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Abstract 
Five notations for standard and multi-premise syllogisms are examined.  Four are existing 

notations (verbal propositions, Euler Diagrams, Venn Diagrams and Englebretsen's Linear 

Diagrams) and one a novel diagrammatic system – Category Pattern Diagrams (CPDs).  

CPDs integrate spatial location, linear ordering and properties of graphical objects in a 

comprehensive representational format to encode information about syllogisms, which 

provides a contrast to the use of degrees of spatial containment in the existing diagrammatic 

systems.  The comparison of the five notations reveals how their underlying representational 

schemes can substantially impact the effectiveness of the encoding of the core concepts of the 

knowledge domain; in particular whether the core domain concepts are readily accessible as 

perceptual inferences and thus the notations are semantically transparent.  The relative merits 

of CPDs provide some support for claims about the utility of the Representational Epistemic 

design principles that were used to create CPDs.   
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Graphical notations for syllogisms: how alternative representations 

impact the accessibility of concepts  

1. Introduction 

What constitutes an effective notation to support logical reasoning, or more generally any 

form of reasoning?  Answering this question has been of enduring interest to the disciplines 

of psychology, cognitive science, computing and logic, because of the insights that are to be 

gained into the way that alternative notations provide different perspectives on the knowledge 

that they encode and because of the impact that notations have on the ease of reasoning and 

problem solving (e.g., [10], [13], [15], [18], [23]).  Much of the work on this question has 

focussed on comparison of sentential notations versus diagrams.  Sentential notations include 

written natural language, or semi-formalised renderings of it, and formula notations from 

logic, mathematics or computing.  In the case of studies of syllogistic inference, the 

diagrammatic representations studied have typically used the degree of spatial containment 

(or overlap) of certain graphical components with others as a primary form of representing 

information about relations among sets and assignment of members to sets: shapes within or 

overlapping other shapes and the placement of symbols within areas created by such 

overlapping shapes.  Euler [9] and Venn [22] diagrams are the best known, but Englebretsen 

[8] introduced Linear diagrams more recently.   

 Here we continue the venerable approach of comparing alternative notations of 

syllogistic logic by contrasting verbal propositions and these three spatial-diagrammatic 

notations.  However, we will attempt to gain increased theoretical leverage by introducing a 

novel diagrammatic notation that does not use degree of spatial containment as its primary 

means of encoding information — Categorical Pattern Diagrams (CPDs).  The creation of 

CPDs is part of a larger programme of work that is studying the nature of representational 

systems using the Representational Epistemic (REEP) approach [1]-[5].  The REEP approach 

claims that the key to understanding the efficacy of a notational system, in the round, is to 

focus on how the specific representational schemes (or formats [13]) of a notation encode the 

core concepts that permeate a knowledge domain.  For example, set theoretic notations and 

the axioms of probability are the ever-present ideas when one deals with the topic of chance 

and probability; even when they are not being explicitly addressed, they are inescapable 

because they define the essence of the topic (without them the topic would be another topic).  
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Representational schemes are generic information structures that specify how certain aspects 

of a topic are encoded in a particular notational system.  For example, Probability Space 

diagrams [2] were deliberately designed to exploit a representational scheme for sets based 

on divisions of line segments and a separate representational scheme for magnitudes of 

chance based on the length of line segments.  Another central claim of the REEP approach is 

that good theoretical and empirical leverage for studies of notational systems may be 

obtained by creating new representational systems as novel codifications of knowledge.  For 

example, a particular innovation of Probability Space diagrams was to combine the 

representational schemes for set information and magnitudes of chance by applying them to 

the same line segments so as to coherently integrate both core conceptual perspectives.   

 Other representational systems that have also been created under the REEP approach 

include novel notations for electricity [1], school algebra [3], event timetabling, personnel 

rostering, and production planning and scheduling [5].  The successful evaluation of these 

new systems has permitted various theoretical claims about the efficacy of representational 

systems to be formulated by generalizing over their common characteristics.  It is claimed 

that to effectively support comprehension, problem solving and conceptual learning a 

representational system should possess various forms of semantic transparency [1, 2, 5].   

Forms of semantic transparency, among others, include: (a) the integration of concepts at 

different levels of abstraction in the target knowledge domain; (b) the integration of concepts 

across the different perspectives or ontologies that may be used to describe the domain; (c) 

the integration of concepts at different scales of granularity within the domain; (d) the 

integration of qualitative and quantitative inferences about concepts of the domain.  The 

approach also claims that representations that are semantically transparent are also likely to 

be cognitively effective in computational terms, because they require fewer and less 

demanding inferences when used to perform tasks in the target domain [1, 2, 5].  Further, the 

REEP approach also provides principles for the design of novel representations, which 

specify how the sets of core conceptual structures of a domain should be encoded in distinct 

but coherently integrated representational schemes in order to achieve semantic transparency 

[2, 5].  Four principles have been proposed.  (a) For each set of core concepts of a given topic 

a different representational scheme should be used in order to differentiate the sets of 

concepts from each other.  (b) To coherently interrelate the different representational schemes 

that encode each set of core concepts an overall global interpretive framework should be 

devised.  (c) The individual representational scheme for each set of core concepts should 
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coherently encode the various levels or aspects of those concepts.  (d) Sets of concepts for 

secondary, more peripheral, sets of concepts should be integrated within the global 

interpretive scheme.  See [1], [2] and [5] for further explanations of the principles and their 

application in the design of novel representational systems.  By coherently encoding all the 

concepts of a topic in a single representational system, the principles aim to make any 

concept (core or peripheral) that is necessary for understanding and reasoning about a topic 

readily accessible as expressions in the representational system.  For an overview of how the 

REEP approach contrasts with other approaches to the evaluation and design of notations see 

[2].   

 The central aim of this paper is not (directly) to apply the principles of design to the 

creation of a new notation for syllogisms in order to provide further evidence of the utility of 

the REEP design principles; rather its purpose it to examine the more fundamental issue of 

how alternative representational schemes impact on the semantic transparency of an encoded 

domain.  This is worthwhile doing in the context of syllogisms, because REEP’s theoretical 

claims about semantic transparency have so far been induced from domains in which the core 

concepts are largely algebraic, and the new notations to recodify that knowledge have been 

largely geometric in nature ([1], [2], [5]).  In comparison, syllogisms revolve around set 

theoretic and categorical concepts and the existing notations, and the new Categorical Pattern 

Diagrams largely exploit spatially based representational schemes.  In other words, by 

comparing how clearly and coherently each of the five different notations encode the 

essential concepts of this domain, we will see how substantially semantic transparency may 

be affected.  Moreover, these effects are made particularly stark when quite different classes 

of representational schemes are compared, such as sentential versus spatial schemes as 

commonly contrasted in previous work (see above), but as will be seen substantial semantic 

transparency effects exist even between variants of the same representational scheme.   

 Syllogistic reasoning provides a good case domain to address such issues for two 

reasons.  On the one hand, the domain’s scope is sufficiently constrained to allow a 

thoroughgoing analysis of a comprehensive range of the concepts and inferences that are 

central to understanding the topic.  On the other hand, the topic nevertheless has ample 

conceptual complexity to pose interesting challenges to alternative notations that in turn 

provides good theoretical weight to drive investigations.  For example, an effective notational 

system should support its user’s access to, and reasoning about, the core concepts that 

underpin syllogisms, which include: the identity of the given sets, or terms; subsets as 
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relations among the given sets; the membership status of subsets; the character of 

propositions (quality and quantity); the structure of terms within the premises of syllogisms 

(middle term is common, syllogism Figures); meaningful justifications of the correctness of 

rules used to assess the validity of syllogisms.  Do the five notational systems possess the 

desirable characteristics of semantic transparency noted above?  Can information at different 

levels of abstraction be related; for instance, can general overarching concepts be simply 

reified?  Do they enable information at different levels of granularity, from individual terms 

to whole syllogisms, to mutually constrain each other’s interpretation?  Are alternative 

perspectives, such as the structure of the premises and conditions for validity, easily related 

within each representational system?  

 Section 2 of this paper gives a quick refresher about syllogisms and introduces the 

sentential notation.  Section 3 describes Euler, Venn and Englebretsen’s Linear diagrams [8].  

Section 4 introduces CPDs, including the system’s syntax, semantics and its rules for testing 

the validity of standard syllogisms.  Section 5 challenges the notations by considering how 

they support judgements about the validity of multi-premise syllogisms, specifically sorites.  

