. The sole purpose of this collaborative
hybrid interaction is to prevent depletion of diversity within
the population of HIDMS-PSO by periodically feeding sub-
populations of HIDMS-PSO with the evolved solutions from
GA. The evolved solutions returned from the GA are replaced
with the positions (not pbests) of the same particles from both
subpopulations of the HIDMS-PSO. As a result, this causes
fluctuations in the diversity of randomly selected proportions
of both subpopulations. By only exchanging a proportion of
both subpopulations between the two algorithms, we retain
a significant fraction of agents unchanged in the HIDMS-
PSO algorithm. This strategy allows us to avoid the slow



convergence issue while retaining diversity during the overall
search, enabling convergence within a reasonable time to an
accurate solution.

II. RELATED STUDIES

This section provides the necessary background information
about the canonical PSO, HIDMS-PSO and genetic algorithm.

A. Canonical PSO

In the canonical PSO, particles are initially randomly dis-
tributed in the search space. Throughout the search process,
particles learn and retain certain information about the en-
vironment, namely their position, velocity, and personal best
position found. At each iteration, the particle’s position is
updated by adding together its current position and velocity.
The velocity has the most significant influence on the next
position of the particle, and it is calculated using two pieces
of information: namely the particle’s personal best-known
position and the best position found within the swarm. The
velocity and position calculation of the canonical PSO is as
follows:
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Where ω, c1 and c2 are control parameters, namely the
inertia weight and acceleration coefficients, ~v(t)i is the ith

particle’s velocity, ~pbest is the personal best position, ~gbest

is the globally best known solution and ~x
(t)
i is the current

position of the ith particle at time t. Here, ~r1 and ~r2 are
random variables with components in the range [0,1].

III. HIDMS-PSO

The HIDMS-PSO algorithm is a recent state-of-the-art
PSO algorithm introduced by Varna and Husbands [6]. The
algorithm introduced a new master-slave inspired dynamic
topological structure with homogeneous and heterogeneous
subpopulations and two movement strategies, namely, inward
and outward-oriented strategies. The small subswarm entities
in the HIDMS-PSO framework are called units and each
unit constitutes a single master particle and 3 slave particles
with distinct types. Master and slave particles retain their
roles throughout the search process. The distinction in type
between the slave particles allows heterogeneous behaviour,
restricting information flow to avoid premature convergence
and depletion of diversity. Fig. 1 shows the structure of a
single unit in the HIDMS-PSO framework.

Information flow and the way particles interact with one
another has an immense impact on the population diversity
and particles’ guidance, hence the overall search process. The
HIDMS-PSO algorithm employs a communication model to
control the flow of information and the interaction between
particles. The communication model restricts information flow

Fig. 1. Topological structure of a single unit.

and allows particles to exchange information through master-
to-master and slave-to-slave communication (see Fig. 2). The
main communication is governed by the following rules:

1) Arbitrary particles of the ith unit cannot directly and
freely communicate with arbitrary particles of the jth
unit. Communication is established via the slave parti-
cles only.

2) Master particles can only exchange information with one
of their slaves.

3) Slave particles can only communicate with the slaves of
the same type; hence they cannot communicate with the
other slaves within their unit.

1) Search Behaviour: In the HIDMS-PSO algorithm, the
initial population is divided into two equal subpopulations, one
homogeneous and one heterogeneous, and each subpopulation
adopts a distinct movement strategy (Fig. 3). The homoge-
neous subpopulation uses the update equation of the canonical
PSO algorithm, whereas the heterogeneous subpopulation is
used to form N unit structures and adopts inward and outward-
oriented strategies. The inward-oriented behaviour guides par-
ticles using the information obtained from members of the
unit the particle belongs to. In contrast, the outward-oriented
behaviour guides particles based on the information obtained
from other units.

a) Inward-oriented strategy: The inward-oriented strat-
egy uses information from members of its unit to guide its
particles. For master particles of the N th unit, this strategy
involves particles updating their velocities by randomly se-
lecting one of Eqs. 3-5:

~v(t+1)
m = ω(t)~v(t)m +c1~r1( ~pbestm−~x(t)m )+c2~r2(~x
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Where ~v
(t)
m is the velocity, ~pbestm is the personal best

position, ~xm is the position of the master particle at time
t and, ~xdiss is the most dissimilar slave particle (positional
dissimilarity) in the unit N . Movement towards the most
dissimilar slave particle boosts the diversity of the master
particle, hence the whole unit, as slave particles of a unit are
highly influenced by the master particle’s position.



