
1 Polynomially asymptotically autonomous sys-

tems – 1D

Let σ ∈ N, σ ≥ 2. Consider the polynomially asymptotically autonomous
equation ẋ = f(t, x), x ∈ Rn, where f, g ∈ Cσ+1 and f(t, x) → g(x) in the
following sense: for each compact set K ⊂ Rn and each δ > 0 there is a T
with

‖∂γf(t, x)− ∂γg(x)‖ tε < δ for all γ with |γ| ≤ σ and γ0 = 0,

‖∂γf(t, x)‖ tε(σ+1)+γ0 < δ for all γ with |γ| ≤ σ and γ0 6= 0.

for all x ∈ K and all t > T , where

0 < ε <
1

σ − 1
.

Let x(t) = 0 be an exponentially stable solution.

Time transformation

Define h(τ) = (−τ)−1/ε. The transformed system is

τ̇ = ε(−τ)1/ε+1

ẋ =

{
f((−τ)−1/ε, x) if τ 6= 0
g(x) if τ = 0

Local Lyapunov function

Solve the matrix equation

Dg(0)QT +QDg(0) = −I

for Q ∈ Rn×n. Set
vloc(x) = xT Qx.

Find R∗ such that all points in

E := {x ∈ Rn | vloc(x) ≤ R∗}

satisfy v′loc(x) = ∇Vloc(x) · g(x) < 0.
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Radial Basis Functions

Choose a Radial Basis Function φ. For n = 1 or n = 2 we choose c > 0 and

φ(r) = ψ4,2(c · r) =

{
(1− cr)6[35c2r2 + 18cr + 3] for r ≤ 1

c

0 otherwise.
Choose grid points X ⊂ (−∞, 0] × Rn approximately in the expected

basin of attraction – do not include (0, 0).
Find R such that all points in

K1 := {(τ, x) ∈ (−∞, 0]× Rn | v(τ, x) = R}

satisfy v′(τ, x) < 0, and all points in

K2 := {(0, x) ∈ {0} × Rn | v(τ, x) ≤ R}

satisfy v′(0, x) < 0 or x ∈ E.
Then K is a subset of the basin of attraction.
Transform K back:

K̃ :=
{
(t, x) ∈ (−∞,∞)× Rn | v(−t−ε, x) ≤ R

}
Matlab Files

The plots for the Matlab files are designed for dimension n = 1.

• f fun.m is the right-hand side f(t, x) of the original system.

• g fun.m is the right-hand side g(x) of the limiting system.

• F.m is the right-hand side F (τ, x) of the transformed system, depend-
ing on the transformation and in particular ε.

• hinv.m is the inverse of the transformation h, i.e. h−1(t) = −t−ε.

• locv.m is the local Lyapunov function xTQx whereQ solvesDg(0)TQ+
QDg(0) = −I.

• gradlocv.m is the gradient of locv(x) with respect to x

• plotlocv.m

plotlocv(MAX,xnumber,valloc),

plots the level set vloc(x) =valloc in Figure 6 and 3 for τ ∈ [−0.2, 0] and
the function vloc(x) in Figure 1 on a grid in [−0.2, 0]× [−MAX,MAX]
where the space interval is divided into 2 xnumber equal steps
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• plotlocvs.m

plotlocvs(MAX,xnumber),

plots the level set v′loc(x) = 0 in Figure 3 for τ ∈ [−0.2, 0] and the
function v′loc(x) in Figure 2 on a grid in [−0.2, 0] × [−MAX,MAX]
where the space interval is divided into 2 xnumber equal steps

• phi.m, phi1.m, phi2.m

phi(r) is the Radial Basis Function ψ4,2(c · r), phi1 is defined by d phi
dr
/r,

and phi2 is defined by d phi1
dr

/r

• coefficients.m

[alpha,points,N]=coefficients(T,tN,xN,xdist,c,n,epsilon)

calculates the coefficients alpha of the approximation v

– T < 0 and [T, 0] is the time interval

– tN denotes the number of steps in time direction from −T to 0

– xdist is the distance of a step in x-direction

– xN denotes the number of steps in positive x-direction

– c denotes the constant in the RBF

– n is the dimension

– points are the points (τk, xk) in [T, 0]× Rn, N points

• v.m [v]=v(c,alpha,points,epsilon,t,x)

calculates the value of the approximation v at point (t, x)

