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Abstract. Acognitive theory of the interpretive structure of visual representations
(RIST ) was proposed by Cheng (2020), which identified four classes of schemas
that specify how domain concepts are encoded by graphical objects. A notation
(RISN) for building RIST models as networks of these schemas was also intro-
duced. This paper introduces common RIST/RISN network structures – idioms
– that occur across varied representations. A small-scale experiment is presented
in which three participants successfully modelled their own interpretation of three
diverse representations using RIST/RISN and idioms.
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1 Introduction

To advance the study of Diagrams, and visual representations in general, the field
requires a comprehensive cognitive account of how readers of representations interpret
representations. Such a theory is needed for multiple reasons.

(A) Although it is tempting to assume, say, for the sake of theoretical analysis, that
a representation has one ‘correct’ reading, this mask the full diversity of the readers’
interpretations. It is unlikely that two readers of a given representationwill naturally con-
struct identical interpretations. So, some approach to systemically describe those varied
interpretations could be valuable; for example, the mastery of visual representations is
critical in STEM subjects, so there is pedagogic utility in being able to characterise what
differs between novice and competent readers of a target representation.

(B) The particular content of any given topic can be encoded in quite distinct rep-
resentations, with dramatic differential impacts on problem solving and learning across
those representations (e.g., [3, 10, 22]). Thus, an approach to estimating the relative
cognitive benefits of alternative interpretations of representations could be useful. For
instance, such measures could be deployed in the development of automated systems to
select effective representations tailored to individuals and classes of problems (e.g., [8,
20]).
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(C) Related to the previous point, but more fundamental, is the issue of how even to
compare representations with substantially different formats that encode the same infor-
mational content. Conventionally, comparison of alternative representations involves
laborious task analyses (e.g., [2, 3]) or cognitive modelling (e.g., [10, 11]), or empirical
studies (e.g., [2, 3, 22]). Instead, an approach at an intermediate level of abstraction could
obviate the toil of ultra-fine-grained analyses and costly experiments. The approach will
require the formulation of generic, format-independent, theoretical constructs that are
applicable to all representations. Such constructs could serve as “natural” explanatory
entities for interpretations. For these reasons, a cognitive theory of the structure of
interpretations of representations is a worthy goal.

A contrast with linguistics is instructive. Linguistics has produced accounts of the
interpretation of natural language which specify cognitive structures and processes of
meaning extraction from verbal representations (e.g., [9, 16]). Many accounts of the
nature of diagrams address structure (e.g., [10, 17, 18, 21, 22]) but comparatively less
attention has been paid to how individuals interpret or comprehend diagrams ([11, 12]).

Our purpose here is to take the next step towards a general cognitive theory of the
interpretation of representations, by testing the “sketch” of the theory developed by
Cheng [4], which we will call Representational Interpretative Structure Theory (RIST).
The RIST sketch proposed that the human interpretation of representations deploys
four elementary types of mental schemas. Critically, the schemas coordinate informa-
tion about concepts from a target topic with information about how those concepts are
encoded in the graphical components of the representations. To operationalise RIST,
Cheng [4] also outlined a graphical notation for constructing models of interpretations
under RIST, which we will call RISN (RIS Notation). RIST and RISN1 are described in
Sect. 2 of this paper.

In Sect. 2 we introduce RIST and RISN, and take the opportunity to increase the
precision of the definition of RIST’s components and to more tightly specify how RISN
captures particular interpretive constructs. In Sect. 3, we introduce and describe pat-
terns of elementary schemas – idioms – that commonly occur in interpretations, which
we discovered in RIST/RISN networks across diverse representations. Idioms have the
potential to meet the requirement that RIST identifies “design patterns” as standard
interpretive structures for constructing RISN models [4]. As noted above (reason A),
different readers of a given representation will naturally construct alternative interpreta-
tions of that representation, so the requirement that RIST accounts for, and for RISN to
model, alternative interpretations is investigated in a small-scale experiment in Sect. 4.
Drawing these advances together, in Sect. 5, we will briefly consider how RIST and
RISN may yield estimates of the cognitive cost of making alternative interpretations of
a representation (reason B), and how RIST and RISN may provide a neutral approach
to the cognitive analysis of representations that is independent of the particular format
of representations (reason C).

1 Pronounced like “wrist” (/ ôIst/) and “risen” (/ ôIz�n/), respectively.
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Fig. 1. William Playfair’s line graph, in Commercial and Political Atlas, 1786.

2 Representation Interpretation Theory/Notation – RIST/RISN

To introduce RIST and RISN [4], we adopt a running example of the analysis of the
interpretation of a famous diagram – Playfair’s line graph, Fig. 1. Following Cheng’s [4]
analysis guidelines, Fig. 2 annotates the important graphical components of Playfair’s
line graph, and Fig. 3 is a RISN model of the graph2.

