Table 1. The four schemas for LEDs

	Phenomena level	Theoretical level
Intra-component relations	LED schemas (LS)	Meta-LED schema (MLS)
Inter-component interactions	Composite-LED schema (CLS)	Meta-composite-LED schema (MCLS)

Table 2. LED schemas

Slots	Default	Zero-momentum	Total-transfer	Planet-and-pea
Diagram	Figure 1 (left)	E.g., Figure 1 (left)	Figures 3a	Figure 3 b
Diagram-features	Diagonal line is vertical; horizontal symmetry.	Diagonal line is vertical.	Diagonal intersects opposite corners of rectangle.	Diagonal line cuts mass line at (near) side of rectangle.
Domain-conditions	$\mathrm{u}_{2}=-\mathrm{u}_{1}=\mathrm{v}_{1}=-\mathrm{v}_{2}, \mathrm{~m}_{1}=\mathrm{m}_{2}$	$\mathrm{v}_{1}=-\mathrm{u}_{1}, \mathrm{v}_{2}=-\mathrm{u}_{2}$, $\mathrm{m}_{1} / \mathrm{m}_{2}=\mathrm{u}_{2} / \mathrm{u}_{1} \mathrm{l}$.	$\mathrm{u}_{1} \neq 0, \mathrm{u}_{2}=0, \mathrm{v}_{1}=0, \mathrm{v}_{2}=\mathrm{u}_{1}$, $\mathrm{m}_{1}=\mathrm{m}_{2}$.	$\mathrm{u}_{2}=-\mathrm{u}_{1}, \mathrm{~m}_{1} \gg \mathrm{~m}_{2}, \mathrm{v}_{2} \approx-3 \mathrm{u}_{2}$, $\mathrm{v}_{1} \approx \mathrm{u}_{1}$.
Interpretation	Simplest symmetrical case.	Overall momentum is zero.	All energy/momentum transferred.	Limiting case on masses.

Table 3. Composite-LED schema.

Slots	Simple-Newton's-Cradle	General-Newton's-Cradle
Diagram	Figure 4.	Stack of N-1 1DP diagrams (Figure 3a)
Composite-features	Column of 4 1DP diagrams.	Column of $N-1$ 1DP diagrams.
Domain-conditions	5 equal mass bodies. Only one initially moving.	N equal mass bodies. Only one initially moving.
Interpretation	4 Total-transfer pair-wise collisions.	$N-1$ Total-transfer pair-wise collisions.

Table 4 Meta-LED Schema for the 1DP diagram

Slot	1DP diagram	Plastic-1DP diagram
Diagram-features	Arrows: U1, U2, V1, V2; lines: m1, m2.	Arrows: U1, U2, V1, V2; lines: m1, m2.
Diagram-constraints	E.g., local: U1 and U2 heads adjacent, V1 and V2 tails adjacent, $\mathbf{m 1}$ and $\mathbf{m 2}$ end to end. Global: rectangle rule; diagonal rule.	As 1DP diagram + Global: plastic extension rule $\mathbf{x y}$ vertical, $\mathbf{x s}_{\mathbf{1}}: \mathbf{x r}_{\mathbf{1}}=\mathbf{x s}_{\mathbf{2}} \mathbf{:} \mathbf{x r}_{\mathbf{2}}$ (Figure 4).
Domain-properties	U and V - initial and final velocities; m - mass; subscripts for each body.	U and V - initial and final velocities; m - mass; subscripts for each body.
Encoded-laws	Momentum conservation law: $\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}$ Energy conservation law: $\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$	Momentum conservation law: $\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2} \mathrm{v}_{2}$ Energy distribution law: $\mathrm{k}\left(\frac{1}{2} \mathrm{~m}_{1} \mathrm{u}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \mathrm{u}_{2}^{2}\right)=\frac{1}{2} \mathrm{~m}_{1} \mathrm{v}_{1}^{2}+\frac{1}{2} \mathrm{~m}_{2} \mathrm{v}_{2}^{2}$ energy loss coefficient, $\mathrm{k}<1$
Property mappings	\mathbf{U} and \mathbf{V} arrow lengths and orientation give U and V velocities; lengths of \mathbf{m} lines give relative mass, m.	\mathbf{U} and \mathbf{V} arrow lengths and orientation give U and V velocities; lengths of \mathbf{m} lines give relative mass, m.
Interpretation-rules	One dimensional elastic collision between 2 bodes.	One dimensional in-elastic collisions between 2 bodes.
Cases	E.g., Default, Zero-momentum, Total-transfer, Planet-and-pea. (Table 2)	E.g., Figure 4.

Table 5. Meta-Composite-LED schema.

Slots	
Component-LEDs	1DP diagrams.
Composition-constraints	In successive 1DP diagrams, a and \mathbf{b}, for a given m1, V1a and U1b may share the same arrow.
Domain-description	Multiple successive collisions in one dimension.
Encoded-interaction-laws	Independent pair-wise collisions.
Mapping-rules	One 1DP diagram for each collision.
Interpretation-rules	Collisions between multiple bodies moving in one dimension. Free (not shared) \mathbf{U} and \mathbf{V} arrows are the overall initial and final velocities, respectively.
Cases	Simple-Newton's-cradle, General-Newton's-cradle (Table 3).

Figure 1 ReMIS-CL Learning Environment with LEDs in their Default Configurations

Figure 2 ReMIS-CL Showing a Collision Between Unequal Masses and Speeds.

Figure 3 Special Case 1DP Diagrams

Figure 4 A Plastic-1DP Diagram.

Figure 5 A Plastic-VV graph.

Figure 6 A 2DP Diagram.

Figure 7 A Composite LED for Newton's Cradle

Figure 8 The framework applied to understanding the particle collisions domain.

