
Optimal Web-scale Tiering as a Flow Problem

1: eBay | 2: SML-NICTA & RSISE-ANU | 3: Yahoo! Research

Gilbert Leung1 | Novi Quadrianto2 | Alex Smola3 | Kostas Tsioutsiouliklis3

Abstract

•We present a fast online solver for large scale parametric max-flow problems as they occur in portfolio
optimization, inventory management, computer vision, and logistics;

•Our algorithm solves an integer linear program in an online fashion;

• It exploits total unimodularity of the constraint matrix and a Lagrangian relaxation to solve the problem as
a convex online game;

• The algorithm generates approximate solutions of max-flow problems by performing stochastic gradient
descent on a set of flows;

•We apply the algorithm to optimize tier arrangement of over 80 Million web pages on a layered set of
caches to serve an incoming query stream optimally.

Motivating Example

The Tiering Problem

Goal:

• Select documents to be stored in successive tiers or caches of decreasing access frequency

• such that frequently accessed documents are found in the highest tiers

• thus the search engine will be able to cover incoming queries with low latency and computational load.

One proposed solution:

•Assign a value to each document and arrange them such that the highest valued documents reside in the
highest levels of the cache;

• But this is sub-optimal.

Reason: to answer a given query well, a search engine returns not only a single document but a list of r
(typically r = 10) documents.

doc 1
doc 2.
doc 3
doc 4
doc 5
doc 6
doc 7
doc 8
doc 9
doc 10

cache 1

cache 2

cache 3

doc 1

doc 3

doc 2

doc 7

doc 4

doc 6

doc 5

doc 8

Other Similar Problems

•Database record segmentation: queries → subsets of data items being retrieved by users and documents
→ all data items;

• Critical load factor determination in two-processor systems: queries → pairs of program modules that
need to communicate with each other and documents → all program modules;

• Product portfolio selection: queries → historical orders and documents → products;

• ???.

Tiering Optimization Problem

Problem Setting

What we have:

• d ∈ D, the documents we would like to cache; q ∈ Q, the queries arriving at a search engine;

• vq ∈ (0,V), the value for a query q;

• T = {1, . . . , k}, the k different tiers with its associated aggregate capacity Ct for t′ ≤ t;

• a bipartite graph G with vertices D∪Q and edges (d, q) ∈ E whenever document d should be retrieved for
query q;

• a penalty pt of incurring a tier-miss of level t > 1.

What we want:

• an assignment of each document to a tier, zd ∈ T .

Online Programming

The cost of access (per query)
is determined by the worst case tier of the documents associated with the query, i.e. uq := maxd:(q,d)∈G zd.
Integer Programming:

minimize
z

∑
q∈Q

vq

maxd:(q,d)∈G zd∑
j=1

p j s.t. zd ∈ {1, . . . , k};
∑
d∈D

I{zd≤t} ≤ Ct, ∀ 1 ≤ t ≤ k (1)

Two-tier (single cache system):

minimize
z

∑
q∈Q

vq max
d:(q,d)∈G

zd s.t. zd ∈ {0, 1};
∑
d∈D

zd ≥ |D| −C (2)

(Reformulation as) Linear Integer Programming:

minimize
z,u

∑
q∈Q

vquq s.t. uq ≥ zd for all (q, d) ∈ G; zd, uq ∈ {0, 1};
∑
d∈D

zd ≥ |D| −C (3)

(Relaxation as) Linear Programming:

minimize
z,u

∑
q∈Q

vquq − λ
∑
d∈D

zd s.t. uq ≥ zd for all (q, d) ∈ G; zd, uq ∈ [0, 1]; λ ≥ 0 (4)

(Reformulation as) Linear Programming (in term of one variable):

minimize
z

∑
q∈Q

vq max
d:(q,d)∈G

zd −
λ

|Q|

∑
d∈D

zd

︸ ︷︷ ︸
`q

s.t. zd, uq ∈ [0, 1]; λ ≥ 0 (5)

Algorithm

Initialize all z = 0
Set n = 100
for i = 1 to MAXITER do

for all q ∈ Q do
η = 1√

n
(learning rate)

n← n + 1 (increment counter)
Update z← z − η∂z`q(z)
Project z to [0, 1]D via zd ← max(0,min(1, zd))

end for
end for

Experiments

Practical Considerations:

• Lazy updates: only updating docs that are retrieved by a query. Define s(n) :=
∑n

j=1 η j as an aggregate
gradient step and let δ(n′, n) := (s(n′) − s(n)). Its approximations:

δ(n′, n) =

n′∑
j=n+1

1
√

j + n0
≈

∫ n′

n

1
√

j + n0
2
[√

n′ + n0 −
√

n + n0
]

;

•Data reduction: any query occurring more frequently vq than λwill automatically ensure that the associated
pages are cached. As well, any document d for which

∑
q∈Q vq is displayed less than λ will definitely not

be in the cache.

Toy Data Experiments

•A random bipartite query-page graph using 150
queries and 150 pages. Each query vertex has a de-
gree of 3, and value vq := 10(2 + q)−0.8;
• Session miss evaluation: for each session q, a miss

occurs if any one of the associated pages is not found
in cache, incurring vq misses for that session;
• Result comparisons with the max and sum heuristics;
• Left figures: 2-tier system; Bottom: 3-tier system.

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

1.1

1.2

1.3

1.4

Tier−0 Size

3−Tier System: OPT versus MAX

Tier−1 Size

R
el

at
iv

e
Im

pr
ov

em
en

t

1.05

1.1

1.15

1.2

1.25

1.3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
1

1.1

1.2

1.3

1.4

Tier−0 Size

3−Tier System: OPT versus SUM

Tier−1 Size

R
el

at
iv

e
Im

pr
ov

em
en

t

1.1

1.15

1.2

1.25

1.3

1.35

Web Data Experiments

•Data come from the logs for one week of September 2009 containing results from the top geographic
regions which include a majority of the search engine’s user base;

•We only record a (query, document) pair, appears in top 10 (first result page) for a given session and we
aggregate the view counts of such results, which will be used for the session value;

• In its entirety this subset contains about 108 viewed documents and 1.6 · 107 distinct queries. We excluded
results viewed only once, yielding a final data set of 8.4 · 107 documents.