2.1 Four Schemas

RIST hypothesises that four schemas underpin our ability to interpret representations3.
The fundamental purpose of these schemas is to tightly coordinate concepts from the
target topic with the graphic objects in the representation that stand for those concepts.
Networks of these schemas encode the rich hierarchical structure of the encoding rela-
tions that constitutes an interpretation of a representation. RISN is a system formodelling
such networks; Fig. 3 is an example. At the highest level is the Representation schema,
capturing an entire representation. R-Scheme schemas capture intermediate level sub-
structures. R-Dimension schemas deal with varying quantities; they describe R-symbol
domains. TheR-symbol schema identifies the ‘unitary’ concepts of the target topic. Their
depiction inRISNmodels is shown inFig. 4 and examples are scattered throughout Fig. 3.
Let us consider them in turn, in reverse order.

2 Figure 3 was drawn in a web browser tool, RIS Editor (RISE), that was specifically developed
for creating RISN models. The tool will be presented in a paper to follow.

3 A schema is a mental knowledge representation for a category defined by a set of attributes
(slots) for which a particular instance of a concept is assigned values (fillers); e.g., [16].
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Fig. 2. Playfair’s line graph as annotated for modelling (by R1).

Fig. 3. Model of the interpretation of Playfair’s line graph (by R1). Colour shadings are for
reference and not part of the model (Color figure online).

R-symbols 4.R-symbols are the ‘fixed’ elements of a representation. Their role is to code
the association of concept with the graphic object representing it. In RISN, R-symbols
are rounded rectangles, with labels identifying the concept and graphical object (Fig. 4d).
In Fig. 2, the overlaid annotations with labels beginning with a “T’ are instances of R-
symbols, and these labels are written in the slots of the corresponding R-symbol icons
in Fig. 3. The graphic object may also be described (e.g., altitude). For textual graphic

4 R-symbol supersedes Token used in [4] for reasons of notational and theoretical consistency.
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objects, the text in quotes may be written in the R-symbol icons (e.g., “1770” in Fig. 3).
Critically, through the structure of its R-symbol schema, RIST asserts the distinction
between what is being represented, the concept, and what is it is being represented by,
the graphical object: they should not be conflated. For example, in Playfair’s line graph
the graphic object “80” on the y-axis, labelled T2.2 represents the concept ‘£80,000’.

Fig. 4. The four schemas as icons: (a) Representation; (b) R-Scheme; (c) R-Dimensions (S =
quantity scale alignment); (d) R-symbol; (e) class R-symbol.

R-Dimensions. This schema encodes concepts about attributes, features or dimensions
of the topic that are variable in that theymay be assigned alternative values. R-dimension
concepts are more general than those encoded by R-symbols. These concepts concern
the variability of some feature or attribute of the topic. In the schema for R-dimensions,
RIST simultaneously distinguishes the concept of variable quantities from its graphic
object whilst also declaring their association. R-dimensions are drawn as a trapezium,
with labels for the concept and graphic object, Fig. 4c. In the line graph model, Fig. 3,
five global R-dimensions are identified: Year-D1 (x-axis); Money-D2 (y-axis); Trade
type-D3 (z-axis for trade curves); Trade volume-D7 (area); Data point-D4.

An R-dimension’s concept is analogous to a mathematical type: R-dimensions
range over R-symbols. R-symbols belong to at least one R-dimension; e.g., the Year
R-dimension possess R-symbols for individual or a group of actual year values.

Given the underpinning role of quantity scales in inference, RIST requires that RISN
models identify the quantity scale [19] for both the concept and the graphic object of each
R-dimension. Whether each is a nominal, ordinal, interval or ratio scale is registered
by a letter – N, O, I or R, respectively – appended to the concept and graphical object
labels in the R-dimension icon (see Fig. 4c). Mismatches between concept and graph
object quantity scales, which may hinder interpretation, are thus made apparent.

R-Schemes. R-Schemes capture complex structures within the representations, from
large structures that span the entire representation, to local structures that organize just
a few R-symbols. While R-Dimensions collect many R-symbols of a similar kind, R-
Schemes are typically heterogeneous: they link together different R-Dimensions, R-
symbols, or other R-Schemes, into some larger structure. R-Schemes are drawn as a
rectangle in RISN (Fig. 4b). The RISN model (Fig. 3) for the interpretation of Playfair’s
graph (Fig. 1) has an overarching R-scheme composed of five R-dimensions.

Representations. At the highest level is the Representation schema. Representation
schemas are drawn as lozenges (Fig. 4a). This schema defines a complete represen-
tation and a RISN model always has a Representation schema at its root. However,
sub-Representations can occur in other parts of a RISN model, when there is a distinct
nested representation within a larger representation (see anchoring below).
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2.2 Linking Schemas

RIST conceptualizes interpretations of representations as rich hierarchical networks of
relations among the four schemas. With the schemas defined, we can begin linking them
together. RISN models must be connected. Here, we introduce a more precise definition
of the three kinds of links proposed: hierarchy, anchoring, and equivalence.

