1 Polynomially asymptotically autonomous sys-
tems — 1D

Let 0 € N, ¢ > 2. Consider the polynomially asymptotically autonomous
equation = f(t,z), x € R", where f,g € C°"' and f(t,r) — g(z) in the
following sense: for each compact set K C R™ and each § > 0 there is a T
with

|07 f(t,z) — D g(z)||t® < 0 for all v with || < o and vy = 0,
107 f(t, )|tV < § for all v with |y| < ¢ and g # 0.

for all zx € K and all ¢t > T, where

OD<e<

o —

Let z(t) = 0 be an exponentially stable solution.

Time transformation

Define h(7) = (—7)~Y/¢. The transformed system is

Fo= (=)t
P { f((=m)" Ve x) ifr#0
g(x) ifr=0

Local Lyapunov function

Solve the matrix equation
Dg(0)Q" + QDg(0) = —T

for () € R™*™. Set
Uloc('r) - xTQx'

Find R* such that all points in
E:={z € R" | vpe(x) < R}

satisfy v] () = VVjee(z) - g(z) < 0.



Radial Basis Functions

Choose a Radial Basis Function ¢. For n =1 or n = 2 we choose ¢ > 0 and
B [ (1 —cr)535¢*r? + 18cr + 3] forr <1
(1) = duafe 1) = { 0 otherwise.

Choose grid points X C (—o00,0] x R™ approximately in the expected
basin of attraction — do not include (0, 0).
Find R such that all points in

K, :={(r,z) € (—00,0] x R" | v(r,2) = R}
satisfy v'(1,2) < 0, and all points in
Ky :={(0,z) € {0} x R" | v(r,2) < R}

satisfy v/(0,2) <O or x € E.
Then K is a subset of the basin of attraction.
Transform K back:

K = {(t,z) € (—00,00) x R" | v(—t"", z) < R}

Matlab Files
The plots for the Matlab files are designed for dimension n = 1.

e f fun.m is the right-hand side f(t, ) of the original system.
e g fun.m is the right-hand side g(x) of the limiting system.

e F.m is the right-hand side F (7, ) of the transformed system, depend-
ing on the transformation and in particular e.

e hinv.m is the inverse of the transformation h, i.e. h=1(t) = —t™.

e locv.m is the local Lyapunov function 27 Qz where Q solves Dg(0)7Q+
QDg(0) = —1.

e gradlocv.m is the gradient of locv(z) with respect to x

e plotlocv.m
plotlocv(MAX xnumber,valloc),

plots the level set vj,.(z) =valloc in Figure 6 and 3 for 7 € [—0.2, 0] and
the function vje.(z) in Figure 1 on a grid in [—0.2,0] x [-M AX, M AX]
where the space interval is divided into 2 xnumber equal steps
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e plotlocvs.m
plotlocvs(MAX,xnumber),

plots the level set v] () = 0 in Figure 3 for 7 € [—0.2,0] and the
function v, (z) in Figure 2 on a grid in [—0.2,0] x [-MAX, M AX]
where the space interval is divided into 2 xnumber equal steps

e phi.m, phil.m, phi2.m
phi(r) is the Radial Basis Function Yy 2(c-r), phil is defined by %/r,
and phi2 is defined by 22" /r

e coefficients.m
[alpha,points,N|=coefficients(T,tN,xN, xdist,c,n,epsilon)

calculates the coefficients alpha of the approximation v

— T < 0and [T,0] is the time interval

— tN denotes the number of steps in time direction from —T7 to 0
— xdist is the distance of a step in x-direction

— xN denotes the number of steps in positive z-direction

— ¢ denotes the constant in the RBF

— n is the dimension

— points are the points (74, x) in [T, 0] x R™, N points

e v.m [v]=v(c,alpha,points,epsilon,t,x)

calculates the value of the approximation v at point (¢, x)

e vs.m [vs|=vs(c,alpha,points,epsilon,t,x)

calculates the orbital derivative v’ of approximation v at (¢, x)

e plotv.m
plotv(T,MAX,c,n,epsilon,points,tnumber,xnumber,val),

plots the level set v(7,z) =val in Figure 6 and the function v(r,x)
depending on (7,z) in Figure 4 on a grid in [T,0] x [-MAX, M AX]
where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps



e plotvs.m

plotv(T,MAX,c,n,epsilon,alpha,points,tnumber,xnumber),

plots the level set ¢'(7,2) = 0 in Figure 6 and the function v'(7, )
depending on (7,z) in Figure 5 on a grid in [T,0] x [-MAX, M AX]
where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps

plotvorg.m

plotvorg(T1,T2,MAX,c,n,epsilon,alpha,points,tnumber,xnumber,val),

plots the level set v(t,2) =val in Figure 7 on a grid in [T'1,72] x
[-MAX, MAX] where the time interval is divided into tnumber, and
the space interval is divided into 2 xnumber equal steps

plotvsorg.m

plotvsorg(T1,T2,MAX,c,n,epsilon,alpha,points,tnumber,xnumber),

plots the level set v'(¢,z) = 0 in Figure 7 on a grid in [T'1,72] X
[-MAX, MAX] where the time interval is divided into tnumber, and
the space interval is divided into 2 xnumber equal steps

Figures

1.
2.

3.

Plot of vj,e()
Plot of v],.(z)
(

Level set v],.(x) = 0 (red), vjee(x) = valloc (green)

C

Plot of v(7, x
Plot of v/(7, x)

Level set v'(1,2) = 0 (red), v(,z) = val (black) and vj,.(7, ) = valloc
(green)

Level set v/(t,x) = 0 (red), v(t,z) = val (black) and vy.(t, z) = valloc
(green) in the original time ¢



What to do

1.1

Choose the constant € and modify f_fun.m, g_fun.m, locv.m and grad-
locv.m.

— f fun: define f(t,z)
— g fun: define g(z)
— locv: Solve Dg(0)"Q + Q@Dg(0) = —I. Output is 27 Q.
— gradlocv is the gradient of locv(z) with respect to x
Use plotlocv.m and plotlocvs.m. Choose the value valloc in plotlocv

so small that the sublevel set of vy, is in the area where v} . is negative
(Figure 3)

Choose constants T, tN, xN, xdist, ¢ and n
Calculate alpha using coefficients.m

Use plotv.m and plotvs.m. Choose the value val in plotv so small that
the level set of v is in the area where v is negative, and the sublevel
set of v at 7 = 0 is either in the area where v’ is negative or which is
covered by the sublevel set of v,

If not possible, put more points into the grid (tN, xN larger and T,xdist
smaller) and/or make area covered smaller (T,xdist smaller) — (Figure
6)

Use plotvorg.m, plotvsorg.m and plotlocvor.m to obtain a plot with
respect to the original time ¢ (Figure 7)

Example

Example 5.1 from [1].

T=-1.25;tN=20;xN=10;xdist=0.09;c=2;n=1;epsilon=1/4;
[alpha,points,N]=coefficients(T,tN,xN,xdist,c,n,epsilon);

val=0.25;
plotvs(-1.25,1,c,n,epsilon,alpha,points,84,84);
plotv(-1.25,1,c,n,epsilon,alpha,points,84,84,val);

valloc=0.4;
plotlocv(1,80,valloc);



plotlocvs(1,80);

plotvsorg(0.4,10,1,c,n,epsilon,alpha,points,84,84);
plotvorg(0.4,10,1,c,n,epsilon,alpha,points,84,84,val);
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