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Abstract. Theta frequency oscillations are a prominent feature of the 

hippocampal EEG during active locomotion and learning. It has also been 

observed that the relative timing of place cell firing recedes as its place field is 

traversed – a phenomena known as phase precession. This has led to the 

development of a theory of theta phase coding, whereby spatial sequences being 

encountered on a behavioural timescale are compressed into a firing sequence 

of place cells which is repeated in each theta cycle and stored in an 

autoassociative network using spike-timing dependent plasticity. This paper 

provides an abstract model of theta phase coding in a spiking neural network, 

and aims to investigate how learning and recall functions may be mediated by 

the neuromodulatory functions of Acetylcholine (ACh). It is demonstrated that 

ACh is not essential for concurrent learning and recall without interference, 

thanks to the robust nature of the theta phase coding implementation. However, 

the neuromodulation of synaptic plasticity may be essential to avoid continually 

consolidating false predictions when learning new routes. 
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1 Introduction 

The hippocampus has long been identified with spatial and episodic learning and 

memory. This theory has been bolstered by the discovery of several distinct groups of 

cells throughout this brain region whose activity corresponds directly to an animal’s 

location (place, grid and spatial view cells) or idiothetic inputs (head direction and 

vestibular information cells). This in turn has led to the notion that the hippocampus 

may function as a ‘cognitive map’ which integrates environmental cues, past 

experience and self-motion input in order to aid efficient navigation [1, 2]. The 

mechanisms by which the cognitive map may function have often been modelled 

using autoassociative memory models – recurrent neural networks with synaptic 

plasticity which can store input patterns and recall them from incomplete or noisy 

cues [3, 4, 5, 6]. These models are inspired by the presence of a large number of 

recurrent collaterals in various parts of the hippocampal formation, and the ease with 

which synaptic plasticity can be induced and observed in the region. The 

corresponding neural networks have been very successful in replicating the update of 

head direction cell activity from idiothetic cues, and path integration over a learned 

environment in the absence of sensory input, as well as some more abstract functions 

of episodic memory. 



However, these networks have often utilised rate-coded neural or synaptic 

dynamics, while it has become clear from neurobiology that changes in the strength of 

synapses in the hippocampus are mediated by the temporal sequence, rather than 

frequency, of neuronal firing. According to this spike-timing dependent plasticity 

(STDP), only those pre-synaptic inputs which have been active in a short time 

window (~50ms) before post-synaptic spiking are potentiated, while any synapses that 

are active within a similar time window after post-synaptic spiking are depressed [7, 

8]. In order to implement STDP within an associative network, a spiking model which 

can replicate the dynamics of real neurons as accurately as possible is required. 

Neurons in the hippocampus demonstrate one of the most well known dynamic firing 

patterns in the mammalian EEG. Pyramidal cells throughout the region exhibit theta 

(~8Hz) frequency oscillations in their local field potential whenever an animal is 

actively locomoting, attending to external stimuli or during REM sleep [9, 10]. 

Furthermore, it has been established that the firing of place cells is not simply 

modulated by this oscillation, but advances in phase relative to theta as their place 

field is traversed [9, 11, 12]. This produces a compressed temporal firing sequence 

within each theta cycle which corresponds directly to the current sequence of 

locations being navigated on a behavioural timescale – a firing sequence which is 

ideally suited for storage in an associative network using STDP. It has been suggested 

that this theta-phase coding may be the mechanism by which the hippocampus 

processes continuous spatial information [9, 10, 13, 14]. 

It has also been noted that the release of the neuromodulator Acetylcholine (ACh) 

is closely related to the theta oscillation [15]. ACh acts on muscarinic and nicotinic 

receptors within the hippocampus, and is known to be involved in learning and recall 

processes. This is demonstrated by experiments in which the infusion of ACh 

antagonists impairs performance on spatial tasks [16]. Neurobiological research has 

revealed several effects of ACh on neurons and synapses in this brain region, among 

them the enhancement of afferent input relative to excitatory feedback, and the 

enhancement of synaptic plasticity. These properties have led to the theory that the 

role of ACh is to separate phases of learning and recall within each theta cycle [9, 10]. 