Hierarchy. This most fundamental link asserts when one schema is conceptually
enclosed by another. For example, R-symbols enclosed under R-Dimensions will repre-
sent a specific value from that R-dimension. The hierarchy link can be formed between
any two schemas, with the following exceptions:

– The ‘child’ of a hierarchy link is never a Representation schema, because a
Representation schema stands for a complete representation (but see anchoringbelow).

– An R-symbol schema can only be the parent of another R-symbol schema, because
they are the base-level components of RIST/RISN (but see anchoring below).

– An R-dimension schema cannot be the parent of an R-Scheme schema, because R-
dimensions only range over R-symbols.

We notate hierarchy using a thin solid line (no arrow heads). The hierarchy link is
directed: the direction is indicated by connecting to the parent schema from below, and
the child schema from above. Some subsequent properties of RISN models are:

– All schemas, except for the root Representation schema, must have at least one parent
schema.

– All schemas must have at least one child, except for R-symbol schemas and non-root
Representation schemas: they are the ‘leaves’ of a RISN model.

– A schema may not be the parent of any schemas that are its ancestors – that is, RISN
models are acyclic. However, a schema may have multiple parents, and so parallel
paths may exist.

Anchoring. Anchoring links denote a new substructure that exists as a direct result of
the parent R-symbols. Anchoring is a rich relation where a new concept emerges. We
denote anchoring using solid thin line, with a bullet terminal at the parent. The link is
thus directed, with the direction being shown by the position of the bullet. The parents
must be R-symbol schemas, but there is no restriction on the children except that they are
not an ancestor of the parent – that is, anchors must not introduce cycles into the RISN
model. For example, in Fig. 3 (left), the sequence of hierarchy and anchor relations from
the D3 R-dimension through to the D5.1 R-symbol, via D4.2/3, D4.a and D5, expresses
the notion that export data points are identified by the export curve and that it is only
meaningful to speak of a specific rate of change of the curve with reference to a particular
data point. Anchoring is more than just a sub-R-symbol relationship, such as a segment
of a line, or the digits in a number.

A (sub-)Representation schema may be anchored to an R-symbol; for example, a
Representation Schema for Hindu-Arabic numbers can be added to some of the leaf
nodes in Fig. 3, if we wish to elaborate the inner workings of that numeration system.
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Equivalence. It is useful to register cases of repeated symbols for concepts (e.g., the
two ‘x’ in x× 2= x+ 3), because of their potential impact to the cognitive efficacy of a
representation. Further, a single sophisticated concept in a representationmaybe encoded
by quite different subnetworks of schemas in a RISN model; for instance, imagine that
the areas for trade against and in favour in Fig. 1 are equal. The equivalence link captures
the ‘mental bookkeeping’ that occurs during such interpretations, in which the reader
must hold in mind the relationships between different parts of the representation. It is
not intended to capture “mathematical” equivalence – although it may do, if this is part
of the mental bookkeeping. Equivalence links are undirected and represented by a thick,
dashed line with no terminals. There are no restrictions on what can be connected via
the equivalence relation, allowing cycles in RISN models.

That completes the summary of RIST and RISN. We have outlined RIST’s “words”
and “grammar” for composing “sentences” that express interpretations of representa-
tions. RIST makes strong claims about the fundamental mental knowledge structures
we use to interpret representations (the four schemas) and how interpretation occurs
(construction of networks of those schemas). In this paper, the adequacy of the theory
has been enhanced by more rigorously specifying RIST’s components; in particular, the
circumstances under which each type of link is applicable. Some of the ambiguity in
Cheng’s original theory sketch [4] has been eliminated, which provides greater constraint
on the permissible schema networks.

3 Idioms: Higher-Order Structures

Consider an analogy. Chemical theory is successful because it identifies elements and has
rules by which atomsmay be composed into molecules, but moreover it provides general
categories of structures and processes; benzene rings, alcohol groups, or multi-bonded
carbon atoms are substructures of organic molecules, each providing local information
about the molecule as a whole. Similarly, we observe substructures of schemes within
RIST models. Through many applications of RIST to diverse representations, both sen-
tential and diagrammatic, we observed repeated substructures capturing common ideas
emerge naturally: we call these idioms. Idioms serve dual purposes: first, they are an
aid to interpreting RISN models; second, they can serve as guides when building RISN
models. Three particularly common classes of idioms are introduced and described here:
collections, R-dimension idioms, and coordinate systems.

