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Holistic visual encoding of ant-like
routes: Navigation without waypoints

Bart Baddeley, Paul Graham, Andrew Philippides
and Philip Husbands

Abstract

It is known that ants learn long visually guided routes through complex terrain. However, the mechanisms by
which visual information is first learned and then used to control a route direction are not well understood. In this
article, we propose a parsimonious mechanism for visually guided route following. We investigate whether a
simple approach, involving scanning the environment and moving in the direction that appears most familiar,
can provide a model of visually guided route learning in ants. We implement view familiarity as a means of
navigation by training a classifier to determine whether a given view is part of a route and using the confidence in
this classification as a proxy for familiarity. Through the coupling of movement and viewing direction, a familiar
view specifies a familiar direction of viewing and thus a familiar movement to make. We show the feasibility of our
approach as a model of ant-like route acquisition by learning a series of nontrivial routes through an indoor
environment using a large gantry robot equipped with a panoramic camera.
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1 Introduction

Individual ant foragers show remarkable navigational
performance, rapidly learning long idiosyncratic routes
through cluttered environments (Cheng, Narendra,
Sommer, & Wehner, 2009). While the initial stages of
route acquisition are underpinned by the ants’ path
integration system, as ants become more familiar with
a given route, so the use of visually mediated naviga-
tional strategies comes to the fore (Collett, Dillmann,
Giger, & Wehner, 1992; Durier, Graham, & Collett,
2003; Rosengren & Fortelius, 1986; Wehner, 1996;
Wehner & Radber, 1979). These and similar studies
of visual navigation have revealed how insects combine
simple strategies to produce robust behavior. This has
established insect navigation as a model system for
investigating the sensory, cognitive, and behavioral
strategies that enable animals to perform complex
behaviors in the real world.

One elegant use of visual landmark information is
view-based homing. Behavioral experiments with ants
(Durier et al., 2003; Wehner & Radber, 1979) and bees
(Cartwright & Collett, 1983) have shown that indivi-
duals store two-dimensional retinotopic views of the

world as seen from their goal location. Subsequent
search for that goal location can be driven by a
comparison of their current view of the world and the
view stored at the goal (Franz, Schölkopf, Mallot, &
Bülthoff, 1998). Computational studies have shown
that this tactic is successful within a catchment area
centered on the goal, the size of which depends on the
depth structure of the world (Stürzl & Zeil, 2007; Zeil,
Hofmann, & Chahl, 2003). However, as this can be an
efficient and economical mechanism, it is not a great
leap to imagine that navigation over larger scales,
that is, along routes, could be achieved by internalizing
a series of stored views linked together as a sequence.
Route behavior in this framework would entail homing
from one stored view to another.
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Recent studies of ants suggest, however, that route-
guidance could be performed using simpler procedural
rules whereby the heading governing a path segment
becomes associated with an appropriate visually
identified location (Collett, Collett, Bisch, & Wehner,
1998; Graham & Cheng, 2009). Moreover, attempts to
model route navigation using linked view-based
homing have shown it to be a nontrivial problem
which requires the agent to both robustly determine
at which point a waypoint should be set during route
construction and decide when a waypoint has been
reached during navigation (Franz, Schölkopf, Georg,
Mallot, & Bülthoff, 1998; Smith, Philippides,
Graham, Baddeley, & Husbands, 2007; Vardy, 2006).
Essentially, for robust route navigation within the
framework of a sequence of snapshots, an agent
needs place recognition to determine where along
the route it is (Smith, Philippides, Graham, &
Husbands, 2008).

Our study of visually guided routes therefore takes a
different tack. Instead of defining routes in terms of
discrete waypoints, we define a route-learning process
in which the route is learned more holistically. In this
framework, the agent employs a classifier that predicts
whether a given view is on or off the learned route.
A behavioral routine then facilitates route
following by scanning the world and moving in the
direction that is deemed most likely to be part of
the route.

We feel that this approach has two main benefits.
First, a classifier is a parsimonious way to encode a
series of views. We do not attempt to learn every view
along the route, but instead use them to learn the clas-
sifier. By using a classifier to determine whether a given
view comes from part of the learned route or not, our
approach provides a compact way of storing the visual
information required to follow routes. As a corollary,
the agent does not need to decide when or which views
to learn. Second, the classifier we choose to use also
outputs a confidence in the classification it has made.
The classifier can therefore be applied to any view to
determine the degree of confidence that it is part of the
route. One can think of the confidence as being a proxy
for how familiar that view is. Ants can only translate in
one direction relative to their viewing direction, namely
forward. This tight coupling of sensation and action
allows us to re-frame the problem of navigation in
terms of a search for the views that are associated
with a route. By visually scanning the environment
and moving in the direction that is most similar to
the views encountered during learning an ant or robot
should be able to reliably retrace a given route.

