
1 Exponentially asymptotically autonomous

systems

Let σ ∈ N. Consider the exponentially asymptotically autonomous equation
ẋ = f(t, x), x ∈ Rn, where f, g ∈ Cσ and f(t, x) → g(x) in the following
sense: for each compact set K ⊂ Rn and each ε > 0 there is a T with

‖∂γf(t, x)− ∂γg(x)‖ eαt < ε for all γ with |γ| ≤ σ,

for all x ∈ K and all t > T . Let x(t) = 0 be an exponentially stable solution.

Time transformation

Choose 0 < β ≤ α
σ

and define h(τ) = − 1
β

ln |τ |. The transformed system is

τ̇ = −βτ

ẋ =

{
f(− 1

β
ln |τ |, x) if τ 6= 0

g(x) if τ = 0

Local Lyapunov function

Solve the matrix equation(
−β 0
0 Dg(0)

)
QT +Q

(
−β 0
0 Dg(0)

)
= −I

for Q ∈ R(n+1)×(n+1). Set

vloc(τ, x) = (τ, x)Q

(
τ
x

)
.

Find R∗ such that all points in

E := {(τ, x) ∈ (−∞, 0]× Rn | vloc(τ, x) ≤ R∗}

except (τ, x) = (0, 0) satisfy v′loc(τ, x) < 0.

Radial Basis Functions

Choose a Radial Basis Function φ. For n = 1 or n = 2 we choose c > 0 and

φ(r) = ψ4,2(c · r) =

{
(1− cr)6[35c2r2 + 18cr + 3] for r ≤ 1

c

0 otherwise.
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Choose grid points X ⊂ (−∞, 0] × Rn approximately in the expected
basin of attraction – do not include (0, 0).

Find R such that all points in

K := {(τ, x) ∈ (−∞, 0]× Rn | v(τ, x) ≤ R}

satisfy v′(τ, x) < 0 or (τ, x) ∈
◦
E.

Then K is a subset of the basin of attraction.
Transform K back:

K̃ :=
{
(t, x) ∈ (−∞,∞)× Rn | v(−e−βt, x) ≤ R

}
Matlab Files

The plots for the Matlab files are designed for dimension n = 1.

• f fun.m is the right-hand side f(t, x) of the original system.

• g fun.m is the right-hand side g(x) of the limiting system.

• F.m is the right-hand side F (τ, x) of the transformed system, depend-
ing on the transformation and in particular β.

• hinv.m is the inverse of the transformation h, i.e. h−1(t) = −e−βt.

• locv.m is the local Lyapunov function lloc(τ, x).

• gradlocv.m is the gradient of the local Lyapunov function lloc(τ, x)
with respect to τ and x.

• plotlocv.m

plotlocv(T,MAX,tnumber,xnumber,valloc),

plots the level set vloc(τ, x) =valloc in Figure 6 and 3 and the func-
tion vloc(τ, x) depending on (τ, x) in Figure 1 on a grid in [−T, 0] ×
[−MAX,MAX] where the time interval is divided into tnumber equal
steps, and the space interval is divided into 2 xnumber equal steps.

• plotlocvs.m

plotlocvs(T,MAX,tnumber,xnumber,beta),

plots the level set v′loc(τ, x) = 0 in Figure 3 and the function v′loc(τ, x)
depending on (τ, x) in Figure 2 on a grid in [−T, 0]× [−MAX,MAX]
where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps.
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• phi.m, phi1.m, phi2.m

phi(r) is the Radial Basis Function ψ4,2(c · r), phi1 is defined by d phi
dr
/r,

and phi2 is defined by d phi1
dr

/r

• coefficients.m

[alpha,points,points0,pointsneg,N,N0]=coefficients(T,tN,xN,xdist,c,n,beta)

calculates the coefficients alpha for the approximation v

– T > 0 and [−T, T ] is the time interval

– tN denotes the number of steps in time direction from −T to 0

– xdist is the distance of a step in x-direction

– xN denotes the number of steps in positive x-direction

– c denotes the constant in the RBF

– n is the dimension

– points are the points with positive τ -value (τk, xk) in (0, T ]×Rn,
N points

– pointsneg are the points with negative value, also N points

– points0 are the points in {0} × Rn, N0 points

– points, pointsneg and points0 together form the grid X

• v.m [v]=v(c,alpha,points,points0,pointsneg,beta,t,x)

calculates the value of the approximation v at point (t, x)

• vs.m [vs]=vs(c,alpha,points,points0,pointsneg,beta,t,x)

calculates the orbital derivative v’ of approximation v at (t, x)

• plotv.m

plotv(T,MAX,c,n,beta,alpha,points,points0,pointsneg,tnumber,xnumber,val),

plots the level set v(τ, x) =val in Figure 6 and the function v(τ, x)
depending on (τ, x) in Figure 4 on a grid in [−T, 0]× [−MAX,MAX]
where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps.