The five notational systems are considered in some detail to provide a sound basis for their 

comparison in the final section, which addresses their semantic transparency and considers 

the impact their alternative representational schemes have on the efficacy of encoding core 

information about the domain.   

2.  Syllogisms in the sentential notation 
The reader is unlikely to need an introduction to syllogisms (as can be found in [6] and [12], 

for example).  However, a brief overview is given in order to provide a reminder of the rich 

terminology that is used to describe syllogisms.  Consider two syllogisms, Sy1 and Sy2. 

 

Sy1 

 No diagrams are sentential notations  

 All Venn Diagrams are diagrams 

 ––––––––––––––––––––––––––––––– 

 No Venn Diagrams are sentential notations 

 

Sy2. 

 All Category Pattern Diagrams (CPDs) are diagrams  
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 All diagrams are effective representations  

 No effective representations are poor systems for learning  

 Some poor systems for learning are sentential notations 

–––––––––––––––––––––––––––––––––––––––––––– 

 No CPDs are sentential notations 

 

Sy1 is a classical two-premise syllogism, consisting of a major premise, a minor premise and 

a conclusion.  The middle term, M (‘diagrams’), occurs in both premises and the predicate, P 

(‘sentential notations’), and the subject, S (‘Venn diagrams’), are the major and minor terms 

of the major or the minor premises, respectively.  S always precedes P in syllogism 

conclusions.  (M is a subject in the major premise and a predicate in the minor premise.)  The 

quantity and quality of Sy1’s major premise happens to be universal and negative (No M are 

P); such propositions are labeled E.  Sy1’s minor premise is universal and affirmative (All S 

are M); labeled A.  The conclusion is also an E proposition (No S are P).  Particular 

affirmative propositions are labeled I and particular negative propositions labeled O.  The 

mood of a syllogism is its particular permutation of proposition types for the two premises 

and the conclusion: Sy1’s mood is EAE.  The four possible permutations of the order of the 

premise terms are called Figures; Sy1 is of Figure type 1: M-P, S-M.  The Mood and Figure 

type of Sy1 may be summarized as EAE-1 and like all valid syllogisms has been given a 

name, “Celarent” [6]. 

 To determine the validity of syllogisms in verbal form, one may apply five rules 

concerning the quality and quantity of the propositions.  The quality rules state: (QL1) no 

conclusion may follow when both premises are negative; (QL2) a conclusion is negative 

when either premise is negative; (QL3) a negative conclusion cannot follow from two 

affirmative premises.  The quantity rules rely upon the notation of distribution, which is the 

extent to which all the members of a category are affected in a proposition [6]; e.g., S is 

distributed in All S are P, but variable P is not.  The quantity rules state: (QN1) the middle 

term must be distributed in one or both premises; (QN2) if a term in the premises is not 

distributed, then it must not be distributed in the conclusion.  These rules are challenging to 

understand and apply, and explanations of how they determine the validity of inferences are 

not straightforward. 
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 Clearly making syllogistic inferences verbally is difficult and is well known to be 

error-prone [12].  Thus, various notations have been created in history, and more recently, 

that exploit the spatial properties of diagrams in order to support reasoning.   

———— Fig 1 about here ———— 

3.  Three extant notations 

This section introduces Venn diagrams [22], Euler diagrams [9] and Englebretsen's Linear 

diagrams [8] that are the conventional diagrammatic notations adopted here.  Many variants 

of Venn and Euler diagrams have been proposed (e.g., [11], [17], [21]), some of which 

extend and combine features of the original notations.  However, the “basic” variants of these 

diagrammatic notations with their associated inference methods have been chosen, because 

they possess relatively straightforward representational schemes.  Such “primitive” 

representational schemes make the analysis of the accessibility of concepts a feasible 

endeavour, and because they are quite distinctive they provide good contrasts to drive the 

considerations about semantic transparency.  

 The middle three rows of Fig 1 (Fig 1.2-1.4) show how the notations encode the four 

types of syllogistic propositions, which are verbally stated on the top row.  In the Euler and 

Venn diagrams a circle represents each term, and in Linear diagrams a set is represented by a 

line segment starting with a dot to the right.  Degree of spatial containment is used in Euler 

diagrams to encode relations among the sets, whereas shading and a cross contained within a 

region or zone are used to represent empty or non-empty sub-sets in the Venn diagrams.  The 

superposition of one line segment upon another in Linear diagrams represents members that 

are in both sets, so Fig 1.4.A shows all elements of R are included in T.  Disjoint sets are 

shown by parallel lines, Fig 1.4.E, and intersecting lines show that some elements are shared 

by both sets, Fig 1.4.I.  The representation of proposition O is more complex, as it has two 

forms depending on whether the element of the set in question, R, is shown as a dot, Fig 

1.4.O.i, or whether it is a line segment, in which case it must be intersected by an explicit line 

representing the complement of the other set, ¬T.   

———— Fig 2 about here ———— 

 Fig 2 shows representations of the EAE Mood syllogism that is valid for both Figure 

types 1 and 2.  For the Euler, Venn and Linear diagrams, premise diagrams are drawn (Fig 

2.E and A) and composed into a result diagram (Fig 2.Res), which is inspected to see whether 

it is compatible with the conclusion diagram (Fig 2.Con) – the term result diagram is used to 
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explicitly distinguish what is inferred from the premises as opposed to that given in the 

conclusion.  This example presents Euler diagrams in a good light, as the two premise 

diagrams (Fig 2.1.E-A) are simply composed to give the result (Fig 2.1.Res), which contains 

a configuration that matches the conclusion (Fig 2.1.Con).  The Venn diagram for the same 

syllogism also simply requires the composition of the two diagrams, with all shaded areas in 

either premise diagram yielding a shaded area in the matching regions of the result diagram 

(Fig 2.2).  Inspection of the result diagram shows that the conclusion diagram is contained 

within it; hence the inference is valid.  The linear diagram inference also involves a simple 

composition of its two premises and that observation of the conclusion is contained within 

the result diagram.  In the composition of the premise diagrams in all three notations, M is the 

shared element around which the assembly of the result diagram is centred, as most clearly 

shown by the Euler and Linear diagrams.  

———— Fig 3 about here ———— 

 Fig 3 shows another valid inference for the EIO Mood syllogism, which is valid for 

all four Figures.  With the Linear diagrams the composition process is again straightforward 

(Fig 3.3), with M again acting as a fulcrum in the composition.  The Venn diagram is more 

complex than before, because we must apply the rule that all the shaded regions are first 

marked in the result diagram, before the positioning of the x.  Further, unlike Fig 2.2, where 

the shaded intersection of P and S of the conclusion exactly matches the shading of the same 

region in the result diagram, the comparison for Fig 3.2 is a little more tricky, because we 

must infer (or have learnt) that it is legitimate to match the cross in the S∩M∩¬P zone of the 

result to just the S∩¬P zone of the conclusion.  This syllogism reveals how the initial 

intuitive appeal of Euler diagrams is somewhat lost when the composition of the premise 

diagrams does not yield a single result diagram, which is well known (e.g., [20]).  Fig 3.1 

shows P’s varying degrees of containment, or intersection, with the circle containing S but 

without intersecting M.  As all three diagrams are consistent with the conclusion – a 

judgement that requires more than simple visual inspection – the inference is valid.  A further 

point to note is how the notations differ when one is to judge the validity of all four 

syllogistic Figures of the EIO Mood knowing the status of just one Figure.  In the Venn and 

Linear diagrams, it is obvious from the symmetry of the diagrams that alternative 

interpretations of the ordering of the terms in the propositions are possible without affecting 

the diagram overall; so if one Figure is valid, they are all valid.  However, in the Euler 

notation, Fig 3.1.I represents Figure types 1 and 2 only, and must be drawn with M in the 
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intersection of the two circles to represent Figure types 3 and 4.  The equivalence of all four 

Figures is not readily apparent.  

———— Fig 4 about here ———— 

 So far valid syllogisms have been considered, in which the inferences though not 

trivial have been relatively straightforward.  Now consider the invalid III Mood syllogism, 

shown in Fig 4 III.  The Euler and Linear diagram inferences are clearly complex just by 

visual inspection.  The two premise Euler diagrams may be combined in six different ways 

(Fig 4.1.Res) and the Linear diagrams in five ways (Fig 4.3.Res).  For ease of comparison, 

the corresponding diagrams for the two notations are in the same relative position in Fig 4.  