Note that this process associates the current view not
with a particular place but instead with a particular
action, that is, ‘‘what should I do?’’ not ‘‘where am I?’’

Both desert ants and wood ants perform scanning
behaviors that would support this approach. When
released in an unexpected but familiar place the desert
ant Melophorus bagoti scans the environment by turn-
ing rapidly on the spot [P. Graham, personal observa-
tion]. More than one scan may be performed with short
straight runs of a few centimeters separating them
before the ant finally sets off in a seemingly purposeful
manner. Wood ants exhibit a second form of scanning
behavior. Instead of walking in a straight line, they
instead tend to weave a somewhat sinuous path
(Graham & Collett, 2002). This has the effect of
producing scans of the world centered on the overall
direction of movement.

We implement this approach on a real robot navi-
gating a series of nontrivial routes through visually
cluttered environments. Our results indicate that it is
possible to implement a holistic, view-based homing
strategy for acquiring ant-like routes. Crucially, there
is no need to break the route up into a series of discrete
waypoints, instead learning occurs continuously. This
avoids the problem of determining what should trigger
the learning of a new view or waypoint and leads to a
simpler mechanism. Moreover, we suggest this
approach provides a powerful platform for investigat-
ing efficient encoding of route guidance information
and how this depends on the visual ecology within
which an agent navigates.

2 Methods

2.1 Overview

In order to test our hypothesis we need to sample the
world from an ant’s view point. To do this we use a
large volume Cartesian XYZ gantry robot to sample
panoramic images along a prespecified ground-level
trajectory through a cluttered environment. Images
are collected facing forwards and also at angles of
�45� relative to the route heading. The circular panora-
mic images are unwrapped in software to produce
rectangular images with a resolution of 4�/pixel.
A pool of 5,000 simple block-like feature detectors
are randomly initialized and used to form the basis of
our image representation. Each feature detector forms
a simple classifier by determining a threshold above
which it classifies the image as one class and below
which it classifies it as the opposite. Learning then
involves selecting features from the pool and determin-
ing how to set their thresholds and weight their differ-
ent predictions in order to form a final robust
classification. The learned classifier is used to recapitu-
late the learned route using the gantry robot in a
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closed-loop mode. Each of these stages will now be
described in more detail.

2.2 Data collection

All experiments reported here were performed on a
gantry robot—a large volume XYZ Cartesian robot
(Figure 1a). The gantry axis configuration provides an
operating volume of 3,000mm� 2,000mm� 2,000mm.
The sensor end of the Z-axis can be placed anywhere
within this volume with sub-millimeter accuracy. For
the experiments presented here a catadioptric camera
system (VCAM 360) is mounted on the z-axis to pro-
duce panoramic images. A panoramic mirror projects a
360� image of the environment onto a downward facing
CCD video camera. The image is transformed from a
circular reflection (Figure 1b) into a panoramic image
that is used for subsequent processing. This process is
performed in software using cubic interpolation and
results in a [90� 29] rectangular panoramic image
with a resolution of 4�/pixel (Figure 1c). This value
represents our best guess for the ants’ visual acuity.

The gantry workspace was populated with a variety
of objects consisting of foam blocks, piles of
fabric, paper rolls and a random selection of toys.

Objects were placed in such a way that it was possible
to move the sensor head along a route through this
visual clutter. Routes could be made more or less chal-
lenging by varying the degree of clutter and the
straightness of the routes. In order to go beyond what
is possible with a snapshot type model using a single
snapshot, the beginning and end points of some routes
were chosen so that it would not be possible to perform
the route using this approach. This is achieved by
making sure that the end point of the route could not
be viewed from the starting position.