Associative memory models can often encounter significant problems if learning and 

recall processes are concurrently active. During learning, for example, the activity in 

an autoassociative memory model must approximate external input, or the patterns 

which are stored will be a combination of novel experience and the recall of earlier, 

similar experience [4, 9, 10]. If recurrent connections are made too weak to provoke 

neural activity, this interference will disappear, but recall of an activity pattern from a 

partial cue is made impossible.  

The changes in neural and synaptic dynamics which are incurred by ACh suggest 

that it may act as a trigger to switch between functions of learning and recall. When 

the neuromodulator is present, afferent input dominates the dynamics of the 

autoassociative CA3 network, and this activity is maintained while information is 

stored via enhanced synaptic plasticity. When ACh is absent, feedback from recurrent 

collaterals dominates and plasticity is vastly reduced, allowing the network to make 

predictive recall without interfering with stored patterns [9, 13, 15]. This posits an 

elegant and biologically plausible solution to the problem of concurrent learning and 

recall processes which has been encountered in previous autoassociative memory 

models. This aim of this research is to examine an abstract model of theta phase 



coding, in order to investigate the possible advantages of ACh modulation in storing 

and recalling temporal sequences on a behavioural time scale. To our knowledge, this 

is the first attempt to investigate the phenomena of both phase precession and 

acetycholine modulation in a spiking neural network which implements STDP. 

Previous research has examined theta phase coding in a similar network, but with 

much more simplified - and therefore, less biologically realistic - models of neural or 

synaptic dynamics [9, 14].  

2 Methods 

2.1 Network Properties and Neural Dynamics 

The neural network consisted of N=20 neurons, whose activity corresponds to that of 

place cells in the CA3 region of the hippocampus. Each had a randomly assigned 

axonal delay in the range 1 : 5ms. The network was fully recurrently interconnected 

by excitatory synapses except for self-connections. The neurons operated according to 

the Izhikevich (2004) spiking model, which dynamically calculates the membrane 

potential (v) and a membrane recovery variable (u) based on the values of four 

dimensionless constants (a,b,c and d) and a dimensionless current input (I), according 

to Eqn. 1. This model can exhibit firing patterns of all known types of cortical 

neurons by variation of the magnitude of applied current and the parameters a – d 

[17]. The values used for tonic spiking in a standard excitatory neuron are a=0.02, 

b=0.2, c=-65 and d=6. 
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2.2 Synaptic Dynamics 

At the beginning of each simulation, all synaptic weights were set to a value of 

w=0.1. Mathematically, with s = tpost - tpre being the time difference between pre- and 

post- synaptic spiking, the change in the weight of a synapse (∆w) due to STDP can 

be calculated using equation 2.  
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The parameters A+ and A- effectively correspond to the maximum possible change in 

the weight of a synapse per spike pair, while τ+ and τ- denote the decay constants of 

potentiation and depression increments respectively (see Fig. 1). Previous research 

suggests that the window of depression should be set larger than that of potentiation – 

in order to ensure that the STDP model depresses chance spike pairings and thus 



operates stably [18]. This constraint was observed throughout our simulations, by 

setting τ+ =20ms and τ-=40ms while monitoring the relative size of A+ and A-. 

 

 
 

Fig. 1. The asymmetric time window of STDP. 

 
Furthermore, in order to stabilise activity in a recurrent network – which is effectively 

a positive feedback system – a system of synaptic redistribution was employed in all 

simulations. The amount of available neurotransmitter for each synapse was initiated 

at a value of 1, and decreased by a value of 0.5 with each afferent spike. The value 

would then recover exponentially with a time constant of 200ms. Every synaptic 
weight was scaled by the currently available amount of neurotransmitter upon a 

transmission event. 

 

2.3 Network Input 

In order to replicate the phenomena of phase precession, input to our network was 

formulated as a combination of theta frequency inhibition and gradually increasing 
excitation [19]. Every neuron in the network was fed with inhibitory input which 

oscillated sinusoidally between a value of I=-1nA and I=-3nA at a (theta) frequency 

of 8Hz. A route which consisted of a series of N=20 overlapping place fields was then 

traversed. Each place field was divided into seven equal segments, and each place 

field overlapped with five segments of those on either side. The level of excitation in 

the corresponding place cell would increase from a value of I=2nA as the place field 
was entered, by increments of I=0.25nA as each segment was traversed. This ensures 

that a key property of phase precession in vivo – that the phase of firing corresponds 

with distance travelled through the place field, rather than time spent within it – is 

replicated [2]. Once the place field is left, excitation for that place cell is reset to zero. 