Fig. 5. Templates for (a) pick, (b) filter, (c) for-each, and (d) reduce.
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3.1 Collections

We have found, frequently, that R-symbols are not just ‘one-off’ symbols within a
representation: there are many points on a chart, many regions in an Euler diagram,
and so forth. To capture this regularity, we allow for class R-symbols, Fig. 4e. However,
we might want to discuss R-symbols as a group, or talk in general about the R-symbols
without specifying an R-symbol in the class. We define four idioms on collections of
representations: pick, filter, for-each, and reduce. Some readers might note that these
names were inspired by functional programming, and draw helpful analogies [1].

The simplest collection idiom is pick: a single R-symbol is extracted from the class
of R-symbols. This idiom can identify a single R-symbol as being of particular interest
in an interpretation. We connect a new R-symbol(s) below the dimension and exclude
it from the sibling class R-symbol, shown in Fig. 5a. An example in the Playfair’s line
graph model is shown by the purple shading in Fig. 3 (and Fig. 9).

When the model requires some subset of the R-symbol collection, we use the filter
idiom. While all the R-symbols in a collection might belong to the same R-Dimension,
that R-Dimension might be very general: sometimes, a specific subset is more useful in
some context. In effect, this is a sub-R-Dimension, so is notated by introducing new sub-
R-Dimensions below the original R-Dimension, Fig. 5b. The name of the filter idiom
is inspired by the filter function common in programming languages: given a collection
of values, extract just the values that match some predicate. For example, in the orange
shading in Fig. 3, if a modeller wanted to just talk about the ‘import data point’ then
only this schema would have been drawn, and thus considered as a filter idiom.

Often, some interpretation is true for all R-symbols in a class, regardless of which
specific R-symbol is being considered. In RISN, we call this idiom for-each, Fig. 5c:
any schemas under a class R-symbol in the model are true for all members of the class.
We can draw analogy to the standard mathematical phrase ‘without loss of generality’:
something true for every member of a set. For example, in the model of Playfair’s line
graph, Fig. 3 (left), the anchoring of the ‘Export data’ class R-symbol under the ‘Year
values’ class R-symbol expresses the idea that each year has an export data value. In
functional programming, this would be a map.

For the sake of clarity, class R-symbols merit further comment in the context of
the for-each idiom. Class R-symbols are limited in how they connect to descendent
schemas: like single R-symbols, they connect either to sub-R-symbols, or via anchoring.
We discussed both types of connection in Sect. 2. In both cases, they apply to each
individual concept included in the class R-symbol, not to the ‘class’ of R-symbols. For
example, in Fig. 3, we have a class R-symbol ‘Year values’ under the ‘Year’ R-dimension
plus individual R-symbols for year ‘1754’ and four others. It would have been incorrect
to make the ‘1754’ R-symbol a child of the ‘Year values’ class R-symbol as it is not a
sub-R-symbol of every R-symbol in the class ‘Year values’.

Finally, when the individual R-symbols within the class are not specifically inter-
esting, but the grouping of them is, we reduce them to a single R-symbol capturing the
concept of the collection of R-symbols, Fig. 5d. The R-symbol for the concept of the
collection is at the top, the class R-symbol for all the members of the collection is at
the bottom of the structure, and in between we include an R-Dimension to identify the
aspect common to the members that define the category.
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This idiom is inverse to for-each: while for-each allows us to consider every mem-
ber of a collection identically but individually, reduce allows us to consider the entire
collection as a single unit. A common use for the reduce idiom is in plots of data, where
there are emergent structures that exist only as collections of ‘simpler’ R-symbols. For
example, in Fig. 9 below (grey shading), the ‘Value of exports in a year’ class R-symbol
is reduced to the ‘Line of exports’ R-symbol via the ‘Value of Exports’ R-dimension.

Together, these collection idioms provide succinct, expressive modelling options for
collections of R-symbols.

Fig. 6. (a) General model of sum R-dimensions. (b) Example using weekdays.

3.2 R-Dimension Idioms

As mentioned earlier, we may think of an R-Dimension as a ‘type’ of R-symbols –
all the R-symbols that are under the same R-Dimension in the hierarchy fill the same
semantic role in the representation. Taking inspiration from this ‘type’ analogy, we
present two idioms named after algebraic data types [6]: sumR-Dimensions, and product
R-Dimensions.

A sum R-Dimension is an R-Dimension that has two or more sub-R-Dimensions.
Just as a sum type is the union of its constituents, a sum R-Dimension is the union of
the sub-R-Dimensions. We encode a sum R-Dimension in RISN in the obvious way: the
sum R-Dimension is directly above its sub-R-Dimensions in the hierarchy. Figure 6a
presents the general idiom, while Fig. 6b is a diary example from a “week to a view”
diary that differentiates weekday andweekend blocks. An example of sumR-dimensions
in the Playfair line graph model, orange shading in Fig. 3, states that all datapoints are
comprised of export plus import datapoints (see Fig. 10 for another example).