In order to train a classifier it is necessary to generate
positive and negative training examples of the input to
be classified. In our case this means collecting views that
are part of the route and views that are not part of the
route. The positive examples are simply the
forward-facing views experienced along the route.
The negative views consisted of views from the route
taken facing to the left and right of the direction of
movement at an angle of�45� relative to the route head-
ing (Figure 1d). A small amount of normally distributed
noise (standard deviation¼ 6�) was added to each of the
sampling directions. This approach is inspired by the
observation that ants tend not to move in a straight
line on a route but instead proceed in a sinuous

Figure 1. Data Collection. (a) The gantry robot used in all experiments. (b) Example raw panoramic image prior to unwrapping in

software. (c) Example unwrapped [90�29] rectangular image representing a resolution of 4�/pixel. (d) Images are collected in three

directions for each point along the training route. A forward facing image is collected as an example of an on route view and two off

route views are also collected at �45� relative to the route heading.
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manner that results in some views that do not relate to
the overall direction of travel and some that do.

2.3 Image representation

Classifying images is a difficult task because of the high
dimensionality of the input if one adopts a pixel-
by-pixel representation. In order to make learning
tractable one needs to project this high-dimensional
space into a lower dimensional space that retains
enough of the necessary structure to allow successful
classification of the input. As a first step in reducing
the dimensionality of the input we downsampled
the images to a resolution of 4�/pixel. To control the
dimensionality of the input further we project the image
into an N-dimensional feature space using a pool of
simple Haar-like feature detectors (Papageorgiou,
Oren, & Poggio, 1998).1

Feature detectors were selected from a randomly
initialized pool of 5,000. Initialization involved
randomly selecting any two image coordinates that
define the opposite corners of an image patch represent-
ing the spatial extent of the feature detector. Having
defined the size and position the feature detector is
then randomly assigned to one of six possible classes
(see Figure 2). The value of a one-rectangle feature is
simply the mean intensity value of the patch. The value
of a two-rectangle feature is the difference between the
mean intensity of two rectangular regions. The regions
have the same size and shape and are located next to

each other either horizontally or vertically. The value of
a three-rectangle feature is given by the mean intensities
of two outer rectangles subtracted from the mean inten-
sity of a central rectangle, again oriented either hori-
zontally or vertically. Lastly, a four-rectangle feature
computes the difference between diagonal pairs of
rectangles. Example features are shown in Figure 2.
The features act like edge detectors or crude approxi-
mations to Gabor filters (Gabor, 1946) and are
maximally activated at high contrast boundaries in
the image. The output of these feature detectors
forms the basis of our image representation (Figure 3).

2.4 Boosting

There are many different approaches to learning a clas-
sifier that we could have employed, although one
prerequisite for our approach is that the classifier
should provide a measure of the confidence in its
predictions. Following Viola and Jones (2001) we
chose to construct a boosted classifier using Haar-like
features as this approach provides us with a confidence
in our predictions, as well as providing a way to control
the complexity of the learned classifier by prespecifying
the number of Haar-like features that the classifier
employs.

We now describe how to use boosting to build a
classifier that can be used to recognize views associated
with a learned route. Boosting is a supervised learning
technique for constructing a strong classifier from a set

Figure 2. Examples of the six different classes of Haar-like feature detector. Each column shows examples of one of the six different

classes of feature detector. Note each class of feature can vary in size, shape, and position. Note also that feature detectors

wrap-around if they extend beyond the left or right edge of the image.
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of weak classifiers given a training set of labeled posi-
tive and negative examples. A weak classifier is one that
performs only slightly better than chance. Conversely, a
strong classifier is one that performs arbitrarily well.
A strong classifier is constructed from a linear weighted
combination of the outputs of weak classifiers.

There exist many variants of boosting algorithms.
Adaboost (Freund & Schapire, 1995), the approach
we use in this article, is one of the most commonly
used. The basic algorithm works as follows. At each
iteration, the training data are resampled or reweighted
according to a distribution of weights that indicate the
current importance of each example in the dataset.
A weak classifier is then learned using this resampled/
reweighted dataset and is added to the strong classifier.
The relative contribution of each of the weak classifiers
to the final strong classifier is determined by perfor-
mance on the sampled data. Finally, the weights of
incorrectly classified examples are increased and
correctly classified examples decreased, thereby
encouraging the next weak classifier to focus more on
the examples that were incorrectly classified at the last
iteration. Weak classifiers are added until the overall
classification performance exceeds some threshold or
the maximum number of weak learners is reached.