Although there is one result diagram for each notation that matches its respective conclusion 

diagram, the presence of other result diagrams means that inferences other than the one 

desired conclusion can be drawn.  The construction of the result Venn diagram requires a 

further rule: when one zone is not ruled out by shading, as in the Fig 3.2.Res, the x symbol 

must be drawn on the curve bisecting the target region, as shown Fig 4.2.Res.  The result 

diagram has two x symbols in a symmetric layout that is simpler than the multiple Euler and 

Linear diagrams.  However, this apparent clarity does not eliminate the complexity in the 

inference, because the x on the curve means that the represented members may be in either or 

both of the zones to either side of the curve.  Thus, there are five possible interpretations, 

which are implicitly encoded, that match each of the five Linear diagrams. (There are six 

Euler diagrams, because the two marked * in Fig 4.1.Res have equivalent interpretations.  

The implication of this point is considered further below.)  

 In summary, there are various benefits and disadvantages to each of the notations.  

Euler diagrams are simple because just the relations of interest are drawn and the result 

diagram has an appealing immediacy of interpretation, at least for simple cases.  However, 

the proliferation of result diagrams is an obvious disadvantage in more challenging examples.  

Similar comments apply to Linear diagrams, but the proliferation of multiple result diagrams 

may not be as severe.  Venn diagrams benefit from a common fixed spatial structure – the 

canonical configuration of three intersecting circles.  However, specific context-dependent 

rules must be invoked to apply the shading and placement of the x symbol, and the 

interpretation of the result diagram is not always straightforward.  Many of these costs and 

benefits have been variously noted in the literature (e.g., [20]).   
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4. Category Pattern Diagrams, CPDs 

CPDs were first introduced in [4] and the presentation here provides a further refinement and 

simplification of the notation.   

———— Fig 5 about here ———— 

4.1.  Syntax and semantics 

Fig 5.1-3 shows unary, binary and ternary CPDs.  A CPD is based on of a row of horizontally 

spaced letters.  Each letter has a high and a low node.  Line segments, called connectors, 

intersect the nodes (run up to or through them).  In unary CPDs a single short connector runs 

through each node (Fig 5.1).  For binary CPDs four connectors run between pairs of 

immediately adjacent letters such that the arrangement includes all four possible 

combinations of connectors between high and low nodes (Fig 5.2).  For higher order CPDs, 

this pattern of four connectors between each pair of adjacent letters is repeated for all pairs of 

letters (Fig 5.3 shows a ternary CPD and, Fig 8 below shows examples of quaternary and 

quinary CPDs).  The style of a connector may be a single solid line, a single dashed line or a 

double solid line.   

 A path of connectors, or just path for short, is a single continuous sequence of 

connectors that runs between the left most and the right most letters, with just one connector 

per constituent binary CPD.  The ends of a path may intersect either the high or low node of 

these end letters.  In unary CPDs a path is a connector.  Similarly, in binary CPDs a path is 

also a single connector.  In the text, we will refer to the paths of a binary CPD using the 

expressions R—T, R_T, R \ T, R ⁄ T, which denote the top, bottom, descending and ascending 

paths (connectors).  In higher order CPDs, paths run in a continuous fashion through the high 

or low node of each of the letters between the end letters.  In ternary CPDs there are eight 

possible paths and in general there are 2m paths in a CPD, where m is the number of terms.  In 

Fig 5.5 the eight paths of ternary CPDs are grouped in pairs, which have the same set 

assignments for S and P, but different assignments for M, for reasons to be explained below.  

 Each letter is one syllogistic term (variable, category, set).  The high and low nodes 

represent set membership and set non-membership, respectively, as shown in Fig 5.1-3.  

Thus, a path stands for a particular subset (or case) constituted by the conjunction of a 

specific combination of inclusions or exclusions of all the terms in the CPD.  The unary CPD 

has two possible subsets for its term and the binary CPD has four cases between its two 

terms.  For example, the path/connector intersecting the high node in Fig 5.1 represents the 
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unary relation of P, whereas the connector at the low node is ¬P.  The top horizontal path 

(M—P) of the binary CPD in Fig 5.2 is M∩P and the descending diagonal (M \ P) is M∩¬P.  

Each of the eight paths in a ternary CPD is a subset involving its three terms, so a path is 

equivalent to one zone in a Venn diagram, as indicated by the corresponding numbers in Fig 

5.4 and 5.5.  For instance, path 1 (S—M—P, or —— for short) represents the relation 

S∩M∩P, path 2 (\ /) is S∩¬M∩P, and path 3 (—\) is S∩M∩¬P.   

 The style of a connector indicates what is known about the relation.  A single line 

solid connector is a some-connector because it indicates that there is (at least) one member of 

the subset represented by the connector.  The dashed line connector is a none-connector as it 

stands for an empty subset.  The double solid line is a no-information-connector (no-info), 

which explicitly represents the fact that nothing is known about the membership status of the 

subset.  A path may be constituted of connectors of more than one style.  (The choice of 

particular connector line style was largely arbitrary but with the proviso that they be ease to 

distinguish visually.) 

4.2.  Representing syllogisms 

Fig 1.5 shows the binary CPDs for the four standard propositions of syllogisms.  The A 

proposition, All R are T, is represented by specifying that the subset R∩¬T is empty by 

making the path between R and ¬T a none-connector, which encodes the same meaning as 

shading in Venn diagrams.  Similarly, in the E proposition the path between R and T is a 

none-connector.  For I and O propositions, some-connector paths run between R and T, or R 

and ¬T, respectively.  Nothing is specified about all the other relations among the subsets, so 

all the other paths are no-info-connectors.  Individually these diagrams may be reflected 

about a vertical midline without alternating the meaning of the diagram. 

 Figs 2.4, 3.4, 4.4 show CPD syllogistic inferences.  As with the other notations, 

premise diagrams are drawn for the given statements, and then they are composed into a 

result diagram, which is compared with the conclusion diagram.  The result diagram 

composition involves adjoining the two binary premise diagrams into a ternary CPD 

(diagram 4.Res in Figs 2, 3 and 4).  When joining the two premise CPDs, M is put in the 

middle, with the major premise (M-P) to the right and the minor premise (S-M) to the left.  

The conclusion diagram is drawn to the far right: note that the order of S and P in both the 

result and conclusion diagrams is the same so as to facilitate their comparison. 
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4.3.  Inference rules 

To evaluate the validity of a standard syllogism, each connector in the conclusion-CPD is 

compared, in turn, to all of the paths in the result-CPD that have the same values of the 

subject and predicate terms, S and P.  Fig 5.5 identifies the pairs of paths with the same 

values of S and P but with different values of M, and names these patterns for ease of 

reference.  The top conclusion connector, — (S∩P), is matched to the two paths of the ‘top-

triangle’ pattern in the result CPD.  Similar the descending diagonal connector, \ (S∩¬P), is 

matched to the ‘descending-parallelogram’ pattern; the ‘ascending diagonal’ connector, / 

(¬S∩P), is matched to the ‘ascending-parallelogram’ pattern; and, the bottom connector, _ 

(¬S∩¬P), is matched to the ‘bottom-triangle’ pattern.   

 Three rules are used in the comparison of a conclusion connector and its matching 

paths in the result CPD.  Fig 6.1-4 illustrates the operation of these inference rules, taking as 

an example the top connector of the conclusion (to the right of the arrow) that is mapped to 

the two paths of the top-triangle pattern (left of the arrow).  

Rule-none.  For a none-connector in the conclusion-CPD, each matching path in the 

result-CPD must include a none-connector and a no-info-connector. 

Rule-some.  For a some-connector in the conclusion: (1) one matching path in the result 

CPD must consist of a some-connector and no-info-connector; (2) the other 

matching path must consist only of no-info-connectors; (3) all the other non-

matching paths involving the some-connector must include a none-connector.   

Rule-no-info.  For a no-info-connector in the conclusion either (a) all the matching paths 

must consist only of no-info-connectors or (b) one path consists of just no-info-

connectors and the other must include a none-connector with any other type of 

connector (represented by the dotted line with the question mark in Fig 6.4). 

The rules apply in the same way to the other connectors in the conclusion and their matching 

patterns in the result CPD: the only difference to Fig 6.1-4 would be that one or both ends of 

the paths would terminate at the low nodes of P and S.   

