$\begin{array}{cc} 1 & Polynomially \ asymptotically \ autonomous \ systems-2D \end{array}$

Let $\sigma \in \mathbb{N}$, $\sigma \geq 2$. Consider the polynomially asymptotically autonomous equation $\dot{x} = f(t, x)$, $x \in \mathbb{R}^n$, where $f, g \in C^{\sigma+1}$ and $f(t, x) \to g(x)$ in the following sense: for each compact set $K \subset \mathbb{R}^n$ and each $\delta > 0$ there is a T with

$$\|\partial^{\gamma} f(t,x) - \partial^{\gamma} g(x)\| t^{\epsilon} < \delta \text{ for all } \gamma \text{ with } |\gamma| \leq \sigma \text{ and } \gamma_0 = 0,$$
$$\|\partial^{\gamma} f(t,x)\| t^{\epsilon(\sigma+1)+\gamma_0} < \delta \text{ for all } \gamma \text{ with } |\gamma| \leq \sigma \text{ and } \gamma_0 \neq 0.$$

for all $x \in K$ and all t > T, where

$$0 < \epsilon < \frac{1}{\sigma - 1}$$
.

Let x(t) = 0 be an exponentially stable solution.

Time transformation

Define $h(\tau) = (-\tau)^{-1/\epsilon}$. The transformed system is

$$\dot{\tau} = \epsilon(-\tau)^{1/\epsilon+1}$$

$$\dot{x} = \begin{cases} f((-\tau)^{-1/\epsilon}, x) & \text{if } \tau \neq 0 \\ g(x) & \text{if } \tau = 0 \end{cases}$$

Local Lyapunov function

Solve the matrix equation

$$Dg(0)Q^T + QDg(0) = -I$$

for $Q \in \mathbb{R}^{n \times n}$. Set

$$v_{loc}(x) = x^T Q x.$$

Find R^* such that all points in

$$E := \{ x \in \mathbb{R}^n \mid v_{loc}(x) \le R^* \}$$

satisfy
$$v'_{loc}(x) = \nabla V_{loc}(x) \cdot g(x) < 0.$$

Radial Basis Functions

Choose a Radial Basis Function ϕ . For n=1 or n=2 we choose c>0 and $\phi(r)=\psi_{4,2}(c\cdot r)=\left\{ \begin{array}{ll} (1-cr)^6[35c^2r^2+18cr+3] & \text{for } r\leq \frac{1}{c} \\ 0 & \text{otherwise.} \end{array} \right.$

Choose grid points $X \subset (-\infty, 0] \times \mathbb{R}^n$ approximately in the expected basin of attraction – do not include (0,0).

Find R such that all points in

$$K_1 := \{ (\tau, x) \in (-\infty, 0] \times \mathbb{R}^n \mid v(\tau, x) = R \}$$

satisfy $v'(\tau, x) < 0$, and all points in

$$K_2 := \{(0, x) \in \{0\} \times \mathbb{R}^n \mid v(\tau, x) \le R\}$$

satisfy v'(0, x) < 0 or $x \in E$.

Then K is a subset of the basin of attraction.

Transform K back:

$$\tilde{K} := \left\{ (t, x) \in (-\infty, \infty) \times \mathbb{R}^n \mid v(-t^{-\epsilon}, x) \le R \right\}$$

Matlab Files

The plots for the Matlab files are designed for dimension n=2.

- **f_fun.m** is the right-hand side f(t,x) of the original system.
- **g_fun.m** is the right-hand side g(x) of the limiting system.
- **F.m** is the right-hand side $F(\tau, x)$ of the transformed system, depending on the transformation and in particular ϵ .
- hinv.m is the inverse of the transformation h, i.e. $h^{-1}(t) = -t^{-\epsilon}$.
- locv.m is the local Lyapunov function x^TQx where Q solves $Dg(0)^TQ+QDg(0)=-I$.
- gradlocv.m is the gradient of locv(x) with respect to x
- plotlocv.m

plotlocv(MAXx,xnumber,MAXy,ynumber,valloc),

plots the level set $v_{loc}(x)$ =valloc in Figure 6 and 3 for $\tau \in [-0.2, 0]$ and the function $v_{loc}(x)$ in Figure 1 on a grid in $[-0.2, 0] \times [-MAXx, MAXx] \times [-MAXy, MAXy]$ where the x-interval is divided into 2 xnumber equal steps and the y-interval is divided into 2 ynumber equal steps

• plotlocvs.m

plotlocvs(MAXx,xnumber,MAXy,ynumber),

plots the level set $v'_{loc}(x)=0$ in Figure 3 for $\tau\in[-0.2,0]$ on a grid in $[-0.2,0]\times[-MAXx,MAXx]\times[-MAXy,MAXy]$ where the x-interval is divided into 2 xnumber equal steps and the y-interval is divided into 2 ynumber equal steps

• phi.m, phi1.m, phi2.m

phi(r) is the Radial Basis Function $\psi_{4,2}(c \cdot r)$, phi1 is defined by $\frac{dphi}{dr}/r$, and phi2 is defined by $\frac{dphi1}{dr}/r$

• coefficients.m

[alpha,points,N]=coefficients(T,tN,xN,yN,xdist,ydist,c,n,epsilon) calculates the coefficients alpha of the approximation v