The pseudocode for Adaboost is as follows:

Set T¼maximum number of weak classifiers
Given: (x1, y1), . . . , (xm, ym)
where xi2X, are the outputs of the feature detectors
and yi2Y¼ {�1, +1} are the class labels of the
training set

Initialize W1ðiÞ ¼
1
m , i ¼ 1, . . . ,m

For t¼ 1, . . . ,T :

Find the classifier ht : X! {�1, +1} that minimizes
the error with respect to the distribution Wt

Calculate "t the weighted error rate of classifier
ht with respect to the reweighted data at time t.
If "t¼ 0 then break
Choose �t ¼

1
2 ln

1�"t
"t

Update Wtþ1ðiÞ ¼
WtðiÞ expð��t�yi�htðxiÞÞ

Zt
where Zt is a

normalization factor that ensures that W represents
a probability distribution over the training data

Output the final classifier HðxÞ ¼ sign
PT

t¼1 �thtðxÞ
� �

Following Viola and Jones (2001) we implement
Adaboost using single Haar-like features as the basis
of our weak classifiers. A weak classifier hj (x) thus
consists of a Haar feature fj, a threshold �j, and a parity
pj that determines whether the output of the feature detec-
tor fj should be greater than or less than the threshold �j in
order that the input be classified as positive. The process
by which a weak classifier is constructed is illustrated in
Figure 4.

hjðxÞ ¼ 1 if pj fjðxÞ5 pj�j

hjðxÞ ¼ 0 if pj fjðxÞ4 pj�j

By providing a pool of feature detectors, each defin-
ing a weak learner, Adaboost is able to perform feature
selection. At each iteration a single feature detector is

Figure 3. Image representation. Each image is represented by the output of the 5000 randomly initialized feature detectors

applied to the image. Note these 5000 features represent the pool that is selected from. The final classifier utilizes only a small subset,

between 5 and 200, of this total. The idea of using this alternative to a pixel-wise representation was first explored by Papageorgiou

et al. (1998), who used the outputs of Haar-like features to categorize images.
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chosen that best aids in classification. This allows
Adaboost to pick out and use only those features that
are most useful for the current classification problem.

Key to our use of a boosted classifier is the fact that
it is possible to obtain a confidence value associated
with any given classification made using the trained
classifier. This confidence value is related to the
margin and is given by:

conf ðxÞ ¼
PT

t¼1 �thtðxÞ
���

���

Which is simply the degree to which the sum of the
combined weak classifiers differ from zero, prior to the
sign being taken.

By applying the classifier to views in different direc-
tions we can attempt to determine which of the views
are from the learned route (Figure 5). By weighting
each of the viewing directions that produce positive
classifications by their associated confidence values we
can determine a direction to move that is most likely to
keep us on the learned route.

2.5 Route following using a boosted classifier

To test the system’s performance, Haar-like features are
extracted from a set of training images collected every
5 cm and used to train a boosted classifier. During test-
ing the camera is positioned at the start of the route
facing in the correct direction. From this position
images are sampled in a range of directions from
�60� to +60� in steps of 5� relative to the current
heading. Features are extracted from all of these
images and used as input to the classifier. All of the
viewing directions that produce a positive classification
contribute to a weighted average with the weighting

Figure 4. Constructing a weak classifier using a single Haar-like feature. (a) Each of a set of training images are convolved with the

feature detector resulting in two sets of real numbers, one representing positive instances and one representing negative instances.

(b) Frequency histogram showing the distribution of feature detector outputs for the two classes. A threshold is determined that best

separates the two classes. (c) The final weak classifier is defined by a feature detector, a threshold, and a parity. For the example

shown, the output of the weak classifier, h(I), for a given image, I, is equal to 1 if the feature detector output exceeds a threshold of

197.7 otherwise it is equal to -1.

Figure 5. Determining the direction of travel using a scanning

routine. (a) Images are sampled in a range of directions from

�60� to +60� in steps of 5� relative to the current heading.

Each image is classified and if the classification is positive then

the confidence in the classification is used to weight the viewing

direction associated with that view. The figure shows a polar

plot of the confidence values for all positively classified viewing

directions. The weighted average of the positively classified

viewing directions is represented by the long arrow. (b) The same

information represented using a standard plot. The dashed line

indicates the current heading and the solid line represents the

weighted average of the positively classified viewing directions.
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controlled by the confidence interval of the individual
classifications, �final¼

P
conf (i)� h(i)��(i), where

�final is the ultimate direction of travel, conf(i) and h(i)
are the confidence and classification that are output by
the classifier relating to the ith view of the scan, and �(i)
is the viewing direction for this view. This weighted
average is then used to determined the direction of
travel and a 5 cm step is made in this direction. The
process is then iterated until success or failure.