 So why do the rules work?  Rule-none permits an inference to a none-connector in the 

conclusion CPD when both paths each contain a none-connector and a no-info-connector. In 

Fig 6.1, the left none-connector in the result-CPD pattern, S—M, specifies that S∩M is 

empty, so S∩M∩P is also empty, because it is a subset of S∩M.  The right none-connector, 

M / P, specifies that ¬M∩P is empty, so S∩¬M∩P is also empty, by the same reasoning.  

Therefore, irrespective of M the set S∩P is empty.  Rule-none also applies when the none-



 12 

connectors are in the S \ M and M—P positions.  (Each none-connector must be adjoined to a 

no-info-connector in this rule, even though one might think that an adjoined none- or some-

connector might allow a none-connector to be inferred.  However, as a well-formed binary 

CPD must have precisely one none-connector or one some-connector, this would mean we 

would have the pattern of connectors shown in Rule-no-info and hence a different result.  

Remember that the CPD rules deal simultaneously with the sub-set relations for both M and 

¬M, which is a fundamental characteristic syllogism).   

 Rule-some allows a some-connector to be inferred for the conclusion.  In Fig 6.2, the 

S—M some-connector says some S are M, but as the M \ P none-connector means all M are 

P, then those M that are S must also be P.  Without the M \ P none-connector, it is possible 

that those M that are S could be ¬P, rather than P.  

 The first version of the third rule, Rule-no-info-(a), simply says that if nothing is 

known about any of the subsets involving M and ¬M then nothing is known about the set that 

aggregates those subsets.  In the second version, Rule-no-info-(b), neither path provides any 

information about the relation between S and P.  This is obvious for the path with two no-

info-connectors.  The dotted line for M—P with the question mark stands for any type of 

connector, which adjoins the S—M none-connector.  If M—P is a no-info-connector then that 

path tells us nothing about the relation between S and P.  Irrespective of whether M—P is a 

some-connector or a none-connector no elements are shared between S and P via M, so the 

nature of any relation depends on the other path via ¬M, but that consists just of no-info-

connectors.  Rule-no-info-(b) holds irrespective of the particular path or the order of the 

none-connector and the unknown connector in the path, so long as they are adjoined.  

 A syllogism is valid in the case that the comparisons between all conclusion CPD 

connectors and their matching paths in the result CPD are satisfied by one of these rules.   

4.4.  Examples 

The rules are now applied to the three examples in Figs 2-5.  Fig 2.4 shows the EAE1/2 

syllogism in CPD form.  The premises are drawn on the left, Fig 2.4.E and A.  The order in 

which M and P, or S and M, are drawn within each premise CPD is not important, provided 

that its none-connector runs between the correct nodes for the relation encoded.  The ternary 

result-CPD is drawn with the two premise CPDs side-by-side and M in the middle, Fig 

2.4.Res.  The conclusion CPD is drawn with the same order of S and P, Fig 2.4.Con.  One 

conclusion connector is chosen, say the top none-connector that matches the top-triangle of 
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the result.  Rule-none applies because the top-triangle has one none-connector on each path 

of the result-CDP.  For the bottom no-info-connector of the conclusion, Rule-no-info-(a) 

applies because the bottom-triangle just possesses no-info-connectors.  For the ascending and 

descending connectors of the conclusion Rule-no-info-(b) applies to the ascending and 

descending parallelograms, because they include a none-connector on one path and the other 

paths consists of a pair of no-info-connectors.  As all four of the conclusion connectors are 

implied by their respective sets of result CDP paths, the syllogism is valid. 

 Fig 3.4 shows the EIO syllogism, which is valid for all four Figures.  The evaluation 

of its validity proceeds in the same fashion as the previous example.  For the bottom-triangle 

and the ascending-parallelogram, respectively, Rule-no-info-(a) and Rule-no-info-(b) 

correctly imply the no-info-connectors of the conclusion’s bottom- and ascending connectors.  

The top-triangle includes adjoined some-connector and none-connectors, but Rule-no-info-

(b) again implies a no-info-connector for the conclusion.  Rule-some correctly applies to the 

descending S \ P some-connector in the conclusion, because: (a) one matching path, —\, 

consists of a some-connector and a no-info-connector; (b) the other matching path, \_, 

includes just no-info connectors; and (c) the other (non-matching) path, ——, that includes 

the some-connector is adjoined to a none-connector.  Thus, this syllogism is valid. 

 Fig 4.4 shows the CPDs for the III syllogism that is invalid for all four Figures.  

Working through the four matches: (1) The bottom-triangle correctly implies the conclusion’s 

bottom no-info-connector by Rule-no-info-(a).  (2) Neither Rule-no-info-(a) nor Rule-no-

info–(b) are applicable to the descending-parallelogram and so the conclusion’s descending 

no-info-connector cannot be inferred, because there is (a) a some connector in one of the 

paths (S—M) and (b) no none-connector is adjoined to that some-connector (M \ P is a no-

info-connector), respectively. (3) The same applies to the ascending-parallelogram and the 

ascending conclusion connector.  (4) The conclusion’s top some-connector is not implied by 

Rule-some for several reasons, but most obviously because it has two, not one, some-

connector.  Thus, this syllogism is not valid.  Of course, one need only consider that one of 

the conclusion connectors are not inferable to know this.   

4.5.  Invalid syllogisms 

Of the 256 possible syllogisms just 15 are valid, so 241 are not.  Fortunately, CPDs reveal 

when many syllogisms are invalid merely by spotting certain patterns of connectors in result 

diagrams, without reference to their matching connectors in the conclusion.  These illegal 
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patterns are shown as Fig 6.5-8, where the top triangle pattern has been chosen for the sake of 

illustration: the examples hold for all the other patterns in a similar fashion.  Like the rules, 

these illegal configurations are applicable in general, so the order of the paths may be 

reversed and the pattern of connectors reflected.  These patterns are interesting, because they 

reveal reasons why different classes of syllogism are invalid, which contributes to our deeper 

understanding of the inherent logical constraints of syllogisms.  In all cases these patterns are 

illegal because more than one connector types could be derived. 

 The illegal pattern in Fig 6.5 has two adjoined some-connectors.  A result CPD 

containing this pattern could yield either a some-connector or a no-info-connector, because 

we do not know whether the subsets S∩M and M∩P have elements in common or not; i.e., if 

S∩M∩P has any members or not.  In Fig 6.6 there are two some connectors on different 

paths.  From the S—M some-connector there might or might not be elements that are M and 

also P, because of the adjoined no-info-connector.  The same is true about ¬M and S with the 

M / P some-connector in the other path.  Thus, there is more than one possible result.  In the 

illegal pattern Fig 6.7 a some-connector and a none-connector appear on opposite sides of the 

CPD pattern.  The reasoning just given applies to the some-connector and further the none-

connector gives no relevant information to determine whether any of the elements are shared 

in S∩M∩P, because knowing that ‘¬M are P’ is empty is independent of whether any 

members of M∩P exists (‘All M are P’ includes the case that there are no elements in M∩P).  

Again, this explains why the some- and none-connectors must be adjoined in the Rule-some.  

Fig 6.8 complements the Rule-some: without knowing for sure that all M are P (by the none 

connector in the Rule-some), it could equally be the case that members of S∩M are, or are 

not, also members of P.   

 On drawing the result CPD, if any of configurations in Fig 6.5-8 are seen, then it is 

known that the syllogism is invalid, without further ado. 

4.5.  Sound and complete 

The three inference rules are sufficient to determine the validity of all syllogisms.  They have 

been programmed into a spreadsheet and applied to all 256 syllogisms.  Only the known valid 

syllogisms were found to be valid and all others are found to be invalid; thus the inference 

procedure is both sound and complete.   

 The speadsheet was also used to analyse the effect of applying the four illegal patterns 

(Fig 6.5-8) to result CPDs.  Of the 239 invalid syllogisms, 112 (≈47%) were found 
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(specifically in 32, 32, 16 and 32 cases, one or more of the illegal patterns were applicable to 

the Figure 1 to Figure 4 syllogisms, respectively).   

 Further, it is apparent from the analysis that in all invalid syllogisms the rules 

applicable to some- or none-connectors in the conclusion is always violated, therefore it is 

best to select either Rule-some or Rule-none as the first to apply, before Rule-no-info which 

may hold in particular matches in otherwise invalid syllogisms.   