 

2.4 Acteylcholine Modulation 

When neuromodulation was employed, the concentration of ACh was assumed to be 

uniform across the neural network, and to oscillate in the range 0 : 1 in synchrony 

with inhibitory input. Excitatory synaptic currents from the recurrent collaterals were 

inversely modulated by this concentration in the range 0 : f. The plasticity of recurrent 

synapses was also dynamically adjusted, by directly scaling each weight change by 
the instantaneous concentration of neuromodulator. Hence, in the presence of ACh, 

recurrent weights tended towards zero, eliminating excitatory feedback, while 

synaptic plasticity was active, in order to store incoming activity patterns without 



interference. When ACh was absent, excitatory weights were enhanced and synaptic 

plasticity was suppressed, in order to allow predictive recall activity which would not 

be stored. 

3 Results 

3.1 Theta-Phase Coding without Acetylcholine Modulation 

Initial tests of the model aimed to establish how well activity in the network 

approximated what is known of phase precession in vivo. Figure 2 illustrates the theta 

phase coding, whereby a section of the place field sequence is translated into a 
compressed sequence of place cell firing within each theta phase. Because one 

behavioural sequence is repeated many times on the theta temporal scale, it is possible 

to store a spatial route in a single trial. The learning rate in the network is effectively 

determined by the parameters A+ and A- in the STDP model. The higher these values 

are, the more quickly synaptic weights re-arrange to become stable and reflect the 

input sequence. One of the weaknesses of our model is that it does not replicate the 
magnitude of phase precession seen in vivo, which can closely approach 360 degrees 

[2]. However, in the absence of ACh modulation, this would provoke associations 

between the initial and final place cells firing in each spike sequence, creating 

artificial, circular associations at each stage of the route and thus corrupting the ideal 

weight matrix. 

 
Fig. 2. The theta phase coding mechanism. As the place fields of place cells 1-4 are 

sequentially traversed, the phase at which the neurons fire precesses, and thus a compressed, 

representative firing pattern is generated in each cycle. 

 

External input corresponding to five laps of a circular route consisting of twenty 

overlapping place fields was then applied to the network, and the resultant weight 
matrix and spike raster is shown in Fig. 3. In the absence of a mechanism to 

differentiate between learning and recall periods, the value assigned to the maximum 

achievable weight of a synapse is critical. Although the synaptic weight matrix in Fig. 



3 has re-arranged to reflect the behavioural sequence being learned, the recurrent 

connections are not powerful enough to provoke spiking activity, and so no predictive 

recall from these weights can occur. Hence, some separate mechanism is required to 

decode the weight matrix and effectively transfer it into a representative sequence of 

activity when cued. Similarly, the number of upcoming locations with which each 
place cell can associate is limited by the number of neurons which are active in each 

theta cycle. As the spike raster in figure 3 illustrates, only four place cells were ever 

concurrently active in our model, and so (without neural noise) only synaptic 

connections between each neuron and the three which follow or precede it can be 

modified.  

 

 
Fig. 3. Final synaptic weight matrix and overall spike raster for the network when traversing a 

circular route five times, with wmax=0.5 ; A+=0.012 and A-=0.01. (a) Synaptic weights from 

each neuron to those which follow it on the learned route have been potentiated, and to those 

which immediately precede it have been depressed. The majority are unchanged from their 

initial value, due to the absence of neural noise. (b) The spike raster illustrates the sequential 

firing activity, and the absence of any recall activity or experience-dependent place field 

expansion. 