Fig. 2. The visual depiction of the communication model between 3 units.

Fig. 3. Search phases of the HIDMS-PSO algorithm.
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Where ~xbests is the position of the slave particle with the

lowest cost in unit N . Local exploration is performed by
guiding the master particle towards the best slave particle.

~v(t+1)
m = ω(t)~v(t)m + c1~r1( ~pbestm − ~x(t)m ) + c2~r2(~x

avg
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Where ~xavgs is the average position of all slaves within the

master’s current unit. On the contrary, for the slave particles,
the only option provided for this strategy is to move towards
the unit master and personal best position of the slave particle,
as shown in Eq. 6.
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Where ~v
(t)
s is the velocity, ~pbests is the personal best

position, ~xs is the position of the slave particle and, ~xm is
the position of master particle of the N th unit.

b) Outward-oriented strategy: As opposed to the inward-
oriented strategy, the outward-oriented movement enables par-
ticles to learn from other units while maintaining their hier-
archical master-slave structure. The master particle randomly
selects one of the following equations (7-9) to guide its
behaviour:
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Where ~v
(t)
m is the velocity, ~pbestm is the personal best

position, ~xm is the position of the master particle at time t
and, ~xavgunit is the average position of the N th unit’s particles.
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Where ~xmunit is the position of the master of a randomly

selected unit.
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Where ~xavg is the average position of particle’s own unit
members and ~xmunit is the position of the master particle
of a randomly selected unit. Similar to the slave particle’s
movement in the inward-oriented strategy, in this case, the
slave particles employ a single update equation to move
towards a random slave of the same type that belongs to
another unit, using:

~v(t+1)
s = ω(t)~v(t)s + c1~r1( ~pbests − ~x(t)s ) + c2~r2(~x

rnd
unit − ~x(t)s )

(10)
Where ~v

(t)
s is the velocity, ~pbests is the personal best

position, ~xs is the position of the slave particle and, ~xrndunit is
the position of a random slave of the same type that belongs
to another unit.

The combination of homogenous and heterogeneous popu-
lations in the HIDMS-PSO algorithm maintains the balance
of exploration and exploitation while inward and outward-
oriented learning strategies allow particles to initiate single-
time behavioural fluctuations that enhance individual unit’s
diversity and help escape from local minima [6].

IV. GENETIC ALGORITHM

The genetic algorithm [7] [8], introduced by John Holland,
is inspired by biological evolution based on Darwin’s theory of
natural selection. In the literature, many GA variants [1] have
been introduced and are successfully applied to a broad spec-
trum of problems [3]. Compared to traditional optimisation
methods, the GA has several noticeable advantages, including
parallelism and the ability to handle complex optimisation
problems. Despite these assets, genetic algorithms have certain
potential disadvantages that require careful assessment, and



which could otherwise significantly impact on the efficiency
and efficacy of the search process. These include the formu-
lation of the problem/fitness function, setting an appropriate
population size and tuning of other parameters, such as the
selection criteria, mutation rate and crossover. Despite these
challenges, genetic algorithms remain one of the most preva-
lently applied evolutionary algorithms to diverse problems.
The main phases of genetic algorithms comprise of selection,
crossover, mutation and elitism.

V. PROPOSED ALGORITHM: GENETIC ALGORITHM
ASSISTED HIDMS-PSO

The main idea behind hybridisation is to compensate for the
drawbacks of one or both algorithms used for hybridisation to
improve the search process. In this particular case, PSO’s main
disadvantage is premature convergence with underlying causes
triggered by the loss of diversity due to rapid information flow
between particles. Many variants in the literature, including
HIDMS-PSO, studied in this paper introduced mechanisms to
deal with the aforementioned issue successfully to a certain
extent. The study [9] describes three typical PSO-GA hybrid
approaches prevalently used; these could be summarised as:

1) Approach 1: Both PSO and GA run in parallel. The
global best solution in PSO is unchanged for a specific
interval, and crossover operation is performed on gbest
with a GA chromosome.