5.  Multi-premise syllogisms 

5.1.  Sentential Notation 

The inference Sy2 in section 2 is an example of a multi-premise syllogism, specifically a 

sorite, in which the predicate of each proposition is the subject of the next.  One way to 

evaluate the validity of a sorite is to check that the first two propositions constitute a valid 

standard syllogism and then to take its result (in the above terminology) as a new proposition 

together with the third proposition.  If this syllogism is valid, and there are more propositions, 

its result is propagated on to the next proposition, and so forth, until the whole sequence of 

propositions is exhausted.  If the final result matches the conclusion then the overall sorite is 

valid.  

 Extending classical syllogisms in verbal form to sorites trivially requires the addition 

of further premises chained together with successive propositions sharing a common term; 

such as the ‘diagrams’ of the first two premises of Sy2.  To evaluate a sorite verbally by 

incremental propagation of successive results requires the application of the fives rules 

concerning how the quality and quantity of the premises relates to certain types of 

conclusion, as given in section 2 above.  Alternately, there are four rules for sorites, akin to 

these five rules for standard syllogisms, that address what number and types of proposition 

may occur for conclusions of certain quality and quantity properties:  

Sor1. If a conclusion is negative, then one and only one of the premises must be 

negative.   

Sor2. If the conclusion is affirmative, all of the propositions must be affirmative.  

Sor3. If the conclusion is universal, all of the premises must be universal. 

Sor4. A particular conclusion calls for not more than one particular premise. 

 Note that the notion of distribution used in quality rules for standard syllogisms is no 

longer invoked in these sorite rules.  Although these rules are presented in various texts on 
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syllogistic logic, the author is yet to find a source that includes a simple compelling 

explanation of why they hold.  

5.2.  Euler and Linear Diagrams  

Euler and Linear diagrams can readily represent sorites consisting only of a series of 

universal affirmative (A) propositions, because their use of spatial-overlap admits just one 

interpretation as each circle or line segment is successively introduced in a simple nested 

fashion.  For example, in Fig 1.2.A, imagine a circle for a new S term within the circle for R, 

and so forth.  However, Fig 3 and 4 show how multiple versions of the result diagrams had to 

be drawn for 2 premise syllogisms, so propagating result diagrams through the series of 

propositions in sorites may proliferate the number of diagrams with each successive step.  It 

should also be noted Lemon & Pratt [15] showed that logically consistent Linear diagrams 

cannot be drawn in certain cases with larger numbers of sets, although these are not 

straightforward syllogistic situations.    

5.3.  Venn Diagrams 

To model sorites with N premises in Venn diagrams one must construct a diagram with N 

closed curves that shows all of the 2N zones required for all of the distinct subsets.  Venn 

drew diagrams with four sets using ellipses in a format with one degree of reflective 

symmetry [22].  Venn diagrams for five sets may be drawn using ellipses with rotational 

symmetry but not reflective symmetry.  Six or more sets require convex curves but schemes 

for their systematic construction exists, e.g. [7].  To evaluate a sorite the shading and x 

placement rules used for standard syllogisms are again applied.  To illustrate the complexity 

of constructing and interpreting sorites with Venn diagrams, Fig 7 shows a five set diagram 

drawn using the approach in [7], where R is the central circle, S is the dumbbell, and T the 

cross.  The hatching corresponds to the sorite: All P are Q (downward sloping), No Q are R 

(upward sloping), All R are T (horizontal), All S are T (vertical) ⇒"No P are S.  With the 

larger number of contours applying the rules becomes substantially more difficult for various 

reasons.  First, the proliferation of overlapping regions requires greater cognitive effort to 

ensure the shading and x placement are done correctly, simply because the greater number of 

elements more heavily loads both the perceptual and working memory components of our 

cognitive system.  For instance, one might think that simply shading rather than hatching the 

empty sets in Fig 7 would be a good strategy, but this makes difficult double-checking that 

the correct regions have been correctly filled for particular premises.  (Double-checking is 
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necessary as human error is more likely when cognitive load is high).  Second, regions for the 

same subset may not be contiguous; for example, the zones that constitute region R∩¬T 

(horizontal hatching) in Fig 7 are not adjacent.  This is true even in the Venn diagrams for 

just four sets.  Third, having zones delimited by concave as well as convex curves makes 

finding sets, or interpreting set relations encoded by zones, more difficult than with Venn 

diagrams consisting uniformly of ellipses.  Although, finding the zone in Fig 7 for 

P∩Q∩¬R∩T∩S that makes the inference invalid is not too hard (it should be shaded but is 

not), in general such inferences could more difficult if we do not have the good foresight to 

initially label the contours so that critical zones fall in the least convoluted par0st of the 

diagram. 

———— Fig 7 about here ———— 

5.4.  CPD 

Fig 8.1-8.4 shows examples of CPDs for sorites with three propositions. As before, the result 

diagram is simply a linear concatenation of the binary CPD for each premise, with the shared 

terms connecting successive diagrams.  The adjoined premises are to the left in each figure 

and the conclusion is to the right.  Valid sorites are shown for the four standard binary 

relations as the conclusions.  

 To evaluate the validity of a sorite requires two straightforward generalizations of the 

method for standard syllogisms.  For two premise syllogism we considered the two paths 

running between the matching nodes of the predicate and subject terms in the result diagram.  

For a sorite we similarly consider all paths among the terms between the fixed ends of the 

matching start and end terms in a result diagram.  In Fig 8.1-8.4 the start and end nodes of 

these paths, which are matched to some- or none-connectors in the conclusions, are indicated 

by i and ii labels.  For example, the conclusion’s top none-connector of Fig 8.1 has paths in 

the result CPD beginning at P (i) and ending at S (ii), so the four the paths are: 

    ‘– – –’,   ‘\ / –’,   ‘\ _ /’,   ‘– \ /’.   

In the way that paths between a particular assignments of P and S are considered for both 

values M and ¬M in syllogisms, in sorites all the paths between a particular assignment of P 

and S are considered for all combinations of values of middle terms; i.e., in Fig 8.1, these are 

Q∩R, ¬Q∩R, ¬Q∩¬R and Q∩¬R.   

 The second generalization is to the CPD inference rules given above.   
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Rule-none’.  For a none-connector in the conclusion-CPD, each matching path in the 

result-CPD must have at least one none-connector and otherwise include only no-

info-connectors. 

Rule-some’.  For a some-connector in the conclusion: (1) one matching path in the result 

CPD must consist of a some-connector and otherwise no-info-connectors; (2) the 

other matching paths must consist only of no-info-connectors; (3) all the other 

non-matching paths that run through the some-connector must include at least one 

none-connector.   

Rule-no-info’.  For a no-info-connector in the conclusion either (a) all the matching paths 

must consist only of no-info-connectors or (b) at least one path consists of just no-

info-connectors and the other paths must include a none-connector (along with 

any other type of connector). 

 The generalization of the rules merely extends them to address multiple paths, by the 

use of plurals and quantifications such as ‘at least one’, but the underlying logic remains the 

same.  To test the validity of a sorite with a given type of connector in the conclusion, we 

check that the paths obey the appropriate rules for that type of connector.  For example, 

merely by inspection, each of the four paths in Fig 8.1, identified above, contain one or more 

none-connectors and otherwise no-info-connectors; so Rule-none’ apples.  In Fig 8.2, all four 

paths must contain a none-connector, but as the start is on the top row of the result CPD (at i) 

and the terminus is on the bottom (ii), and as all the descending diagonals are none-

connecters, all the paths must pass through (at least) one of these none-connectors.  Figs 8.3 

and 8.4 have some-connectors in the conclusion, so by Rule-some’, we consider the matching 

and non-matching paths.  In both figures, by inspection, one path between the matching 

nodes (i and ii) consists of a some-connector and no-info-connectors, and all the other 

matching paths are comprised just of no-info-connectors.  In both figures, all the non-

matching paths that run through the some connector include at least one none-connector.   

 The validity of a sorite may also be evaluated by adopting the procedure, mentioned 

above, of incrementally testing the validity of pairs of successive propositions and 

propagating the conclusion CPD through successive propositions.  For example, the sorite 

Sy2 is shown in Fig 8.5.  To test its validity Rule-none is applied twice, first to C-D-E to give 

a valid conclusion with a descending none-connector, and then to CD-E-P, which yields a 

valid conclusion with a top none-connector.  Then Rule-no-info(b) is applied to CDE-P-S to 

gives a top no-info-connector, but this contradicts the none-connector of the conclusion, so 
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Sy2 is invalid.  Further, with CPDs this process need not begin with the first and second 

premises but may be applied to any adjacent pair of binary CPDs.  However, on first seeing 

Fig 8.5, the sorite may be immediately judged as invalid, because Rule-none cannot be 

applied because a some-connector occurs on some of the matching paths.  

