1 Exponentially asymptotically autonomous
systems

Let o € N. Consider the exponentially asymptotically autonomous equation
T = f(t,z), x € R", where f,g € C? and f(t,x) — g(x) in the following
sense: for each compact set K C R"™ and each € > 0 there is a T" with

107 f(t,x) — O7g(z)]| e < e for all v with |y] < o,

forall z € K and all t > T'. Let 2(t) = 0 be an exponentially stable solution.

Time transformation

Choose 0 < # < 2 and define h(7) = —% In |7]. The transformed system is

T = =07
P { f(—%ln|7|,x) %fT#O
g(x) ifr=0

Local Lyapunov function

Solve the matrix equation

(3 ost0 )@ (7 pgtn )=

for Q € RIHDX(n+1) - Get

1%@@%4%@@(7)-

x
Find R* such that all points in
E:={(r,z) € (—00,0] X R" | vype(1,2) < R*}

except (7,x) = (0,0) satisfy v .(7,2) < 0.

Radial Basis Functions

Choose a Radial Basis Function ¢. For n =1 or n = 2 we choose ¢ > 0 and
B [ (1 —cr)5[35¢*r? + 18cr + 3] forr <1
o(r) = duale 1) = { 0 otherwise.



Choose grid points X C (—o0,0] x R™ approximately in the expected
basin of attraction — do not include (0, 0).
Find R such that all points in

K :={(r,z2) € (—00,0] x R" | v(1,2) < R}

satisfy o'(7,2) <0 or (1,2) € E.
Then K is a subset of the basin of attraction.
Transform K back:

K = {(t,z) € (—00,00) x R" | v(—e " 2) < R}

Matlab Files

The plots for the Matlab files are designed for dimension n = 1.

f fun.m is the right-hand side f(t,z) of the original system.
g_fun.m is the right-hand side g(x) of the limiting system.

F.m is the right-hand side F(7, x) of the transformed system, depend-
ing on the transformation and in particular [.

hinv.m is the inverse of the transformation h, i.e. h=1(t) = —e "L
locv.m is the local Lyapunov function lj,.(7, x).

gradlocv.m is the gradient of the local Lyapunov function [,.(7, x)
with respect to 7 and .

plotlocv.m

plotlocv(T,MAX, tnumber,xnumber,valloc),

plots the level set vy.(7,2) =valloc in Figure 6 and 3 and the func-
tion vye.(7,2) depending on (7,x) in Figure 1 on a grid in [—7),0] x
[-MAX, M AX] where the time interval is divided into tnumber equal
steps, and the space interval is divided into 2 xnumber equal steps.

plotlocvs.m

plotlocvs(T,MAX, tnumber,xnumber,beta),

plots the level set v;,.(7,2) = 0 in Figure 3 and the function v, (7, z)
depending on (7, z) in Figure 2 on a grid in [-T,0] x [-MAX, M AX]
where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps.
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e phi.m, phil.m, phi2.m
phi(r) is the Radial Basis Function Yy 2(c- ), phil is defined by % /r,
and phi2 is defined by d’;—};” /T

e coefficients.m
[alpha,points,points0,pointsneg, N, NO|=coefficients(T,tN,xN xdist,c,n,beta)

calculates the coefficients alpha for the approximation v

— T >0 and [T, 7] is the time interval

— tN denotes the number of steps in time direction from —7" to 0
— xdist is the distance of a step in x-direction

— xN denotes the number of steps in positive z-direction

— ¢ denotes the constant in the RBF

— n is the dimension

— points are the points with positive 7-value (74, ) in (0, 7] x R™,
N points

— pointsneg are the points with negative value, also N points
— points0 are the points in {0} x R", NO points
— points, pointsneg and pointsO together form the grid X

v.m [v]=v(c,alpha,points,points0,pointsneg,beta,t,x)

calculates the value of the approximation v at point (¢, x)

e vs.m [vs]=vs(c,alpha,points,points0,pointsneg,beta,t,x)

calculates the orbital derivative v’ of approximation v at (¢, z)

e plotv.m
plotv(T,MAX,c,n,beta,alpha,points,points0,pointsneg,tnumber, xnumber,val),

plots the level set v(7r,x) =val in Figure 6 and the function v(7,x)
depending on (7, z) in Figure 4 on a grid in [-T,0] x [-MAX, M AX]
where the time interval is divided into tnumber equal steps, and the
space interval is divided into 2 xnumber equal steps.