3 Results

In order to test our approach we performed a series of
three experiments. In each instance a classifier was
trained using a set of images gathered during a single
traversal of a prespecified training route. Performance
was then assessed by starting the robot in a series of
different positions close to the original starting point
and running the algorithm for a number of steps just
larger than the number of steps used in the training
phase. This allowed for the possibility of runs that
reached the goal while taking a slightly longer route.
In fact, most of the time the learned routes were
more direct than the training routes as can be seen
in Figures 6, 7, and 8.

As described in the methods, positive and negative
instances for training the classifier were generated from
views along the route in the direction of movement for
positive instances and the same views rotated by �45�

and +45� for the negative instances. Haar-like features
were extracted from these views and used to train a
boosted classifier. For each of the routes we trained
classifiers with differing numbers of weak classifiers,
each instantiated using a single Haar-like feature
selected from a pool of 5,000 randomly initialized
features.

In the first set of experiments we investigated the
problem of learning a route from one corner of the
gantry’s workspace to the opposite corner, a distance
of approximately 3 m. For these experiments all objects
were placed along the inside walls of the gantry and
outside of the working limits of the moving sensor
head. Example views along a straight path are shown
in Figure 6. Despite the route’s simplicity there is still a
large variation in the views associated with it. In order
to vary the task difficulty, training routes were gener-
ated with increasingly tortuous paths, starting with a
completely straight path and ending up with a path that
included loops and turn backs. Because the positive and
negative views were always collected in the same way,
these later paths inevitably included positive and nega-
tive views that were very similar resulting in a classifi-
cation problem that could not be solved perfectly.
Collecting training images every 5 cm resulted in
60 positive and 120 negative views that were used to

train the classifier. Figure 6 shows the results for three
different routes and boosted classifiers with 5, 10, and
20 weak classifiers or Haar-like feature detectors.
The top part of the figure shows examples of views
from the route together with the output of the classifier
for scans from �60� to +60� superimposed on top. The
classifier output represents the confidence in the classi-
fication if the classification is positive, otherwise it is
zero. The confidence values have been scaled for the
purposes of illustration and are in fact higher for the
classifiers with greater numbers of feature detectors.
As the number of feature detectors is increased the
transition from viewing directions producing negative
classifications to those producing positive ones becomes
smoother as does the overall profile of the confidence
estimates. The lower part of Figure 6 shows the perfor-
mance on training routes of increasing complexity.
In all cases performance is generally good with a path
from corner to corner of the workspace being success-
fully learned. As the training routes become more
tortuous performance becomes less consistent with
higher numbers of weak classifiers resulting in slightly
more direct and stable paths.

In a second set of experiments a large pile of foam
blocks covered by a gray sheet was placed in the center
of the workspace. This required that we define this
central region as out of bounds to the robot to prevent
damage to the panoramic imaging device (dark region
in Figure 7b and c). A circuit of the workspace was then
defined which resulted in a training route that passed
around the obstacle. Collecting training images every
5 cm resulted in 210 positive and 420 negative views
that were used to train the classifier. In this instance
the number of classifiers required to completely learn
the route was far higher. Although reasonable perfor-
mance was still achieved using just five features, the
paths tended to get stuck in a loop circling the obstacle
(Figure 7b). We found it necessary to increase the
number of features used to 50 in order to get reliable
performance (Figure 7c). Figure 7d shows confidence
maps indicating how the confidence in positive classifi-
cations varies with respect to time step and viewing
direction. In the left-hand figure, representing the
performance of the five-feature classifier, the robot
fails to straighten its path and complete the route and
instead gets drawn back into another loop at the point
indicated by a star. In the right-hand figure we see how
the 50-feature classifier performs. The star indicates
the point where the five-feature classifier fails, we see
that although confidence is reduced at this point the
50-feature classifier is still able to correctly straighten
the path and complete the route.

In our final experiment we used our approach to
learn an S-shaped path through a cluttered environ-
ment. Figure 8 shows the results for this environment.
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Collecting training images every 5 cm resulted in
180 positive and 360 negative views that were used to
train the classifier. As in the previous example it was
not possible to learn the route using very small numbers
of features and again good performance was only

achieved with a boosted classifier with 50 features.
For comparison, the original work by Viola and
Jones (2001) on which our classification approach is
based employed 200 features to detect and classify
faces in 384� 288 pixel images.