A product R-Dimension is an R-Dimension that combines two or more R-
Dimensions. Just as a product type is the cartesian product of constituent types, the
R-symbols of a product R-Dimension can be considered as some combination of the
R-symbols of the constituent R-Dimensions. The direct analog in algebraic data types
would be a tuple type. Product R-Dimensions are encoded in RISN as being directly
under their constituent R-Dimensions in the hierarchy. The general idiom is shown in
Fig. 7a, and an alternative shortcut of the idiom is in Fig. 7b for convenience. Figure 7c
is an example about citations that code the idea that combining author’s surname, an
ordinal quantity, with a year of publication, an interval quantity, produces a citation,
which is an ordinal quantity. An example in the Playfair line graph model, green shading
in Fig. 3, captures the idea that a datapoint for equal amounts of trade occurs when the
data points for export and import data are identical.
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For both sum and product R-Dimensions, the quantity scales of their resulting R-
dimensions require careful consideration; the interaction in particular for a product R-
dimension is complex, with no simple domain-independent rules governing the quantity
scale of the resulting R-dimension.

AlthoughR-Dimension idiomswere presented in isolation, they can compose in pow-
erful ways.With these R-Dimension structures for sums and products, we have a concise,
powerful way to model rich interpretations by composing R-symbols or decomposing
R-schemes.

Fig. 7. (a) General model of product R-dimension. (b) Alternative shortcut for (a). (c) Example
model of citations as product of author and year.

3.3 Coordinate Systems

Representations are often structured around coordinate systems: literally, systems that
coordinate information. In addition to the obvious cases – such as tables, and the Carte-
sian axes of graphs – coordinate systems occur when one or more R-Dimensions provide
an indexing system for one, or more, R-Dimensions for sets of data. Coordinate systems
setup linked conceptual and graphical spaces within which individuals are located. In
practice, we find two idioms for modelling coordinate systems; explicit and implicit.
In the case of explicit coordinate systems, the modeller specifically identifies a fixed
set of R-dimensions that constitute the coordinate system that are distinct from the R-
dimension(s) that categorises the dataset(s). A template for this case is shown in Fig. 8a.
Information visualisations with graphical objects that define quantities, such as axes
with scales or legends setting up categories, are typically interpreted as explicit coordi-
nate systems. Alphanumerical index systems, such as book classification schemes, are
explicit coordinate systems. Books in an unorder collection are indexed byR-dimensions
for subject areas, sub-topics, author, year and the like.

In contrast, in an implicit coordinate system the distinction between what is an
indexing R-dimension and a data R-dimension is not taken by the interpreter to be fixed
but interchangeable.What counts as data depends on the user’s current context. Figure 8b
shows the template for this idiom; the nested R-Scheme has gone, so the R-Dimensions
all occur at the same level. The particular interpretation for Playfair’s line graph in Fig. 3
includes an implicit coordinate system (yellow rectangle), because the modeller did not
wish to single out points in the graph as the only dataset. Rather, the ‘Data point’ R-
dimension is used as an index along with the ‘Money’ R-dimension to make a coordinate
system dealing with ‘Trade directions’ and ‘Trade differences’ (centre left).
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Fig. 8. (a) Template for a nested (explicit) coordinate system for a 2D representation. (b) Template
of flat (implicit) coordinate system for a 2D representation.

Summary. Idioms, common sub-network structures of RIST schemas, have been dis-
covered and each possess distinctive interpretive functions. This provides some reassur-
ance about the potential validity, or at least utility, of schemas and relations proposed by
RIST. Idioms introduce a new layer of interpretations between the elementary schemas
and whole networks, which imposes theoretically desirable constrains on the space of
possible network structures for modelling. In turn, this suggests that attempts to model
the interpretations of representations could profitably focus on interpretive functions of
idioms, an idea that is to be outlined in the last section.

4 Diversity of Interpretations

So far, we have presented refinements to RIST’s schema relations and introduced idioms
to encode particular interpretive functions, both of which improve the adequacy of the
theory. This section considers our first, albeit small-scale, empirical test of RIST and
the capabilities of RISN. In particular, we wish to show that the theory and modelling
notation are able to capture the alternative interpretations of a representation made by
different readers, as mentioned in the Introduction. In the test, three of the authors
(“reviewers”), who are experienced users of representational systems, independently
created RISNmodels for 3 different representations. The representations were Playfair’s
line graph (Fig. 1), the Home tab fromMicrosoft PowerPoint’s toolbar, and a chart about
monetary flows in an economy depicted as a hydraulic model5. They were selected due
to their diversity in both their form and function. Here, just the model for Playfair’s line
graph will be examined in detail, see Fig. 3, Fig. 9 and Fig. 10, but we summarize the
outcomes of the other two representations.