2) Approach 2: Mutation operator of GA is employed to
improve particles with stagnated pbest.

3) Approach 3: Initial population of PSO is generated by
GA, remaining subsequent iterations are equally run by
GA and PSO. The first half of the iterations are executed
by GA, then PSO presumes the search using the final
solutions obtained from GA as initial solutions.

In a more recent study [5], hybrid algorithms are grouped
into two main categories as collaborative hybrid and inte-
grative hybrid approaches. The former methodology refers to
combining two or more algorithms running in either a parallel
or sequential manner with several frameworks including multi-
stage, sequential and parallel. In the approach, the contributing
weight of each algorithm can be assumed to be equal (50/50).
The latter hybrid method refers to integrating one of the
algorithms into the main/master algorithm as a subordinate.
This model offers two approaches, namely, full manipulation
and partial manipulation. In this case, the contributing weight
of the second algorithm is around 10 to 20%.

In our approach, HIDMS-PSO and GA are run consec-
utively and continuously for short periods until the total
numbers of iterations are reached (Fig. 4). The hybrid model
employed in this study combines features of both the collabo-
rative and the integrative hybrid frameworks. The collaborative
interaction and consecutive executions of both algorithms are
derived from the collaborative framework’s sequential struc-
ture. On the other hand, GA’s role in the collaborative relation-
ship to evolve a proportion of both subpopulations is adopted
from the integrative hybrid framework’s partial-manipulation

Algorithm 1: GA-HIDMS-PSO
population size n, dimensions d, C = 0.15, ωmax=0.99, ωmin=0.2;
randomly define each particle’s velocity υ and position x;
c1 = 2.5 − (1 : Tmax ∗ 2/Tmax);
c2 = 0.5 − (1 : Tmax ∗ 2/Tmax);

ω1 (t) =
ωmax+(ωmin−ωmax)
1+exp

(
−5

(
2t

Tmax
−1

)) ;

RGmin = Tmax*0.01;
RGmax = Tmax*0.1;
RG = RGmax; phase1 = 100;
for t=1:Tmax do

if t < Tmax*0.9)==0 then
if mod(t,phase1)==0 then

GA=true;
end

end
if mod(t,Tmax*RG)==0 then

vertically shuffle slave particles
end
if mod(t,Tmax*0.05)==0 then

if t < Tmax ∗ 0.9 then
β = round(d*U(0.1,1));

else
β = round(d*0.1);

end
for j=1:n do

select β number of random dimensions to mutate for each
particle

end
end
if GA==false then

for i=1:n do
if f(xi) >= f(x) then

ω = ω(t)
1 + C; if ω > 0.99, ω = 0.99 end;

else
ω = ω(t)

1 - C; if ω < 0.20, ω = 0.20 end;
end
if randi([0 1])==0 (inward-strategy) then

if ith particle is a master then
behaviour = randi([1 3]);
if behaviour == 1 then

update υi and xi using Eqs. 4 and 2
else if behaviour == 2 then

update υi and xi using Eqs. 5 and 2
else if behaviour == 3 then

update υi and xi using Eqs. 6 and 2
end

else
update υi,xi using Eqs. 7 and 2

end
else

if ith particle is a master then
behaviour = randi([1 3]);
if behaviour == 1 then

update υi,xi using Eqs. 8 and 2
else if behaviour == 2 then

update υi,xi using Eqs. 9 and 2
else if behaviour == 3 then

update υi,xi using Eqs. 10 and 2
end

else
update υi,xi using the Eqs. 11 and 2

end
end
perform partial non-uniform mutation on the xi
Evaluate the fitness of xi
Update the pbest and gbest
ith particle communicates according to the rules stated in

section 3
RG = round(RGmax− (RGmax−RGmin)∗ t

Tmax
)

end
else

pop1 = Random N/2 particles from homogeneous pop
pop2 = Random N/2 particles from heterogeneous pop
GAinitialPop = [pop1 pop2];
GAfinalSols = GeneticAlgorithm(GAinitialPop);
replace GAfinalsols with the positions of same particles
update gbest
GA=false;

