

Ambiguity Helps: Classification with Disagreements in Crowdsourced Annotations

Viktoriia Sharmanska

Joint work with Daniel Hernández-Lobato, José Miguel Hernández-Lobato, and Novi Quadrianto

Ambiguity

Examples of ambiguous tasks: deciding whether a place is "fun" or "not fun" from an image.

©by Lisa, Milhouse, and Homer

Collecting attribute annotations using Amazon Mechanical Turk

What Do We Propose?

 To re-think the common practice in crowdsourcing (take the majority vote among trusted annotators and disregard disagreements).

Technical contribution:

A framework to incorporate annotation disagreements into the learning process of a classifier.

Setup:

We are given data instances \mathbf{x}_n , their associated labels y_n , and label confidence $\mathbf{x}_n^{\text{conf}}$, for example, agreement among annotators (in the *cartoon* example, it is $^2/_3$ for CVPR as a fun place to be).

Ambiguity Model GPC^{conf}

Gaussian process classification (GPC) Under this model $p(y_n|\mathbf{x}_n,f)=\Theta(y_nf(\mathbf{x}_n))$ for class label $y_n\in\{-1,1\}$, where $\Theta(\cdot)$ denotes Heaviside step function and f is assumed to be generated by a Gaussian process, i.e., $f(\mathbf{x}_n)\sim\mathcal{GP}(0,k(\mathbf{x}_n,\cdot))$, for some covariance function $k(\mathbf{x}_n,\cdot)$.

GPC with annotation disagreements (GPC^{conf}) We introduce another latent function g that takes into account the confidence in label annotations $\mathbf{x}_n^{\text{conf}}$, $g(\mathbf{x}_n^{\text{conf}}) \sim \mathcal{GP}(0, k(\mathbf{x}_n^{\text{conf}}, \cdot))$.

Ambiguity Model GPC^{conf}

The GPCconf model is:

$$p(y_n|\mathbf{x}_n, \mathbf{x}_n^{\mathsf{conf}}, f, g) = \Theta\big(y_n f(\mathbf{x}_n)\big)^{1 - \Theta\big(g(\mathbf{x}_n^{\mathsf{conf}})\big)} \big(1/2\big)^{\Theta\big(g(\mathbf{x}_n^{\mathsf{conf}})\big)} \,.$$

- For un-ambiguous data points, the standard likelihood is used $(g(\mathbf{x}_n^{\text{conf}})$ is negative);
- For ambiguous data points CVPR is a fun place to be, the influence is reconsidered when learning the concept fun $(g(\mathbf{x}_n^{\text{conf}})$ is positive).

Inference: Confidence in Annotations

For a particular instance \mathbf{x}_n , $\mathbf{x}_n^{\text{conf}}$, y_n , by marginalizing g, the associated term in the likelihood function of f is:

$$p(g(\mathbf{x}_n^{\mathsf{conf}}) > 0) \, \frac{1}{2} \, + \, (1 - p(g(\mathbf{x}_n^{\mathsf{conf}}) > 0)) \, \Theta(y_n f(\mathbf{x}_n)).$$

During inference, an instance with less **confidence** will have its likelihood being **ignored** (1/2), having reduced influence (a mixture of 1/2 and step likelihood), or being as informative as confident instances (a step likelihood).

All you need in this life is **ignorance** and **confidence**, and then success is sure.

Mark Twain

Posterior Inference: Expectation Propagation for GPCconf

The posterior is approximated by the product of two Gaussians:

$$\underbrace{\frac{\prod_{n=1}^{N} p(y_n | \mathbf{f}, \mathbf{g}, \mathbf{x}_n, \mathbf{x}_n^{\mathsf{conf}}) p(\mathbf{f}) p(\mathbf{g})}{p(\mathbf{y} | \mathbf{X}, \mathbf{X}^{\mathsf{conf}})}}_{\mathsf{posterior}} \approx \mathcal{N}(\mathbf{f} | \mathbf{m}_f, \mathbf{\Sigma}_f) \mathcal{N}(\mathbf{g} | \mathbf{m}_g, \mathbf{\Sigma}_g) \,.$$