 



If wmax is increased, however, then predictive recall becomes possible, and thanks to 

the remarkably robust nature of this theta phase coding implementation, the recall 

process does not interfere with the ideal structure of the synaptic weight matrix. As 

Fig. 4 illustrates, the spiking dynamics, gradually increasing level of recurrent 

excitation from preceding place cells, and axonal delays conspire to concentrate 
recalled activity (in place cells 1-3) after that generated by external input (in place 

cells 17-20) within each theta cycle. This recall activity can be clearly seen in the 

overall spike raster for this simulation (Fig. 5), which also illustrates that our model 

replicates a well known property of phase precession in vivo – the experience-

dependent expansion of place fields against the direction of motion [2]. The increased 

number of concurrently active place cells which results from this recall activity means 
that each neuron can alter the strength of its connections with a greater frequency of 

those adjacent to it on the behavioural sequence – and this is clearly illustrated by the 

greater spread of potentiated synapses in the weight matrix (see Fig. 5). 

 
Fig.4. Recall activity in the network with wmax=5, A+=0.12 and A-=-0.1. Place cells 17 – 20 

were being stimulated sequentially by external input, and activity in place cells 1-3 being 

recalled immediately after this activity had terminated. The sequence of firing is maintained 

during recall by the increasing level of recurrent synaptic input from activity in the preceding 

neurons, and axonal delays.  

 

3.2 Phase precession with Acetylcholine modulation 

When ACh modulation is introduced into the network, the value of the maximum 

synaptic weight becomes less important (unless it is set trivially low), and predictive 

recall and the experience-dependent expansion of place fields become present in all 

incarnations of the network. The final weight matrix and spike raster for a typical 
simulation using an identical route to that examined above are shown in Fig. 6. These 

are remarkably similar to that produced by the model in the absence of 

neuromodulation, with a large maximum weight limit (see Fig. 5). The one key 

difference lies in the spread of the peak in the weight matrix. Because plasticity in 

absent during recall when ACh is present in the network, no associations are 

generated between those neurons which are active due to external input, and those 
which are concurrently active due to recurrent input. 

 



 

 
Fig. 5. Final synaptic weight matrix and overall spike raster for the network when traversing a 

circular route five times, with wmax=5 ; A+=0.12 and A-=0.1. (a) A comparison with the weight 

matrix in Fig.3 illustrates how each place cell has become associated with a greater number 

ahead of it on the route, due to the concurrent learning and recall activity. (b) The experience 

dependent expansion of place fields against the direction of travel, and predictive recall are also 

clearly visible in the spike raster (the activity corresponding to the beginning of the sixth run 

was not externally applied).  

Conclusions 

We have demonstrated a simple, abstract model of theta-phase coding in place cells 

within the autoassociative CA3 network of the hippocampus. This implementation of 

theta-phase coding is remarkably robust, and can function effectively even in the 

presence of significant recall activity without interference. Concurrent learning and 
recall activity is possible both with and without Acetylcholine modulation, provided 

that the maximum weight limit is set sufficiently high. This result leaves us with the 



question of what significance this form of neuromodulation may have in vivo. 

Previous research has suggested that the main role of ACh may be to allow the 

elimination of redundant learned spatial sequences, and their subsequent replacement 

with new navigational routes which make use of the same place fields. This makes 

intuitive sense, as synaptic plasticity is only absent during the recall phase when ACh 
is present, and hence the predictions of future location which are made are not stored 

in the recurrent weights. This is illustrated by the narrower peak of potentiation in the 

synaptic weight matrix of Fig. 6. Without the damping of synaptic plasticity, 

redundant sequences will be continually recalled and consolidated. Although the ACh 

modulated network may still predict future locations based on past experience, new 

associations (and thus new predictions) will be rapidly acquired. The next step in this 
research, therefore, is to assess how incarnations of the network with and without 

neuromodulation can learn, recall, un-learn and re-learn a wider variety of complex 

behavioural sequences. 

 

 
Fig. 6. Spike raster and final synaptic weight matrix for theta phase coding simulations with 

ACh modulation. Recall activity (place cells 1-4 were not receiving any external input at the 

end of the stimulation) and the experience-dependent expansion of place fields are clearly 

visible in the spike raster. The weight matrix retains its ideal structure, but has a narrower 



spread, and plasticity is absent during the recall phase, and hence external input is not 

associated with recurrent activity. 
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