end
end



approach. A preliminary experiment to determine the optimum
number of iterations to assign to each algorithm indicated
that 100 iterations of HIDMS-PSO followed by 50 iterations
of the GA gave the best result. The HIDMS-PSO algorithm
is the primary search method in our hybridisation model,
and the GA is used to reverse or slow down the depletion
of diversity by evolving a sub-population of the current
HIDMS-PSO swarm. As part of our preliminary experiment,
we employed various strategies to determine which particles
should be passed onto and used as initial solutions by the
genetic algorithm. We experimented with using the whole
population, continuously feeding the same set of particles
from the same subpopulation (whether the homogeneous or
heterogeneous population), selecting the least fit subpopulation
on average and selecting only master or slave particles as
initial solutions. Although few of these selection methods were
found to produce satisfactory results, it was discovered that
selecting half of both the homogeneous and heterogeneous
sub-populations provide the optimal performance for our hy-
brid model. Fig 4 illustrates how both algorithms cooperate in
searching. The GA-HIDMS-PSO algorithm initiates the search
process with 100 iterations of HIDMS-PSO, then half of both
the homogeneous and heterogeneous populations are randomly
selected, and their positions (not their pbests) are provided to
the GA as initial solutions. The indices of those particles are
preserved to update them in the next step. With the initial
solutions provided, the GA runs for 50 iterations and returns
the evolved final solutions to replace the same particles’
positions in the HIDMS-PSO’s population. The cycle repeats.
It’s worth noting that the hybridisation approach 2 mentioned
at the start of this section suggests the application of a mutation
operation on pbest to improve stagnated particles. However,
in our hybridisation approach the use of pbest instead of the
particle’s current position resulted in deterioration and much
better performance was observed when GA-returned solutions
replaced the current positions instead of pbests. Although
the investigation of this issue is not within the scope of this
study, it is anticipated that the deterioration is related to the
similarity of the solutions returned from the GA which are
then used to update pbest values causing a sudden loss of
diversity in proportions of both subpopulations. On the other
hand, updating particles’ current positions triggers fluctuations
in the evolved particles’ positions, potentially contributing to
particles’ escape from local optima, and as a result improve
their pbest.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the experimental design and results.
The first subsection describes the experimental setup, bench-
mark suites, and statistical analysis and the latter presents the
results of the two experiments conducted on the CEC’05 and
CEC’17 benchmark suites.

1) Experimental Setup: The present study conducted three
experiments to examine the performance of the proposed
method, using the CEC’05 [10] and CEC’17 [11] benchmark
test suites. The CEC’17 test suite consists of 30 test functions

Fig. 4. GA-HIDMS-PSO Hybrid Model.

and the CEC’05 suite consists of 25. For the first and second
experiments, we replicated the experiments conducted in [6]
and for the third experiment, study [12] was replicated to
produce comparable results. In the first experiment, the per-
formance of the GA-HIDMS-PSO algorithm is tested using
the CEC’17 test suite. The results of the GA-HIDMS-PSO
algorithm is compared with 11 baseline methods: two inertia
weight PSO algorithms with different parametric settings
(ω = 0.9 → 0.4, c1, c2 = 2 and ω = 0.4, c1, c2 = 2), and
evolutionary algorithms (the bat algorithm (BA) [13] (A =
0.25, r = 0.5, fmin, fmax = 0.2), grey wolf optimiser (GWO)
[14] (a0 = 2), butterfly optimisation algorithm (BOA) [15],
whale optimisation algorithm (WOA) [16], moth flame opti-
misation (MFO) [17], artificial bee colony (ABC) [18], flower
pollination algorithm (FPA) [19] (p = 0.8), cuckoo search
algorithm (CS) [20] (p = 0.25) and invasive weed optimisation
(IWO) [21]). In the second experiment, GA-HIDMS-PSO’s
performance was tested using the CEC’05 test suite and results
were compared with 6 state-of-the-art PSO variants: HIDMS-
PSO [6] (ω = 0.99 → 0.29, c1 = 2.5 → 0.5, c2 = 0.5 →
2.5, RGmin = Tmax∗0.01, RGmax = Tmax∗0.1), HCLDMS-
PSO [22] (ω = 0.99 → 0.29, c1 = 2.5 → 0.5, c2 = 0.5 →
2.5, Pm = 0.1), FDR-PSO [23], HCLPSO [24], HPSO-TVAC
[25], MNHPSO-JTAC [26] and for the third experiment, re-
sults were also compared with 6 state-of-the-art PSO variants:
CLPSO [27] (ω = 0.9→ 0.2, c1, c2 = 1.49445, Vmax = 0.2 ∗
Range), DMSPSO [28], χPSO [29] (ring with neighborhood
radius nr = 2, φ = 4.1, χ = 0 : 72984, c1, c2 = 2.05), BBPSO
[30], (ω = 0.729, c1, c2 = 1.49445, Vmax = 0.5 ∗ Range),
FIPS [31] and UPSO [32].