5 ‘The Round Flow of Money Income and Expenditure, 1922’: https://commons.wikimedia.org/
wiki/File:The_Round_Flow_of_Money_Income_and_Expenditure,_1922.jpg.

https://commons.wikimedia.org/wiki/File:The_Round_Flow_of_Money_Income_and_Expenditure,_1922.jpg
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Fig. 9. Interpretation of Playfair’s line graph by R2. Colour shadings are for reference and not
part of the model (Color figure online).

All reviewers had experience creating RISN models. They reviewed the guidelines
for RIST/RISN before starting the task. They were instructed to model their own inter-
pretation of the content of the representations. R1, R2 & R3, started by annotating the
original line graph, Fig. 1: R1’s annotations are shown in Fig. 2, where T, D, and S
labels stand for R-symbols, R-Dimensions, and R-schemes, respectively. The review-
ers’ RISN models for the line graph are shown in Figs. 3, 9 and 10. For reference, we
highlighted parts of the models with coloured shadings. After finishing their individ-
ual models, the reviewers discussed the models and made edits that just corrected the
invalid schema relations, which were few in number. We wished to determine if the
models revealed meaningful differences in the reviewers’ interpretations, and what the
principal differences were.

R1’s overall interpretation treats that representation as a complex coordinate system
with five R-dimensions (Fig. 3, yellow shading). The concept of trade balance, ‘Equal
trade’ R-symbol, depends on four of the R-dimensions, directly or indirectly, so is
central to the network of schemas conceptually and happens to be positioned centrally
in the diagram. Derived quantities, such as ‘Trade volume (over a period of time)’ and
‘Rate (of change of trade)’, are defined within the overarching coordinate system as a
sub-R-dimension anchored on an R-symbol of some other R-dimension.

R2’s interpretation has global coordinate system which incorporates the two graph
axes as sub-system alongside an R-dimension for the lines in the graph (Fig. 9). Other
R-dimensions, which were primary for R1, are derived concepts in R2’s interpretation,
defined relative to the context of particular values of the overarching coordinate system.

R3’s model (Fig. 10) contrasts to R1 and R2 in terms of its overall interpretation. It
gives the concepts of trade ‘Balance’ and ‘Region’ primacy and uses them to examine the
relation of imports and exports relative to England. The coordinate system for the graph
axes is seen as subservient to those ideas and is providing specific values as required.



66 P. C.-H. Cheng et al.

Fig. 10. Interpretation of Playfair’s line graph by R3. Colour shadings are for reference and not
part of the model (Color figure online).

Comparing the topology of the models, all three models have approximately simi-
lar depth, but R1’s model has greater breadth, which reflects concepts not in R2 and
R3’s interpretation. Examining the range and priority of concepts, R3’s interpretation
focuses on the topic’s conceptual content – what is represented – whereas R1 and R2 are
oriented more towards the means by which the line graph conveys the information – how
the content is represented – using a global, high-level, coordinate system.

The idioms introduced in Sect. 3 provide a useful level of abstraction for our analysis
of the models; like molecules being understood through their functional groups, we
can understand our RISN models through their idioms. The coloured areas in Figs. 3,
9 and 10 exemplify some of them. The coordinate system idiom (in yellow) appears
across all models, as described in the summaries above, but at different levels. The
sum R-dimension is present in two of models: examples are shown Fig. 3 and Fig. 10
(orange shading). R1 splits the ‘Data points’ global R-dimension into exclusive sub-
R-dimensions for ‘Export’ and ‘Import’ data. R3 divides trade ‘Balance’ into the three
categories of ‘Negative’, ‘Positive’ and ‘Neutral’. R1 and R2 also make equivalent
distinctions related to trade balance, but a lower level.

There are also differences among how reviewers use idioms. All three use coordinate
systems (Figs. 3, 9 and 10, yellow shading) and the ‘for-each’ idiom (blue shading),
but their primacy in the interpretations varies. For R1 and R2, the coordinate takes
precedence, with the ‘for-each’ idiom serving a narrower role. In contrast, R3 gives
the ‘for-each’ idiom priority and hangs a coordinate system under that idiom. Another
case is that of important “trade balance” concept, which is encoded in different ways
by all three reviewers: R1 uses a product R-dimension idiom (Fig. 3, light green); R2
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has a single R-symbol for a concept anchored on other R-symbols (Fig. 9, ‘Crossing
of Imports/Export values’); and for R3 it is an R-symbol of a sub-R-dimension of the
primary ‘Balance’ R-dimension.

Similar observations apply to the PowerPoint toolbar and the economic flowchart
modelling. For example, for the PowerPoint toolbar, R2’s model includes the use of
R-schemes for concepts extensively, whereas R1 and R3 tend to categorize and group
concepts with R-dimensions. In spite of this, there is little variation in terms of the depth
of themodels across reviewers. Themodels for the economic flow are also diverse across
reviewers. R3’s model focusses on the topic, R2’s model focusses more on the structure
of the diagram, and R1’s model is a mixture.