Figure 6. Example routes across the empty workspace. Top: Example views and classifier output (black line) for scans from �60� to

+60� centered on each of the views shown. The letters A, B, C, and D relate to positions indicated in the plots below. The classifier

output represents the confidence in the classification if the classification is positive, otherwise it is zero. Confidence values have been

scaled for the purposes of illustration. Bottom: Three different routes of differing straightness, learned using boosted classifiers with

differing numbers of Haar-like features. The letters A, B, C, and D refer to the approximate positions where the views above were

captured. The solid lines show the training route and the dotted lines indicate test runs from different starting points. Squares indicate

the endpoints of the test runs.
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4 Discussion

4.1 Summary

We have shown that it is possible to learn a nontrivial
route through an environment using a simple view-
classification strategy based on positive and negative
views collected during a single episode of learning.
By considering the tight coupling of sensation and
action that is present in ants and some robots, we
were able to re-frame the problem of route navigation
in terms of a search for familiar views using a classifier
that provides a compact way of storing the information
required to recognize views and, crucially, a measure of
the expected uncertainty of the classification.

The idea that routes can be learned using a set of
Stimulus–Response (S–R) relations is not new
(Gaussier & Zrehen, 1995; Giovannangeli, Gaussier,
& Désilles, 2006). Equally, it has been observed by var-
ious authors that it is possible to orient rotationally by
comparing views in different directions to a reference
view, effectively resulting in a visual compass (Graham,
Philippides, & Baddeley, 2010; Philippides, Baddeley,
Cheng, & Graham, in press; Zeil et al., 2003).
However, combining aspects of these two approaches,
as we have done, constitutes a novel approach. Firstly,
by parameterizing the S–R relationship using a boosted
classifier, we not only provide a compact representation
of the problem, we also obtain a less brittle solution by
being less reliant on determining an exact match
between the learned stimulus and the current view.

Figure 7. Learning a circuit of the workspace. (a) The gantry workspace as viewed from above. The dark line represents the training

route. (b) Performance of the algorithm using a boosted classifier with five features. At the point indicated by the star the robot fails to

complete the route and instead is drawn back into another loop. (c) Performance of the algorithm using a boosted classifier with

50 features. In this instance the robot is able to correctly avoid being drawn back into the loop at the point indicated by the star.

(d) Confidence maps indicating how the confidence in positive classifications varies with respect to time step and viewing direction.

Insets show a zoomed-in final section where the two plots differ and the performance of the two trials varies. Each horizontal slice

represents a single scan that is limited to a range of �60� to +60� relative to the current viewing direction. Time increases from top to

bottom. In this instance there is a clear trend indicating clockwise rotation, as would be expected for a loop. Directions outside of the

scanning range are uniform gray and the weighted average at each time step is indicated by the dark line in the main figure and in the

inset. In the left-hand figure, representing the performance of the five-feature classifier, the robot fails to straighten its path and

complete the route and instead gets drawn back into another loop at the point indicated by a star. In the right-hand figure we see how

the 50 feature classifier performs. The star indicates the point where the five-feature classifier fails, we see that although confidence is

reduced at this point the 50-feature classifier is still able to correctly straighten the path and complete the route.

Baddeley et al. 11



Secondly, by using the classifier to determine view
familiarity we are performing recognition rather than
recall, which is a fundamentally easier problem.
In using familiarity rather than similarity to a particu-
lar reference view we can go beyond a simple visual
compass and instead end up with a method for learning
entire routes.

By embodying the view classifier on a physical
platform and constraining the required spatial behavior
to routes, we were able to explore other areas for
parsimony. Because each scan is centered about the
current heading, the same position in space can elicit
different responses when approached from different
directions. As long as the agent has some context
provided by the likely starting direction of travel and
scans the environment over a limited range of directions
relative to its current heading, it can recapitulate a

learned route through a visually cluttered world and
produce sensible headings from points off the original
learned route. This provides an interesting example of
where a simple interaction between a behavioral strat-
egy and learned information provides robust behavior.
Without such an interaction the agent would require a
much more comprehensive survey of the environment.
Interestingly, this type of interaction has been observed
in ants where directional information from path inte-
gration has been shown to increase the precision of
visual landmark use (Fukushi & Wehner, 2004).