In the first experiment, the population size was set to 100
for all metaheuristics, and 40 for the two PSO variants and



GA-HIDMS-PSO. In the second and third experiment, the
population size was set to 40 for all methods [6] [12]. For
the first and second experiments, each problem was tested
30 times, and in the third experiment, 100 times; 300,000
function evaluations at 30 dimensions and 500,000 function
evaluations at 50 dimensions. For detailed parameter values on
the comparative methods and details of the test suites, refer
to [6] [12] and the original studies. Table I-VI display the
mean errors obtained for the first experiment conducted on
the CEC’17 test suite for 30 and 50-dimensional problems.
Table VII-IX shows the average and final ranks of the mean
performances. The Wilcoxon signed-rank test conducted on
the final ranks obtained for the CEC’17 test suite reveals that
the result is significant between the proposed algorithm and
all comparison methods except HIDMS-PSO for problem size
of 30 dimensions and the result is significant between the
proposed algorithm and all comparison methods for a problem
size of 50 dimensions at p < 0.05. The Wilcoxon signed-rank
test conducted on the final ranks of the second experiment
for the CEC’05 problems revealed that the result is significant
between all comparison methods and the proposed algorithm
at p < 0.05 for problem size of 30 and 50 dimensions.
The Wilcoxon signed-rank test conducted on the final ranks
of the third experiment for the CEC’05 problems revealed
that the result is significant between all comparison methods
and the proposed algorithm except BBPSO and CLPSO at
p < 0.05 for problem size of 30 and 50 dimensions. Due
to length restrictions of this paper, experimental results are
partially included. External supplementary material is provided
for complete results of experiments that can be accessed from
users.sussex.ac.uk/fv47/GA-HIDMS-PSO.pdf.

A. Results

The CEC’17 test suite’s experimental results at 30 dimen-
sions reveal that for problems F5, F7, F8, F9, F11, F12, F16,
F20, F21, F23, F27, F28 and F29, the proposed algorithm
outperformed all comparison methods. For the same problem
subset, the second-best performance was achieved by HIDMS-
PSO. For problems F3, F6, F17, F22 and F24, HIDMS-PSO
outperformed all comparison algorithms, and for the same
subset of problems, the second-best performance is observed
by the proposed algorithm GA-HIDMS-PSO while ABC and
CS achieved the best mean performance for F1, F4, F10, F25,
F26, F30 and F13, F14, F15, F18, F19. The second experiment
conducted on the CEC’17 suite at 50 dimensions reveals that
for problems F1, F5, F6, F7, F8, F9, F10, F11, F16, F17, F20,
F21, F22, F23, F24, F25, F26 and F29 the GA-HIDMS-PSO
algorithm outperformed all 12 comparison methods. HIDMS-
PSO attained the second-best performance for the same prob-
lem set except on problems F10, F17 and F25 where GWO and
CS gained the second-best mean performance. The HIDMS-
PSO algorithm achieved the best performance on problems
F3, F4, F12 and F30 and the CS algorithm outperformed
comparison algorithms on problems F13, F14, F15, F18,
F19 and F28. The second experiment is conducted using the
CEC’05 test suite and the results at 30 dimensions reveal