The modelling activities were followed by a session of reflection by the reviewers.
From instances of ambiguity among the reviewer interpretations, it was apparent that
there are some specific limitations to RISN expressiveness that need to be addressed. In
particular, the semantics of the relation links between R-dimension and class R-symbol
schemas needs clarifying, and when R-dimensions and class R-symbols have “common
elements” or are disjoint.

5 Discussion

We presented Representational Interpretive Structure Theory, RIST. It proposes that
interpretation of representations is cognitively grounded in four schemas whose primary
function is to associate (a) concepts from the to-be represented target domain with (b)
graphical objects in the representation that stand for those concepts. RIST specifies a
small number of relations that link these schemas. RIST contends that an interpretation
of a representation consists of a network of schemas that are linked by the relations.
Different interpretations have alternative network structures. By examining numerous
networks that model diverse representations, idioms were discovered that are common
to representations with distinct formats. Idioms appear to perform specific interpretive
functions and operate at an intermediate level between the elementary schemas and
complete networks for whole representations.

RISN is a modelling notation for RIST, which possess distinct modelling symbols
for each class of schemas. The symbols are connected together with lines that stand
for relations between the schemas. RIST schema networks are modelled as networks of
RISN symbols.

A small-scale experiment was conducted in which three reviewers produced models
of their own interpretations of three heterogenous representations. The RISN networks
produced across the different representations were varied and the networks produced by
different reviewers, of the same representation, were also distinctive. The models varied
both in the content and in their topology. Further, close examination of the models
reveals that the overall interpretations are readily explicable in terms of the idioms. In
other words, a reviewer could use the idioms to guide their understanding of the meaning
of a RISN model produced by another reviewer. Some idioms were shared across all the
reviewer’s models for a given representation and in other cases different idioms were
deployed in the interpretations of alternative reviews on the same representation. Thus,
this small study provides some tentative preliminary evidence of the acceptability of
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RIST and the utility of RISN. However, further studies are needed in order to make
more definite claims. Such studies are planned.

The Introduction proposed three desiderata for a cognitive theory of the interpretation
of representations. The first concerns the facility tomodel alterative interpretationsmade
by different individuals. The present study begins to demonstrate that RIST/RISN has
this capability. Further, although anecdotal, the authors recognise that R1 has particular
expertise with Cartesian plots, so it is no surprise that R1’s model of the line graph had a
greater breadth than the models of R2 and R3, as it included a greater range of concepts.
Also, R3 was the least familiar with PowerPoint, so it is also not unexpected that the
network models of R1 and R2 were broader. All this suggests that RIST/RISN could be
used in an approach to model differences in the interpretative structure of learners with
different level of experience of target representations.

The outcome of the small study also suggests that it may be feasible to model
the different interpretive structures of alternative representations of the same subject
matter. RIST/RISN might provide a useful method for the evaluation of alternative
representations for particular topics. Thiswould satisfy the second and third requirements
described in the Introduction.

Finally, we note that this research was conducted as part of a wider project that is
developing automated systems for the selection of representations for individual problem
solvers with varying levels of competence on different classes of problems [13–15]. One
aspect of the project is to devise a measure of the cognitive cost of representations [5],
which can be used to assess the relative difficulty a user will likely experience with
alternative representations. We note that RIST/RISN may provide an addition route to
such assessments though the analysis of the contents of the schemas and the nature of
their networks.

Acknowledgements. This work was supported by the EPSRC grants EP/R030642/1,
EP/T019603/1, EP/T019034/1 and EP/R030650/1.

References

1. Bird, R., Wadler, P.: Introduction to Functional Programming. Hemel Hempstead: Prentice
Hall International (UK) (1988)

2. Cheng, P.C.-H.: Electrifying diagrams for learning: principles for effective representational
systems. Cogn. Sci. 26(6), 685–736 (2002). https://doi.org/10.1016/S0364-0213(02)00086-1

3. Cheng, P.C.-H.: Probably good diagrams for learning: representational epistemic re-
codification of probability theory. Top. Cogn. Sci. 3(3), 475–498 (2011)

4. Cheng, P.C.-H.: A sketch of a theory and modelling notation for elucidating the structure of
representations. In: Pietarinen, A.-V., Chapman, P., Bosveld-de Smet, L. Giardino, V., Corter,
J., Linker, S. (eds.) Diagrams 2020, LNCS (LNAI), vol. 12169, pp. 93–109. Springer Cham
(2020). https://doi.org/10.1007/978-3-030-54249-8_8