 That completes the presentation of how each of the five notations may be used to 

model sorites, and like the standard syllogisms, differences have been observed among the 

notations, which provide our basis for examining the impact that different representational 

schemes have on the semantic transparency of the notations.  

6. Discussion 
The main purpose of this section is to compare the five notational systems in terms of their 

relative semantic transparencies.   

6.1 REEP design of CPDs 

As Categorical Pattern Diagrams have been introduced as a new representational system, let 

us consider initially how they were originally created before making comparisons among all 

the notations.  The creation of CPDs was guided by the design principles of the 

Representational Epistemic approach ([1]-[3], [5]), which in short aim to give semantic 

transparency by suggesting that one: (a) identifies the inherent conceptual structure of the 

target topic – the groups of concepts (laws, invariants and properties) that permeate the whole 

topic; (b) devise distinct representational schemes to encode each set of concepts in a manner 

that makes the group of concepts transparent and that distinguishes variants of the concepts 

within the group; (c) combine the representational schemes into an overarching framework 

that establishes connections among the schemes that mirrors the overarching relations that 

exist among the groups of concepts.  So, in the design of CPDs, the key insights were:  

(a) Recognizing three core groups of concepts: (i) set membership status; (ii) orders of 

terms within premises and orders of premises within syllogisms; (iii) relations between 

sets. 

(b) Representing those groups of concepts using distinct representational schemes: (i) 

spatial location (high and low nodes); (ii) horizontal orientation and linear 

concatenation of binary CPDs; (iii) the styles of connectors (some-, none-, no-info-

connectors). 

(c) Integrating these formats within an overarching interpretive framework that reflects the 

relations among these groups of concepts: (i & ii) the hierarchical structure of subsets 
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embedded within relations among premises is encoded by joining binary CPDs and 

interpreting paths between the first and last terms as subsets; (i & iii) the positioning of 

line segments and the allocation of styles to those line segments encodes the assignment 

of membership status to relations among subsets.   

The relative simplicity of the design of CPDs is due to the systematic matching of concepts to 

representational schemes at multiple levels.  It is contended that the apparent benefits of 

CPDs arise from the semantic transparency achieved by encoding the knowledge of the 

domain in the coherent representational system.  

6.2 Encoding core concepts 

In previous REEP studies cognitive task analyses and empirical studies have been used to 

compare novel representational systems with conventional notations, e,g., [1] and [2].  

Although those methods are particularly rigorous and objective forms of investigation, they 

are beyond the scope of this paper.  Rather, the comparisons here will focus upon individual 

core concepts in the hope that treating each concept in relative isolation will reduce the 

opportunity for subjectivity to arise.  Nevertheless, for a fair basis of comparison it is 

important that the reader assumes that the users’ of notations have equal experience in them 

all: in other words one should attempt, as far as it is feasible, not to allow personal expertise 

in particular notations be a source of bias.   

 There are, of course, many ways in which the notion of efficacy may be interpreted, 

but here it will be taken to mean how readily accessible concepts are from expressions of the 

notations.  To do this we may rely upon the well-established finding in cognitive science that 

accessing a piece of information by a perceptual inference is often less demanding than 

executing a sequence for mental inferences to arrive at the same information (e.g., [13], [23]).  

It is already well known that verbal forms of syllogisms are difficult and humans may 

translate verbal propositions into internal diagram-like mental representations [12].  Thus, the 

five notations will be compared in terms of whether there are specific configurations of 

graphical elements that directly encode particular core concepts and so enable the use of 

perceptual inferences to readily access those concepts.  

 Representation of sets.  All the notations have explicit representations for the given 

sets: in the case of Euler and Venn Diagrams this is in the form of labelled circles; in Linear 

diagrams it is labelled line segments; and, verbal proposition and CPDs have standalone 

words or letters.  One benefit of diagrammatic notations over sentential notations is that 

locational indexing may be used to avoid the need to match symbols across parts of an 
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expression [13].  Venn diagrams and CPDs have this characteristic, because their result 

diagrams always have just one token for each given set.  As the verbal propositions always 

includes multiple tokens for the same term, and as Euler and Linear diagrams sometimes 

have duplicates of tokens (e.g., Fig 3.1.Res, Fig 3.2.Res), this means they are to varying 

degrees at a disadvantage in term of the ease of access to information about sets.    

 Relations among sets or subsets.  It necessary to reason about subsets when thinking 

about syllogisms, for example when justifying inference rules.  Obviously, in the verbal 

notation, subsets may simply be written as required, either in words or as formulas, e.g., 

‘¬R∩T’.  However, verbal premises do not explicitly identify the target subset(s) about which 

information is definitely known.  For instance, ‘All R are T’ refers to R and T but it is 

necessary to infer that the critical subset here is ‘¬R∩T’.  Similarly, premise diagrams in 

Euler and Linear notations (Fig 1.2 & 1.4) do not explicitly identify such target subsets.  The 

proliferation of multiple result diagrams for some syllogisms (e.g., Figs 3 and 4, lines 1 and 

4) may be viewed as a consequence of this: it is necessary to draw them in order (explicitly) 

to cover all of the alternative relevant subsets.  In contrast, all the subsets are present in a 

Venn diagram, by definition, with the pattern of three interesting circles for standard 

syllogisms providing a memorable, and easy to draw, framework for the shading and cross 

placement rules.  However, the ready access to specific subsets is more problematic for larger 

numbers of given sets.  As noted above, Venn diagrams for more than three sets are more 

difficult to draw and identifying specific zones is not a simple perceptual operation.  Paths 

represent subsets in CPDs and may be identified perceptually in a result diagram for a small 

number of given sets.  Further, for CPDs with many sets it may be easier to identify target 

paths than to find an equivalent zone in a Venn diagram, for at least three reasons.  First, the 

overall linear structure of a CPD result diagram is invariant with the number of sets, but as 

the graphical structure of Venn diagrams varies an additional cognitive load is imposed by 

the need to re-orientate oneself with respect to each Venn diagram, unless one chooses to 

adopt a standard construction (as in [7]), but at the disadvantage of abandoning the familiar 

canonical patterns for three and four sets.  Second, the visual complexity of CPDs increases 

linearly with the number of premises, whereas the visual complexity of Venn diagrams not 

only increases more rapidly but it also involves some loss of useful symmetries.  Finally, the 

position of the ends of a connector, at a high or low node, immediately gives the subset’s 

relation to that given set; whereas to establish the same information for a zone in a Venn 

diagram requires tracing out the whole closed curve for the given set in order to judge 
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whether the zone is within it or not, which may be complicated by any local convexities of 

the curve.   

 The comparison of how CPDs and the other diagrammatic notations represent subsets 

highlights an interesting issue: whether a notation should make explicit all potentially 

pertinent information (subsets) or to leave as implicit, or omit information, that is not 

immediately relevant to making inferences?  On the one hand, making all potentially relevant 

information explicit may result in expressions that are cumbersome and unnecessarily 

complex, such as Venn Diagrams of four or more sets; this is contrary to the commonly 

accepted graphical design recommendations to avoid visual clutter.  On the other hand, on 

occasions when implicit information is required, mental operations are necessary to recover 

the information, which increases cognitive demands and may require particular inferences 

specific to individual cases, as with the Euler and Linear diagrams, and the verbal notation.  

The representational scheme in CPDs provides a means to break this dichotomy by 

simultaneously presenting all of the subsets as different combinations of connectors, from 

which the user may choose particular paths just when needed by selectively directing their 

attention to those paths.  Thus, the user is faced with less visual complexity but ready 

perceptual access to the required information is nevertheless feasible.  This property has been 

found in other representations designed using the REEP approach and appears to contribute 

to their efficacy (e.g., [1], [2]).  

 Membership status of subsets.  As verbal premises, Euler diagrams and Linear 

diagrams do not explicitly represent target subsets, so they cannot directly represent the 

membership status of such subsets.  If such information is required, then it must be mentally 

inferred.  To represent subset membership, graphical features are used in both Venn diagrams 

(shading and x) and CPDs (style of connectors).  They differ, however, with the explicit 

representation in CPDs of subsets with no known information.  There are two seeming 

benefits that arise from this.  First, it permits inference rules, such as Rule-no-info-(a/b) to 

refer positively to the concrete presence of something, rather than negatively to the absence 

of things, which is cognitively more demanding [13].  Second, when drawing a result 

diagram, it forces the user to consider all possible connectors in each binary CPD, and thus 

reduces the chance of errors by omission, because a missing connector means a subset has 

definitely not been considered.  In contrast, when working with a Venn diagram, it is not 

possible tell at a glance whether an empty zone is genuinely empty or whether it has merely 
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been neglected, which is a particular problem for complex Venn diagrams with disjoint 

regions (see Fig 7, above).  