that GA-HIDMS-PSO outperformed comparison methods for
problems F2, F3, F4, F5, F6, F11, F12, F14, F22, F23 and
F25. HCLDMS-PSO attained the best mean performance for
problems F17, F18, F19, F20, F21 and F24. HCLPSO achieved
the best results for problems F9, F12 and F15. HIDMS-PSO
found the best result for problem F7 and HPSO-TVAC attained
the best mean performance for problems F1 and F16. In this
experiment, FDR and MNHPSO-JTVAC did not outperform
any of the methods in any case. The same experiment con-
ducted at 50 dimensions reveal that GA-HIDMS-PSO attained
the best result for problems F1, F2, F3, F4, F5, F6, F8, F10,
F11, F12, F14, F16, F18, F19, F20, F22 and F25. HCLPSO
achieved the best mean performance for problems F9, F13,
F15 and F17. HIDMS-PSO and HCLDMS-PSO outperformed
comparison methods in two cases, respectively, for problems
F17, F23 and F21, F24. FDR, HPSO-TVAC and MNHPSO-
JTVAC did not outperform any of the comparison methods
at 50 dimensions. The third experiment is also conducted
using the CEC’05 test suite and the results at 30 dimensions
reveal that the proposed algorithm outperformed comparison
methods for problems F4, F5, F10, F11, F14, F19, F20, F22
and F25. CLPSO achived the best mean results for problems
F1, F6, F8, F9, F13, F15, F18, F21, F23, and F24. BBPSO
outperformed comparison algorithms for problems F1, F2, F3,
F12, F16, F17 and F24. χPSO and DMSPSO attained the best
performance for single a problem F24 and F7, respectively.
FIPS and UPSO did not outperform any of the comparison
methods at 30 dimensions. The same experiment conducted
at 50 dimensions reveal that the proposed algorithm attained
the best results for problems F4, F10, F13, F17, F18, F19,
F20 and F25. BBPSO outperformed comparison algorithms
for problems F1, F2, F3, F6, F12, F16 and F23. DMSPSO
and UPSO both achieved the best mean performance for 3
problems F5, F7, F22 and F8, F11, F14, respectively. CLPSO
obtained the best performance for problems F1, F9, F15, F21,
F23 and F24. FIPS and χPSO did not outperform any of
the comparison methods at 50 dimensions. The impact of the
new hybrid model on population diversity and convergence
was assessed by running HIDMS-PSO and GA-HIDMS-PSO
twenty times consecutively on the CEC’17 problems F1, F5,
F10, F15, F20 and F25 at 30 dimensions. Fig. 5 and Fig.
6 shows the recorded average diversity and convergence rate
for both algorithms. In Fig 5, it’s observed that in each case,
GA-HIDMS-PSO maintained significantly better population
diversity for the entire search period until the last exploitation
phase of the search process. The periodic fluctuations observed
in the diversity rate of GA-HIDMS-PSO is an indicative of
the GA-returned solutions causing sudden improvements in
the diversity. The convergence rates shown in Fig. 6 indicates
that GA-HIDMS-PSO is capable of converging at a faster rate
to a better solution in comparison to HIDMS-PSO.

VII. CONCLUSIONS

This study proposed a new hybrid algorithm GA-HIDMS-
PSO for global optimisation by hybridising genetic algorithm
with state-of-the-art HIDMS-PSO. The hybrid model is de-
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Fig. 5. Rate of diversity comparison for HIDMS-PSO and GA-HIDMS-PSO.
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Fig. 6. Convergence rate comparison for HIDMS-PSO and GA-HIDMS-PSO.

signed to allow the GA to assist HIDMS-PSO to further
improve the diversity maintaining capabilities and convergence
rate of the HIDMS-PSO algorithm. In our approach, both algo-
rithms’ roles can be summarised as, HIDMS0-PSO being the
primary search method that controls the main population and
the search. GA is the secondary algorithm employed to evolve
the appointed particles selected from both homogeneous and
heterogeneous subpopulations of HIDMS-PSO to improve
particles’ diversity in both sub-populations continuously. The
proposed algorithm was tested on CEC’05 and CEC’17 test
suites against 12 metaheuristics and 12 state-of-the-art PSO

variants at 30 and 50 dimensions. The comparison revealed
the superiority of the GA-HIDMS-PSO on both test suites.
In addition, the comparison of diversity and convergence rate
between hybrid version and HIDMS-PSO revealed significant
improvements in diversity, convergence and the quality of
solution found. The present work may be further extended by
improving the performance of GA-HIDMS-PSO; alternatively,
the algorithm can be applied to practical real-world and noisy
problems.