5. Cheng, P.-H., Garcia Garcia, G., Raggi, D., Stockdill, A., Jamnik, M.: Cognitive properties
of representations: a framework. In: Basu, A., Stapleton, G., Linker, S., Legg, C., Manalo,
E., Viana, P. (eds.) Diagrams 2021. LNCS (LNAI), vol. 12909, pp. 415–430. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-86062-2_43

https://doi.org/10.1016/S0364-0213(02)00086-1
https://doi.org/10.1007/978-3-030-54249-8_8
https://doi.org/10.1007/978-3-030-86062-2_43


Representational Interpretive Structure: Theory and Notation 69

6. Gordon, M., Milner, R., Wadsworth, C.P.: Edinburgh LCF: A Mechanised Logic of
Computation. LNCS. Springer, Berlin (1979). https://doi.org/10.1007/3-540-09724-4

7. Gurr, C.A.: On the isomorphism, or lack of it, of representations. In: Marriott, K., Meyer, B.
(eds.) Visual Language Theory, pp. 293–306. Springer, New York (1998). https://doi.org/10.
1007/978-1-4612-1676-6_10

8. Jamnik, M., Cheng, P.C.-H.: Endowing machines with the expert human ability to select
representations: why and how. In: Muggleton, S., Chater, N. (eds.) Human-Like Machine
Intelligence, pp. 355–378. Oxford University Press, Oxford (2021)

9. Kintsch, W.: Comprehension: A Paradigm for Cognition. Cambridge University Press, New
York (1998)

10. Larkin, J.H., Simon, H.A.: Why a diagram is (sometimes) worth ten thousand words. Cogn.
Sci. 11, 65–99 (1987)

11. Peebles, D.J., Cheng, P.C.-H.: Modelling the effect of task and graphical representations on
response latencies in a graph-reading task. Hum. Factors 45(1), 28–45 (2003). https://doi.org/
10.1518/hfes.45.1.28.27225

12. Pinker, S.: A theory of graph comprehension. In: Freedle, R. (ed.) Artificial Intelligence and
the Future of Testing, pp. 73–126. Lawrence Erlbaum, Hillsdale (1990)

13. Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, H.E.A., Cheng, P.C.-H.:
Dissecting representations. In: Pietarinen, A.-V., Chapman, P., Bosveld de Smet, L., Giardino,
V., Corter, J., Linker, S. (eds.) Diagrams 2020. LNCS (LNAI), vol. 12169, pp. 144–152.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54249-8_11

14. Raggi, D., Stapleton, G., Stockdill, A., Jamik, M., Garcia Garcia, G., & Cheng, P. C.-H.
(2020). How to (re)represent it? In S. Pan (Ed.), 32nd International Conference on Tools with
Artificial Intelligence: IEEE

15. Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, H.E.A., Cheng, P.-H.:
Inspection and selection of representations. In: Kaliszyk, C., Brady, E., Kohlhase, A., Sacer-
doti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp. 227–242. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-23250-4_16

16. Schank, R.C., Abelson, R.P.: Scripts, Plans, Goals, and Understanding: An Enquiry into
Human Knowledge Structures. Erlbaum, Mahwah (1977)

17. Shimojima, A.: Semantic Properties of Diagrams and Their Cognitive Potentials. CSLI Press,
Stanford (2015)

18. Stenning, K., Oberlander, J.: A cognitive theory of graphical and linguistic reasoning: logic
and implementation. Cogn. Sci. 19(1), 97–140 (1995)

19. Stevens, S.S.: On the theory of scales of measurement. Science 103(2684), 677–680 (1946)
20. Stockdill, A., Raggi, D., Jamnik, M., Garcia Garcia, G., Cheng, P.-H.: Considerations in

representation selection for problem solving: a review. In: Basu, A., Stapleton, G., Linker, S.,
Legg, C., Manalo, E., Viana, P. (eds.) Diagrams 2021. LNCS (LNAI), vol. 12909, pp. 35–51.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86062-2_4

21. Zhang, J.: A representational analysis of relational information displays. Int. J. Hum. Comput.
Stud. 45, 59–74 (1996)

22. Zhang, J.: The nature of external representations in problem solving. Cogn. Sci. 21(2), 179–
217 (1997)

https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/978-1-4612-1676-6_10
https://doi.org/10.1518/hfes.45.1.28.27225
https://doi.org/10.1007/978-3-030-54249-8_11
https://doi.org/10.1007/978-3-030-23250-4_16
https://doi.org/10.1007/978-3-030-86062-2_4

	Representational Interpretive Structure: Theory and Notation
	1 Introduction
	2 Representation Interpretation Theory/Notation – RIST/RISN
	2.1 Four Schemas
	2.2 Linking Schemas

	3 Idioms: Higher-Order Structures
	3.1 Collections
	3.2 R-Dimension Idioms
	3.3 Coordinate Systems

	4 Diversity of Interpretations
	5 Discussion
	References