 Quality and quantity of propositions.  Specific vocabulary clearly indicates the quality 

and quantity properties of the verbal propositions.  However, the other notations have 

particular issues of their own (Fig 1).  Euler and Linear diagrams are superior in their more 

intuitive representation of the propositions than Venn diagrams and CPDs, because the latter 

pair use empty subsets or existing members to, respectively, encode the positive A type 

propositions and the negative O propositions (compare Figs 1.2.A/O and 1.4.A/O with Figs 

1.3.A/O and 1.5.A/O).  However, the graphical structure of Euler diagrams is potentially 

misleading in its representation of I and O propositions, even though the diagrams appear 

naturally to encode the verbal statements.  I propositions are logically symmetrical (the order 

of the terms may be reversed) but its Euler diagram is asymmetric (Fig 1.2.I), and the O 

proposition is not symmetric but the Euler diagram is symmetric (Fig 1.2.O).  Linear 

diagrams, Venn diagrams and CPDs are better, because their visual form more accurately 

encodes the underlying symmetry, or not, of the propositions.  All four diagrammatic 

notations appear equivalent in their consistent use of representational schemes for the 

quantity property.   

 Fundamental relations of, and among, premises.  Syllogisms and sorites constitute a 

knowledge domain with substantial conceptual constraints, by definition.  The four 

conventional notations do not fully exploit these constraints, but the design of CPDs 

specifically attempts to encode them, as suggested by the principles of the REEP design.  One 

concerns the role of the middle term in syllogisms, which is special because it occurs in both 

premises and acts as conceptual fulcrum.  It is always drawn in the middle in a CPD result 

diagram for syllogisms and thereby allows the natural symmetries in the structure of 

individual result diagrams, and between different result diagrams, to be manifest as 

symmetrical configurations amenable to being recognised perceptually.  Further, the 

configurations of paths in the inference rules deliberately address alternative values of the 

middle term.  Similarly, CPD result diagrams for sorites are also arranged with the predicate 

and subject terms to the far left and far right of the result CPD.  The drawings of Venn 

diagrams in Figs 2-4 also place the middle term in the centre, so this notation shares this 

particular benefit with respect to standard syllogisms, but it disappears with sorites because 

of the lack of reflective symmetry in Venn diagram for more than four sets.  The middle term 

is used as a co-referent in the composition of result diagrams in the Euler and Linear systems, 
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but its central role is not as obvious.  Another source of structural constraints that CPDs most 

fully exploit is the fact that each proposition has just a single subset about which definitive 

information is known.  This fact is made apparent by the shading or placement of the x in just 

one subset in binary Venn diagrams, Fig 1.3.  It is encoded in CPDs by the occurrence of just 

one none- or one some-connector in each binary CPD.  Yet a further constraint is that no 

information is provided about the conjunction of the non-membership of both sets (e.g., 

¬R∩¬T), which CPDs encode by always having a no-info-connector on the bottom.  In Venn 

diagrams the zone outside all of the curves is empty.   

 The thoroughgoing exploitation of these three constraints together in CPDs has four 

major consequences.  First, it provides an invariant underlying graphical structure to all 

CPDs, so that the spatial location of graphical objects is always associated with a particular 

meaning, which facilitates perceptual access.  Second, in turn, this means the inference 

procedure does not vary with the particular type of syllogism being considered, in contrast to 

the other diagrammatic notations; in Fig 2 to Fig 4, compare the variability of the diagrams 

for Euler, Linear and Venn diagrams against the CPDs.  Third, the fixed arrangement of 

connectors provides a common and consistent basis for examining whether configurations of 

paths satisfy the conditions of the rules.  Fourth, the constraints define a small number of 

rules and allow illegal patterns (Fig. 6.5-8) to fully cover all possible patterns of connectors 

in CPD result diagrams.  Further, ill-formed CPD result diagrams are readily spotted, because 

each premise CPD must contain exactly one some- or none-connector, but not at the bottom.   

 In summary, for most of the core concepts individually, CPDs appear to provide 

perceptual encodings that are as effective as any of the other notations, but more importantly 

it does so for the majority of these concepts.  In the next subsection we consider how these 

encodings impacts different forms of semantic transparency.   

6.3.  Semantic transparency 

As noted in the introduction, the REEP approach claims that an effective notation will have 

various forms of sematic transparency; three of which are the ability: (a) to integrate concepts 

at different levels of abstraction in the knowledge domain; (b) to integrate concepts across the 

different perspectives, or ontologies, that may be used to describe the domain; (c) to integrate 

concepts at different scales of granularity within the domain.  By integration we mean that 

the different concepts in each ability can effectively support each other’s interpretation by 

providing mutual contexts for comprehension.  Building upon the comparisons of how the 



 25 

notations encode the core concepts, these three aspects of semantic transparency will be 

considered in turn.   

6.3.1.  Levels of abstraction 

Levels of abstraction in this domain include, at the specific, concrete, end of the spectrum 

particular examples of syllogisms and at the other abstract end there are general concepts that 

speak of relations among classes of propositions or syllogisms.  The verbal notation does not 

integrate these levels of abstraction well, because there is little to connect specific syllogisms 

and higher order terms, other than by making a series of verbal mental inferences.  Thus, 

there is a conceptual gulf between ideas in the verbal quantity and quality validity rules and 

the details of specific examples of syllogisms.  For example, the mere reading of a syllogism 

does not tell us whether a particular term is distributed.  Venn diagrams go someway to 

integrating the level of abstraction by providing the uniform framework of subsets upon 

which to apply the shading and x placement rules.  The three intersecting circles provide a 

basis to understand ideas such as why the shading operation has priority over the placement 

of an x: an empty region implies that all its contained zones are empty, so no x may be drawn 

in any of those zones.  However, as noted above, this neat visual framework disappears with 

sorites.  Euler and Linear diagrams fall somewhere between Venn diagrams and verbal 

propositions with to respect their integration of levels of abstraction, because they provide 

some common graphical structures on which to hang certain concepts.  However, as their 

diagrams omit all but the given relation information, any extra conceptual content that could 

be useful to span the levels of abstraction is absent, so must be filled in by mental inferences.   

 CPDs may integrate levels of abstraction well, because the structure of CPDs attempts 

to directly encode the inherent conceptual structure of the domain, as described above, and 

because the configurations in the definition of inference rules map directly to patterns in the 

result diagrams.  These configurations and patterns constitute a bridge between the levels.  

Thus, for example, when reasoning about why an inference rule for syllogisms may be 

generalised to sorites, in section 5.4, just a simple switch of attention is needed to move 

between examining the shape and content of paths in the rules and the concrete details of the 

constituent premises within a result CPD.   

6.3.2.  Granularity scales 

Levels of granularity of concepts in this domain range from values of terms, to terms 

themselves, propositions relating pairs of terms, sets of premises, standard syllogisms, and on 
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to sorites, which may be interpreted as a succession of standard syllogisms.  Information 

about many of these levels is absent from the verbal statement of syllogisms; so in order to 

reason about the missing levels details must be inferred mentally.  Hence, this notation does 

not integrate granularity scales well.  The result diagrams in the Venn system are produced 

fairly directly by composing the premise diagrams: in Figs 2-4, line 3, the premise diagrams 

are apparent within the result diagrams.  Thus, finer grain details are readily accessible and so 

Venn diagrams do a good job of integrating in this respect.  Linear diagrams also compose 

their premises, but as much contextual information is absent, obviously that information is 

not easily available, so this notation does poorly at integrating granularity levels.  Although 

some Euler diagrams do preserve the structure of the premises in the result diagram (e.g., Fig 

2.1.Res), in other cases it does not (e.g., Figs 3 & 4.1Res).  Thus, in general Euler diagrams 

do not integrate concepts well in this aspect of semantic transparency. 