e plotvs.m

plotv(T,MAX,c,n,beta,alpha,points,points0,pointsneg,tnumber,xnumber),

plots the level set ¢'(7,2) = 0 in Figure 6 and the function v'(7, )
depending on (7, z) in Figure 5 on a grid in [-7,0] x [-MAX, M AX]
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where the time interval is divided into tnumber equal steps, and the

space interval is divided into 2 xnumber equal steps.

plotvorg.m
plotvorg(T1,T2,MAX,c,n,beta,alpha,points,points0,pointsneg,tnumber,xnumber,val),

plots the level set v(t,2) =val in Figure 7 on a grid in [1'1,72] x
[-MAX, M AX] where the time interval is divided into tnumber, and
the space interval is divided into 2 xnumber equal steps

plotvsorg.m

plotvsorg(T1,T2,MAX,c,n,beta,alpha,points,points0,pointsneg,tnumber,xnumber),

plots the level set v'(t,2) = 0 in Figure 7 on a grid in [T1,72] X
[-MAX, M AX] where the time interval is divided into tnumber, and
the space interval is divided into 2 xnumber equal steps

Figures

1.
2.

3.

Plot of vje(T, x)

Plot of v},.(7, x)

Level set v),.(T,2) = 0 (red), vjoe(T, ) = valloc (green)
Plot of v(r, x)

Plot of v/(7, x)

Level set v'(7,2) = 0 (red), v(7,z) = val (black) and vj,.(7, x) = valloc
(green)

Level set v/(t,z) = 0 (red), v(t,z) = val (black) and v,.(t, z) = valloc
(green) in the original time ¢

What to do

e Choose the constant 3 and modify f fun.m, g_fun.m, locv.m and grad-

locv.m.

— f fun: define f(t,z)
— g fun: define g(z)



_ : -6 0 T -6 0 _
locv: Solve ( 0 Dg(0) QR +Q 0 Dg(0) )~ I. Out-
put is (7, x)Qx

— gradlocv is the gradient of locv(T, z) with respect to 7 and x

e Use plotlocv.m and plotlocvs.m. Choose the value valloc in plotlocv
so small that the sublevel set of vy, is in the area where v} . is negative
(Figure 3)

e Choose constants T, tN, xN, xdist, ¢ and n
e Calculate alpha using coefficients.m

e Use plotv.m and plotvs.m. Choose the value val in plotv so small that
the sublevel set of v is either in the area where v’ is negative or which
is covered by the sublevel set of v,

e If not possible, put more points into the grid (tN, xN larger and T xdist
smaller) and/or make area covered smaller (T xdist smaller) — (Figure
6)

e Use plotvorg.m, plotvsorg.m and plotlocvor.m to obtain a plot with
respect to the original time ¢ (Figure 7)

1.1 Example

Example from [1].

beta=0.5;valloc=0.5;
plotlocv(1.5,2,54,54,valloc);
plotlocvs(1.5,2,54,54,beta);

T=2;tN=40;xN=11;xdist=0.06;c=2;n=1;%Definition of the constants
[alpha,points,pointsO,pointsneg,N,NO]=coefficients(T,tN,xN,xdist,c,n,beta);
%Calculation of the vector alpha

val=-0.45;
plotv(1.5,1.5,c,n,beta,alpha,points,pointsO,pointsneg,54,54,val);
plotvs(1.5,1.5,c,n,beta,alpha,points,pointsO,pointsneg,104,104);



plotvorg(-1,5,1.5,c,n,beta,alpha,points,pointsO,pointsneg,100,70,val);
plotvsorg(-1,5,1.5,c,n,beta,alpha,points,points0,pointsneg,100,70);
plotlocvorg(-1,5,2,54,54,beta,valloc);
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