- -T < 0 and [T, 0] is the time interval
- tN denotes the number of steps in time direction from -T to 0
- xdist is the distance of a step in x-direction
- xN denotes the number of steps in x-direction
- ydist the distance in y-direction
- yN denotes the number of steps in y-direction
- -c denotes the constant in the RBF
- -n is the dimension
- points are the points (τ_k, x_k) in $[T, 0] \times \mathbb{R}^n$, N points
- **v.m** [v]=v(c,alpha,points,epsilon,t,x,y) calculates the value of the approximation v at point (t, x, y)
- vs.m [vs]=vs(c,alpha,points,epsilon,t,x,y) calculates the orbital derivative v' of approximation v at (t, x, y)

• plotv.m

plotv(T,MAXx,MAXy,c,n,epsilon,alpha,points,tnumber,xnumber,ynumber,val), plots the level set $v(\tau,x,y)$ =val in Figure 6 on a grid in $[T,0] \times [-MAXx,MAXx] \times [-MAXy,MAXy]$ where the time interval is divided into tnumber, the x-interval is divided into 2 xnumber equal steps and the y-interval is divided into 2 ynumber equal steps

• plotvs.m

plotvs(T,MAXx,MAXy,c,n,epsilon,alpha,points,tnumber,xnumber,ynumber), plots the level set $v'(\tau,x,y)=0$ in Figure 6 on a grid in $[T,0]\times[-MAXx,MAXx]\times[-MAXy,MAXy]$ where the time interval is divided into tnumber, the x-interval is divided into 2 xnumber equal steps and the y-interval is divided into 2 ynumber equal steps

• plotvorg.m

plotvorg(T1,T2,MAXx,MAXy,c,n,epsilon,alpha,points,tnumber,xnumber,ynumber), plots the level set v(t,x,y) =val in Figure 7 on a grid in $[T1,T2 \times [-MAXx,MAXx] \times [-MAXy,MAXy]$ where the time interval is divided into tnumber, the x-interval is divided into 2 xnumber equal steps and the y-interval is divided into 2 ynumber equal steps

• plotvsorg.m

plotvsorg(T1,T2,MAXx,MAXy,c,n,epsilon,alpha,points,tnumber,xnumber,ynumber), plots the level set v'(t,x,y)=0 in Figure 7 on a grid in $[T1,T2\times[-MAXx,MAXx]\times[-MAXy]$ where the time interval is divided into tnumber, the x-interval is divided into 2 xnumber equal steps and the y-interval is divided into 2 ynumber equal steps

Figures

- 3. Level set $v'_{loc}(x, y) = 0$ (red), $v_{loc}(x, y) = valloc$ (green)
- 6. Level set $v'(\tau, x) = 0$ (red), $v(\tau, x) = val$ (black) and $v_{loc}(\tau, x) = valloc$ (green)
- 7. Level set v'(t,x) = 0 (red), v(t,x) = val (black) and $v_{loc}(t,x) = valloc$ (green) in the original time t

What to do

- Choose the constant ϵ and modify f_fun.m, g_fun.m, locv.m and grad-locv.m.
 - **f_fun**: define f(t, x, y)
 - $\mathbf{g}_{-}\mathbf{fun}$: define g(x,y)
 - **locv**: Solve $Dg(0)^TQ + QDg(0) = -I$. Output is $(x,y)Q\begin{pmatrix} x \\ y \end{pmatrix}$.
 - **gradlocv** is the gradient of locv(x, y) with respect to x, y

- Use plotlocv.m and plotlocvs.m. Choose the value **valloc** in plotlocv so small that the sublevel set of v_{loc} is in the area where v'_{loc} is negative (Figure 3)
- Choose constants T, tN, xN, xdist, c and n
- Calculate alpha using coefficients.m
- Use plotv.m and plotvs.m. Choose the value val in plotv so small that the level set of v is in the area where v' is negative, and the sublevel set of v at $\tau = 0$ is either in the area where v' is negative or which is covered by the sublevel set of v_{loc}
- If not possible, put more points into the grid (tN, xN larger and T,xdist smaller) and/or make area covered smaller (T,xdist smaller) (Figure 6)
- Use plotvorg.m, plotvsorg.m and plotlocvor.m to obtain a plot with respect to the original time t (Figure 7)

1.1 Example

```
Example 5.2 from [1].

T=-0.9;tN=3;xN=4;xdist=0.15;yN=4;ydist=0.15;c=2;n=2;epsilon=1/11;
[alpha,points,N]=coefficients(T,tN,xN,yN,xdist,ydist,c,n,epsilon);

valloc=0.25;
plotlocv(1,80,1,80,valloc);
plotlocvs(1,2,54,54);

val=0;
plotvs(-1,0.8,0.8,c,n,epsilon,alpha,points,10,20,20);
plotv(-1,0.8,0.8,c,n,epsilon,alpha,points,10,15,15,val);

plotvorg(2.5,15,0.8,0.8,c,n,epsilon,alpha,points,15,15,15,t5);
```

Acknowledgement This work was supported by the Engineering and Physical Research Council [EP/H051627/1, EP/I000860/1].

References

[1] P. Giesl and H. Wendland, Numerical determination of the basin of attraction for asymptotically autonomous dynamical systems, submitted.