 For similar reason to why CPDs successfully integrate level of abstraction, they also 

integrate levels of granularity.  Again, switching level of granularity merely requires shifts of 

one’s focus of attention.  Unlike Venn diagram composition, the composition of CPD result 

diagrams at most involves the reflection of premises, so all the information at all levels in the 

binary CPD premises is preserved and thus immediately accessible when whole syllogisms or 

sorites are considered.  For example, because CPDs clearly show that E and I propositions are 

symmetric, whereas the A and O are not, this provides an explanation of why 14 of the 15 

valid syllogisms are variations of Figures on the same pairs of premises.  Further, this degree 

of integration is in part why during the incremental approach to assessing the validity of a 

sorite, by testing successive contained syllogisms, it is easy to identify the pair of adjacent 

CPD premises that have the most impact on the sorite’s validity.  Perhaps the most prominent 

demonstration that CPDs are well integrated in this respect is seen in the simple 

generalization of the syllogism validity rules to sorites, whereas under the verbal notation 

quite a different set of validity rules are required (e.g., the notion of distribution does not 

occur in both sets of inference rules).   

6.3.3.  Integration of perspectives.   

One example of alternative perspectives revolves around the complementary notions of 

validity and invalidity.  Aspects of this idea would be well integrated by a notation if the 

reasons about why a valid syllogism is valid could clearly be couched in terms of why it is 

not invalid, in addition to why an invalid syllogism is so because it is not valid.  For the sake 

of a deeper comprehension of the domain the consideration of both perspectives is 
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worthwhile.  For example, as just 15 of the 256 syllogisms are valid, showing that valid 

inference rules do not apply does not directly increase our understanding of the general 

nature of syllogisms.  Although it should be feasible to present the alternative perspective, 

typical presentations of validity rules in the conventional notations adopt the invalid is not-

valid perspective.  The inclusion of the set of illegal patterns, Fig 6.5-8, is a natural 

complement to the valid rules of inference, which allows CPDs to be used in the direct 

examination of why many of syllogisms are invalid, for reason other than to failure of rules 

that test for validity.   

6.3.4.  Summary, scope and limitations 

The conventional notations do in some respects have some of the desirable aspects of 

semantic transparency, but it is only the CPD system that largely satisfies them all.  As a final 

indication of the greater semantic transparency of CPDs, they provide a means to illustrate 

the verbal rules for testing the validity of sorites stated above, Sor1-Sor4.  Together Fig 8.1 

and 8.3 encompass Sor1: if a conclusion is negative, then one and only one of the premises 

must be negative (i.e, there is one E premise in Fig 8.1 and one O premise in Fig 8.2).  Fig 

8.2 and 8.4 encompass Sor 2: if the conclusion is affirmative, all of the propositions must be 

affirmative (i.e., both Figs 8.1 and 8.2 contain just A or I premises).  Fig 8.1 and 8.2 

encompass Sor 3: if the conclusion is universal, all of the premises must be universal (i.e, all 

premises are A or I).  Fig 8.3 and 8.4 encompass Sor4: a particular conclusion calls for not 

more than one particular premise (i.e, there is just one O or one I premise).  Under the CPD 

approach, Fig 8 neatly reveals how the four verbal rules interact in rows and columns of the 

figures to yield valid sorites for the four types of conclusions.  If the verbal rules are broken, 

one can quickly see why in terms of broken CPD rules.   

 It should be noted that the scope of these claims are limited in two major respects.  

First, the comparisons pertain to the particular representational schemes in the original 

systems of Euler [9], Venn [22] and Linear diagrams [8].  The claims will need to be re-

evaluated when considering more recent variants of former two (e.g., [17]), because many of 

these have attempted to adapt or even combine representational features across the notations 

in order to improve the utility of the basic notation.  It is beyond the scope of this paper to 

consider the full range of existing notations in which syllogism may be expressed, but it is 

nevertheless interesting that substantial differences were found in the ability of the notations 

to provide perceptual access to the full range of concepts needed for understanding the target 
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domain, and that these differences exist even between notations whose primary 

representational schemes are based on degree of spatial containment.  

 Second, the claims about the relative efficacy of the notations are made only with 

respect to reasoning and understanding classical syllogisms and sorites.  All the notations 

presented here can express propositions and support inferences beyond the limited set 

required of this domain.  Considering how other relations may be encoded in the systems are 

beyond the scope of this paper, but nevertheless substantive differences were found among 

the systems in this relatively meagre domain, from which one might draw two implications.  

First, it is interesting that such variations in the support provided for perceptual access to the 

concepts of the domain were found, even through the domain was seemingly relatively 

impoverished, so major differences in semantic transparency may occur even in alternative 

notations for topics that one might consider to be relatively simple conceptually.  Second, 

even though this topic is relatively straightforward in logic terms – it is after all an 

introductory topic for many students – it does have conceptual depth and richness that is 

challenging to comprehend.  How this contributes to what has been learned about the 

Representational Epistemic approach, more generally, is taken up in the next section. 

6.4.  Representational epistemic implications 

The comparison of the five notations has shown how their different representational schemes 

impacts their efficacy of encoding the core concepts of the domain and also with respect to 

three aspects of semantic transparency.  In terms of the overall effectiveness of the encoding 

of the knowledge of the domain of syllogisms and sorites, it appears that CPDs may have a 

general advantage over the other conventional notations, because most of the core concepts 

of the domain are encoded as relatively straightforward diagrammatic configurations that are 

readily accessible through perceptual inferences.  The sentential encoding of concepts in the 

verbal notation means that many concepts require series of mental inferences to access.  The 

conventional diagrammatic notations fair better, but they do not provide perceptual access to 

all core ideas as easily as CPDs.  

 As the development of the CPDs was guided by the REEP approach, it is apparent 

that their overall efficacy at encoding domain concepts lends some further support to the 

general claims of the REEP approach and to the utility of its design principles.  In previous 

studies of novel representations designed under the REEP approach it was found that 

notations with semantic transparency were also effective in computational cognitive terms, or 

easier to use (e.g., [1, 2, 5]).  It is an empirical question as to whether CPDs will be the most 



 29 

efficacious of the five notational systems for people to reason and to learn about syllogism 

and sorites, but on the basis of the detailed comparison here of the nature of the various 

codifications of the domain, it is predicted the CPDs should be particularly effective.  

Nevertheless, it should be noted this conclusion is based on the comparison of CPDs with 

particular variants of Venn and Euler diagrams.  Other variants of these notations exist, 

which may address the limitations of the original notational systems chosen for this study.   

 A particular point that should be made about the REEP analysis presented here is that 

it attempts to take in to account the full richness of the network of concepts on multiple levels 

that comprises the knowledge domain.  Under the REEP approach, the question of what 

constitutes an effective encoding of a domain goes beyond considerations of how the obvious 

domain objects and their relations are represented by graphical elements and their relations.  

Rather the question extends to higher order concepts, supplementary notations and the myriad 

relations among them, and then considers how they may be encoded in multiple interrelated 

representational schemes.  A key insight of the REEP approach is that a knowledge domain 

may involve fundamental conceptual structures that often remain implicit, because they so 

thoroughly permeate all the ideas of a domain, but it is the elicitation of those hidden core 

structures that can most effectively be used as critical sources of constraints in the design of a 

notational system.  

 The comparison also shows that some interesting and even substantial differences 

between notations can arise even though they are diagrammatic, and more strikingly, even 

though they use the same overall means to encode domain information.  The Venn, Euler and 

Linear diagrams all use the degree of containment of graphical elements, or relations among 

them, to represent the same domain, but their efficacy at encoding of the core concepts is 

certainly varied.  An intriguing open question is whether it is possible to apply the insight 

from the design of CPDs to modify one of the conventional notations to give a superior 

notation that better encodes the fundamental conceptual structures of the domain but that also 

exploits their more intuitive use of space to represent sets.  The wealth of recent variations on 

the themes of Venn and Euler diagrams provides a potentially fruitful place to begin, e.g. 

[17].   
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Fig 1.  The four types of syllogism premises in the five notations. 
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Fig 2.  EAE-1/2 syllogism in the four diagrammatic notations. 
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Fig 3.  EIO-1/2/3/4 syllogism in the four diagrammatic notations. 
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Fig 4.  III syllogism in the four diagrammatic notations. 
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Fig 5.  Structure of Category Pattern Diagrams 
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Fig 6. Illustrations of CPD rules for valid inferences (1-4) and illegal patterns (5-8).  
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Fig 7.  A five set Venn diagram representing a sorite. 
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Fig 8.  Five CPD sorites  
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