One potential issue regarding our proposed
approach is the problem of visual aliasing. If the
world looks similar at two different locations and
requires different actions to be performed then we can
expect the process to fail at one of the locations. While
this is a problem for a general route-learning algorithm

Figure 8. Learning a route through clutter. (a) The gantry workspace as viewed from above. The dark line represents the training

route. (b) Performance of the algorithm using a boosted classifier with five features. The robot completes the first section of the route

but fails to reverse turning direction at the appropriate time. (c) Performance of the algorithm using a boosted classifier with

50 features. The robot completes the route with a high degree of consistency. (d) Confidence maps indicating how the confidence in

positive classifications varies with respect to time step and viewing direction. Each horizontal slice represents a single scan that is

limited to a range of �60� to +60� relative to the current viewing direction. Time increases from top to bottom. In this instance there

is a clear trend indicating counter-clockwise rotation for the initial section followed by clockwise rotation in the right-hand plot.

Directions outside of the scanning range are uniform gray and the weighted average at each time step is indicated by the dark line.

In the left hand figure, representing the performance of the five-feature classifier, the robot fails to reverse direction at the appropriate

time indicated by a star. In the right hand figure we see how the 50-feature classifier performs. The star indicates the point where the

five-feature classifier fails, we see that although confidence is reduced at this point the 50-feature classifier is still able to correctly

reverse direction and complete the route.
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we believe it to be less of a problem for a model of route
learning in ants. That is, we would also expect the ants
to have problems learning such a route. In practice it is
likely that visual aliasing is rarely a problem in natural
environments and in situations where visual informa-
tion is ambiguous we would expect that other sensory
modalities would allow the disambiguation of the two
locations.

4.2 Relating the model to ant behavior

Our ultimate goal with this project is to understand
likely and viable mechanisms used by insects for navi-
gation. Therefore it is useful to summarize our frame-
work with respect to some of the desirable properties of
insect route behavior: (a) Route knowledge should be
procedural, that is, an agent should be able to produce
the correct behavior for a given place independently of
the prior sequence of visited places. By constraining
vision and motion we produced a simple procedural
mechanism for visually setting heading that is indepen-
dent of the sequence of prior visited places given the
current heading. (b) Route knowledge should consist of
a broad corridor of familiar places rather than a fragile
narrow ridge and agents need to produce sensible beha-
vior when they are outside the route corridor. It is an
open question as to whether ants are drawn back into
their habitual routes when they are far outside of their
route corridor (Collett, Graham, & Harris, 2007) and
there is anecdotal evidence that they may not recognize
a familiar route if approached from an unfamiliar
direction [Michael Mangan, personal communication].
However, in most instances they will rejoin a route if
they happen across it while searching (Kohler &
Wehner, 2005; Wehner, Boyer, Loertscher, Sommer,
& Menzi, 2006). We observe similar behavior using
our approach and the estimates of heading produced
from close off-route locations are sensible, normally
being parallel to the route or drawing the robot slightly
in towards the route. As one moves further from the
route the uncertainty in recalled headings (signified by
lower confidence in the output of the classifier)
increases, which would be a useful signal to commence
a systematic search for the route; a behavior seen in
ants when they are lost (Kohler & Wehner, 2005).

4.3 Prospects

We have presented a proof of concept of a simple view-
classification system that can take advantage of a tight
sensorimotor coupling to produce a route-navigation
system. Our goal was to demonstrate that routes can
be represented holistically thus allowing route recapitu-
lation to be described as a recognition problem.
Therefore, to some extent it is the mature route

encoding which provides the proof of concept.
In future work we will address issues relating to how
learning might be achieved without the need for off-line
training of the classifier.

Although there is inherent value in such a parsimo-
nious model, it is of potentially greater interest that it
provides a framework within which we can investigate
the three-way sensory–motor–environment interaction
that shapes behavior. For instance, we suggest that this
model can be used to investigate which visual primitives
might best be used for visual route guidance in natural
environments. Similarly, we can explore the interac-
tions between movement strategies, learning, and
route performance. Because we are trying to gain
insight into how ants might use visual information to
guide their routes, rather than attempting an engineer-
ing solution to the problem of visual navigation,
successful route following is only a minimum require-
ment. Of greater interest are insights into how
limitations and constraints can shape the route-
learning process.
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Note

1. Simple block-like features with similarities to the Haar

wavelet (Haar, 1910).
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