• plotvs.m

plotv(T,MAX,c,n,beta,alpha,points,points0,pointsneg,tnumber,xnumber),

plots the level set v′(τ, x) = 0 in Figure 6 and the function v′(τ, x)
depending on (τ, x) in Figure 5 on a grid in [−T, 0]× [−MAX,MAX]
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where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps.

• plotvorg.m

plotvorg(T1,T2,MAX,c,n,beta,alpha,points,points0,pointsneg,tnumber,xnumber,val),

plots the level set v(t, x) =val in Figure 7 on a grid in [T1, T2] ×
[−MAX,MAX] where the time interval is divided into tnumber, and
the space interval is divided into 2 xnumber equal steps

• plotvsorg.m

plotvsorg(T1,T2,MAX,c,n,beta,alpha,points,points0,pointsneg,tnumber,xnumber),

plots the level set v′(t, x) = 0 in Figure 7 on a grid in [T1, T2] ×
[−MAX,MAX] where the time interval is divided into tnumber, and
the space interval is divided into 2 xnumber equal steps

Figures

1. Plot of vloc(τ, x)

2. Plot of v′loc(τ, x)

3. Level set v′loc(τ, x) = 0 (red), vloc(τ, x) = valloc (green)

4. Plot of v(τ, x)

5. Plot of v′(τ, x)

6. Level set v′(τ, x) = 0 (red), v(τ, x) = val (black) and vloc(τ, x) = valloc
(green)

7. Level set v′(t, x) = 0 (red), v(t, x) = val (black) and vloc(t, x) = valloc
(green) in the original time t

What to do

• Choose the constant β and modify f fun.m, g fun.m, locv.m and grad-
locv.m.

– f fun: define f(t, x)

– g fun: define g(x)
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– locv: Solve

(
−β 0
0 Dg(0)

)
QT +Q

(
−β 0
0 Dg(0)

)
= −I. Out-

put is (τ, x)Qx

– gradlocv is the gradient of locv(τ, x) with respect to τ and x

• Use plotlocv.m and plotlocvs.m. Choose the value valloc in plotlocv
so small that the sublevel set of vloc is in the area where v′loc is negative
(Figure 3)

• Choose constants T, tN, xN, xdist, c and n

• Calculate alpha using coefficients.m

• Use plotv.m and plotvs.m. Choose the value val in plotv so small that
the sublevel set of v is either in the area where v′ is negative or which
is covered by the sublevel set of vloc

• If not possible, put more points into the grid (tN, xN larger and T,xdist
smaller) and/or make area covered smaller (T,xdist smaller) – (Figure
6)

• Use plotvorg.m, plotvsorg.m and plotlocvor.m to obtain a plot with
respect to the original time t (Figure 7)

1.1 Example

Example from [1].

beta=0.5;valloc=0.5;

plotlocv(1.5,2,54,54,valloc);

plotlocvs(1.5,2,54,54,beta);

T=2;tN=40;xN=11;xdist=0.06;c=2;n=1;%Definition of the constants

[alpha,points,points0,pointsneg,N,N0]=coefficients(T,tN,xN,xdist,c,n,beta);

%Calculation of the vector alpha

val=-0.45;

plotv(1.5,1.5,c,n,beta,alpha,points,points0,pointsneg,54,54,val);

plotvs(1.5,1.5,c,n,beta,alpha,points,points0,pointsneg,104,104);
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plotvorg(-1,5,1.5,c,n,beta,alpha,points,points0,pointsneg,100,70,val);

plotvsorg(-1,5,1.5,c,n,beta,alpha,points,points0,pointsneg,100,70);

plotlocvorg(-1,5,2,54,54,beta,valloc);
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