• vs.m [vs]=vs(c,alpha,points,epsilon,t,x)

calculates the orbital derivative v’ of approximation v at (t, x)

• plotv.m

plotv(T,MAX,c,n,epsilon,points,tnumber,xnumber,val),

plots the level set v(τ, x) =val in Figure 6 and the function v(τ, x)
depending on (τ, x) in Figure 4 on a grid in [T, 0] × [−MAX,MAX]
where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps
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• plotvs.m

plotv(T,MAX,c,n,epsilon,alpha,points,tnumber,xnumber),

plots the level set v′(τ, x) = 0 in Figure 6 and the function v′(τ, x)
depending on (τ, x) in Figure 5 on a grid in [T, 0] × [−MAX,MAX]
where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps

• plotvorg.m

plotvorg(T1,T2,MAX,c,n,epsilon,alpha,points,tnumber,xnumber,val),

plots the level set v(t, x) =val in Figure 7 on a grid in [T1, T2] ×
[−MAX,MAX] where the time interval is divided into tnumber, and
the space interval is divided into 2 xnumber equal steps

• plotvsorg.m

plotvsorg(T1,T2,MAX,c,n,epsilon,alpha,points,tnumber,xnumber),

plots the level set v′(t, x) = 0 in Figure 7 on a grid in [T1, T2] ×
[−MAX,MAX] where the time interval is divided into tnumber, and
the space interval is divided into 2 xnumber equal steps

Figures

1. Plot of vloc(x)

2. Plot of v′loc(x)

3. Level set v′loc(x) = 0 (red), vloc(x) = valloc (green)

4. Plot of v(τ, x)

5. Plot of v′(τ, x)

6. Level set v′(τ, x) = 0 (red), v(τ, x) = val (black) and vloc(τ, x) = valloc
(green)

7. Level set v′(t, x) = 0 (red), v(t, x) = val (black) and vloc(t, x) = valloc
(green) in the original time t
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What to do

• Choose the constant ε and modify f fun.m, g fun.m, locv.m and grad-
locv.m.

– f fun: define f(t, x)

– g fun: define g(x)

– locv: Solve Dg(0)TQ+QDg(0) = −I. Output is xTQx.

– gradlocv is the gradient of locv(x) with respect to x

• Use plotlocv.m and plotlocvs.m. Choose the value valloc in plotlocv
so small that the sublevel set of vloc is in the area where v′loc is negative
(Figure 3)

• Choose constants T, tN, xN, xdist, c and n

• Calculate alpha using coefficients.m

• Use plotv.m and plotvs.m. Choose the value val in plotv so small that
the level set of v is in the area where v′ is negative, and the sublevel
set of v at τ = 0 is either in the area where v′ is negative or which is
covered by the sublevel set of vloc

• If not possible, put more points into the grid (tN, xN larger and T,xdist
smaller) and/or make area covered smaller (T,xdist smaller) – (Figure
6)

• Use plotvorg.m, plotvsorg.m and plotlocvor.m to obtain a plot with
respect to the original time t (Figure 7)

1.1 Example

Example 5.1 from [1].

T=-1.25;tN=20;xN=10;xdist=0.09;c=2;n=1;epsilon=1/4;

[alpha,points,N]=coefficients(T,tN,xN,xdist,c,n,epsilon);

val=0.25;

plotvs(-1.25,1,c,n,epsilon,alpha,points,84,84);

plotv(-1.25,1,c,n,epsilon,alpha,points,84,84,val);

valloc=0.4;

plotlocv(1,80,valloc);
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plotlocvs(1,80);

plotvsorg(0.4,10,1,c,n,epsilon,alpha,points,84,84);

plotvorg(0.4,10,1,c,n,epsilon,alpha,points,84,84,val);
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