TABLE I
THE MEAN ERROR RESULTS OBTAINED FOR THE FIRST EXPERIMENT CONDUCTED USING THE CEC2017 TEST SUITE FOR PROBLEM SIZE OF 30

DIMENSIONS.

F1 F3 F4 F5 F6 F7 F8 F9 F10
BA 7.3E+10 2.2E+05 2.1E+04 5.1E+02 1.1E+02 1.5E+03 4.3E+02 2.1E+04 8.8E+03

GWO 1.1E+09 2.9E+04 1.5E+02 8.7E+01 4.0E+00 1.6E+02 7.7E+01 5.4E+02 2.8E+03
BOA 3.0E+10 6.7E+04 2.5E+03 3.3E+02 6.4E+01 5.1E+02 2.9E+02 6.9E+03 7.7E+03
WOA 2.1E+06 1.6E+05 1.5E+02 2.7E+02 6.6E+01 5.1E+02 1.9E+02 7.7E+03 4.8E+03
MFO 8.1E+09 7.7E+04 5.1E+02 1.8E+02 2.5E+01 3.5E+02 1.7E+02 5.1E+03 4.1E+03
ABC 1.3E+02 1.2E+05 3.4E+01 8.8E+01 0.0E+00 1.0E+02 8.9E+01 8.2E+02 2.3E+03
FPA 1.1E+11 1.8E+06 3.6E+04 6.2E+02 1.3E+02 2.5E+03 5.6E+02 3.1E+04 9.1E+03
CS 1.9E+04 4.5E+04 7.5E+01 1.4E+02 5.0E+01 1.6E+02 1.3E+02 4.6E+03 3.7E+03

IWO 3.0E+03 6.4E+03 8.8E+01 4.1E+02 7.2E+01 2.0E+03 3.5E+02 7.6E+03 4.7E+03
PSO1 1.3E+11 3.9E+08 4.4E+04 6.8E+02 1.4E+02 2.7E+03 6.1E+02 3.8E+04 9.6E+03
PSO2 1.3E+11 3.9E+08 4.4E+04 6.8E+02 1.4E+02 2.7E+03 6.1E+02 3.8E+04 9.6E+03

HIDMS-PSO 4.7E+03 0.0E+00 6.1E+01 5.2E+01 0.0E+00 8.7E+01 4.8E+01 2.6E+00 2.7E+03
GA-HIDMSPSO* 2.8E+03 4.4E-09 6.7E+01 3.8E+01 6.5E-03 7.8E+01 3.8E+01 1.7E+00 2.5E+03

TABLE II
THE MEAN ERROR RESULTS OBTAINED FOR THE FIRST EXPERIMENT CONDUCTED USING THE CEC2017 TEST SUITE FOR PROBLEM SIZE OF 50

DIMENSIONS.

F1 F3 F4 F5 F6 F7 F8 F9 F10
BA 1.7E+11 8.2E+07 6.3E+04 9.5E+02 1.3E+02 3.3E+03 9.7E+02 7.5E+04 1.6E+04

GWO 4.6E+09 7.0E+04 4.3E+02 1.7E+02 1.1E+01 3.0E+02 2.0E+02 3.7E+03 5.6E+03
BOA 4.3E+10 2.2E+05 9.9E+03 6.2E+02 7.9E+01 1.1E+03 6.5E+02 2.8E+04 1.4E+04
WOA 7.1E+06 7.8E+04 2.8E+02 4.2E+02 7.6E+01 9.9E+02 4.1E+02 1.9E+04 9.1E+03
MFO 3.2E+10 1.7E+05 2.6E+03 4.2E+02 4.5E+01 9.0E+02 3.8E+02 1.5E+04 7.9E+03
ABC 9.2E+08 6.6E+05 1.2E+03 5.0E+02 3.0E+01 5.7E+02 5.0E+02 3.0E+04 1.5E+04
FPA 2.3E+11 1.9E+08 9.0E+04 1.1E+03 1.4E+02 4.7E+03 1.1E+03 9.2E+04 1.6E+04
CS 1.4E+05 1.6E+05 7.7E+01 2.9E+02 6.2E+01 3.4E+02 2.8E+02 1.6E+04 7.0E+03