Each factor $p(y_n|\mathbf{x}_n,\mathbf{x}_n^{\mathsf{conf}},f,g)$ is approximated as:

$$\overline{z}_n \mathcal{N}(f(\mathbf{x}_n)|\overline{m}_f,\overline{v}_f) \mathcal{N}(g(\mathbf{x}_n^{\mathsf{conf}})|\overline{m}_g,\overline{v}_g) \,.$$

The parameters \overline{z}_n , \overline{m}_f , \overline{m}_g , \overline{v}_f and \overline{v}_g can be obtained from the log of:

$$Z_n = \underbrace{\Phi({}^{m^{-n}}/\sqrt{v^{-n}})\Phi({}^{-\mu^{-n}}/\sqrt{v^{-n}}) + \Phi({}^{\mu^{-n}}/\sqrt{v^{-n}})/2}_{\text{novelty: prior work GPC+ requires a quadrature approach}},$$

where $m^{-n}, v^{-n}, \mu^{-n}, \nu^{-n}$ are parameters of a (cavity) distribution, a posterior minus the approximate factor.

Code is available at author's homepage.

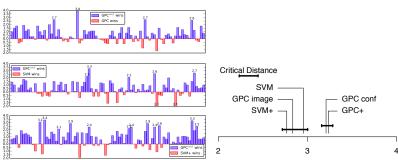
Results: Ambiguity in Recognizing Semantic Attributes

Click on the scenes below that contain the following lighting or material warm

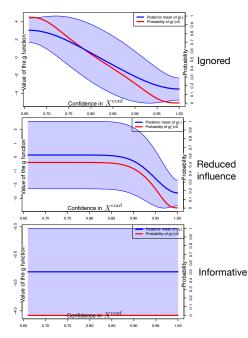
• SUN Attribute dataset: 83 attributes, as confidence we use MTurk annotations of attributes being present in the images.

Results: Ambiguity in Recognizing Semantic Attributes

 Pairwise comparison in terms of difference in accuracies and statistical comparison of all methods using Demšar:



Analysis of the confidence in annotations



Representative posterior mean of the g function and 1-std confidence interval (solid blue curve) and the probability of g>0 (solid red curve) for three different cases.

Results: Ambiguity to Distinguish Easy from Hard Images

 AwA dataset: 8 animal classes; easy-hard score annotation is available per image that shows how easy/hard it is to spot the animal based on MTurk user study

Results: Ambiguity to Distinguish Easy from Hard Images

 The binary task is to distinguish easy from hard images of the class, where label confidence reflects the easy-hard score:

	GPC	GPC ^{conf} (ours)	SVM+	SVM	
	image	image+conf	image+conf	image	
Chimp.	74.86 ± 0.8	74.93 ± 0.7	$\textbf{75.07} \pm \textbf{0.7}$	73.71 ± 0.9	
G.panda	80.64 ± 0.5	81.17 ± 0.6	81.33 ± 0.5	80.53 ± 0.6	
Leo	81.67 ± 0.7	82.00 ± 0.7	80.58 ± 0.6	80.42 ± 0.8	
Pers.cat	79.72 ± 0.4	80.14 ± 0.4	79.15 ± 0.7	78.17 ± 1.0	
Hippo	72.85 ± 1.0	72.78 ± 1.1	$\textbf{73.33} \pm \textbf{1.4}$	73.06 ± 1.1	
Raccoon	78.57 ± 1.0	$\textbf{78.81} \pm \textbf{0.8}$	76.98 ± 0.8	76.51 ± 0.6	
Rat	84.33 ± 1.5	84.00 ± 1.5	83.50 ± 1.8	81.50 ± 1.8	
Seal	48.00 ± 1.4	48.10 ± 1.2	48.50 ± 0.8	49.20 ± 0.8	

• Running time

	GPC	GPC ^{conf}	GPC+	SVM	SVM+
SUNAttribute	27m.	32m.	51m.	6m.	106m.
AwA	32m.	42m.	73m.	10m.	252m.

Summary

- We propose to incorporate annotation disagreements when learning a classifier for inherently ambiguous tasks.
- We do not remove ambiguous instances, and we do not redefine data collection process
- Future direction: deep disagreement, or how to incorporate ambiguos labels into deep neural networks.

Thank You!