IWO 6.9E+03 2.6E+04 1.2E+02 7.4E+02 7.8E+01 3.5E+03 7.2E+02 2.0E+04 7.7E+03
PSO1 1.3E+09 9.6E+03 2.5E+02 2.3E+02 2.0E+01 2.8E+02 2.3E+02 5.8E+03 6.5E+03
PSO2 1.2E+10 5.8E+04 9.3E+02 2.0E+02 1.2E+01 2.7E+02 2.0E+02 3.6E+03 6.1E+03

HIDMS-PSO 5.4E+03 0.0E+00 7.0E+01 1.1E+02 1.2E-01 1.7E+02 1.1E+02 5.6E+01 5.6E+03
GA-HIDMSPSO 4.9E+03 4.2E-03 7.0E+01 8.7E+01 7.6E-02 1.6E+02 7.9E+01 3.3E+01 4.8E+03

TABLE III
THE MEAN ERROR RESULTS OBTAINED FOR THE SECOND EXPERIMENT CONDUCTED USING THE CEC2005 TEST SUITE FOR PROBLEM SIZE OF 30

DIMENSIONS.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
HIDMS-PSO 1.4E-12 1.1E-03 1.1E+06 1.7E+03 3.0E+03 7.0E+01 4.7E+03 2.1E+01 5.0E+01 6.5E+01
HPSO-TVAC 5.5E-14 4.8E-02 1.7E+06 3.0E+03 5.5E+03 1.1E+02 4.7E+03 2.1E+01 3.6E+01 1.0E+02

FDR 5.0E+02 1.4E+03 1.6E+07 2.8E+03 3.6E+03 2.4E+06 4.7E+03 2.1E+01 2.7E+02 2.0E+02
HCLDMS-PSO 3.3E-12 3.5E+01 2.9E+06 2.2E+03 2.8E+03 6.3E+01 4.7E+03 2.1E+01 3.7E+01 3.5E+01

HCLPSO 1.3E+01 2.2E+01 3.7E+06 2.1E+03 2.4E+03 2.9E+05 4.7E+03 2.1E+01 4.0E+00 6.7E+01
MNHPSO-JTVAC 5.9E-14 9.3E-03 9.8E+05 3.6E+03 5.4E+03 9.9E+01 4.7E+03 2.1E+01 2.5E+01 1.0E+02
GA-HIDMS-PSO* 2.1E-13 1.1E-09 5.4E+05 1.5E+02 1.7E+03 4.9E+01 4.7E+03 2.1E+01 1.3E+01 4.3E+01

TABLE IV
(THE MEAN ERROR RESULTS OBTAINED FOR THE SECOND EXPERIMENT CONDUCTED USING THE CEC2005 TEST SUITE FOR PROBLEM SIZE OF 50

DIMENSIONS.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
HIDMS-PSO 2.5E-09 2.8E+01 3.8E+06 2.5E+04 6.8E+03 1.2E+02 6.2E+03 2.1E+01 1.2E+02 1.3E+02
HPSO-TVAC 1.0E-13 1.9E+02 4.4E+06 3.1E+04 1.6E+04 1.7E+02 6.2E+03 2.1E+01 1.1E+02 1.9E+02

FDR 1.3E+03 1.1E+04 7.2E+07 2.6E+04 8.2E+03 9.9E+06 6.2E+03 2.1E+01 5.6E+02 4.3E+02
HCLDMS-PSO 6.9E-07 2.8E+03 1.1E+07 2.2E+04 7.5E+03 2.4E+02 6.2E+03 2.1E+01 1.1E+02 9.5E+01

HCLPSO 8.0E+00 2.0E+03 1.4E+07 2.5E+04 6.3E+03 1.8E+05 6.2E+03 2.1E+01 1.8E+01 1.2E+02
MNHPSO-JTVAC 1.2E-13 9.6E+01 2.9E+06 2.7E+04 1.4E+04 1.3E+02 6.2E+03 2.1E+01 8.3E+01 1.6E+02
GA-HIDMS-PSO* 0.0E+00 0.0E+00 1.0E+06 4.8E+03 4.2E+03 7.3E+01 6.2E+03 2.1E+01 5.5E+01 8.1E+01
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