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Abstract
Feature selection has been studied in machine
learning and data mining for many years, and
is a valuable way to improve classification accu-
racy while reducing model complexity. Two main
classes of feature selection methods - filter and
wrapper - discard those features which are not se-
lected, and do not consider them in the predictive
model. We propose that these unselected features
may instead be used as an additional source of in-
formation at train time. We describe a strategy
called Learning using Unselected Features (LUFe)
that allows selected and unselected features to serve
different functions in classification. In this frame-
work, selected features are used directly to set
the decision boundary, and unselected features are
utilised in a secondary role, with no additional cost
at test time. Our empirical results on 49 textual
datasets show that LUFe can improve classification
performance in comparison with standard wrapper
and filter feature selection.

1 Introduction
Feature selection is a standard procedure in machine learning
and data mining, where a subset of the attributes available in
a dataset is chosen to build a predictive model, or attributes
are re-weighted based on importance to the model.

Current feature selection methods are broadly grouped into
three categories. Filter methods rank attributes individually,
according to some property such as statistical comparison
with the labels. Wrapper methods iteratively select and eval-
uate different subsets of attributes in terms of classifier per-
formance. Embedded methods perform feature selection con-
currently with learning the classifier’s parameters.

There is a division between these feature selection meth-
ods. Filter and wrapper methods can be summarised as com-
binatorial methods, because they involve the binary decision
to either include or exclude each feature, whereas embedded
methods are continuous, and involve varying the non-discrete
weight of each feature. Combinatorial methods produce a
‘local view’, where only the selected subset is used to build
the classifier, whereas continuous methods produce a ‘global
view’, where the predictive model can access all the features.

These two different approaches to feature selection have dif-
ferent benefits and drawbacks. Combinatorial methods have
the advantage of being less computationally expensive at test
time, as they only consider the selected features. However,
this local view means that once a feature is unselected, it will
not be considered at all in the subsequent classification. Con-
versely, the entire feature space is taken into account by the
global view of continuous methods, but this has the disadvan-
tage of higher computational cost.

In this paper we explore the space between combinato-
rial and continuous approaches. Specifically, we propose a
method to enhance combinatorial feature selection, in order to
gain the advantage of a global view, while maintaining lower
complexity at test time. This method therefore combines the
respective benefits of both combinatorial and continuous fea-
ture selection. This is achieved through the inclusion of the
unselected features into the predictive model, in a secondary
role. We therefore call this technique Learning using Unse-
lected Features (LUFe).

The conceptual contribution of this research is to allow
different features to serve different functions in classifica-
tion, with feature selection used to assign these roles. In this
framework, the most informative features are used directly in
setting the decision boundary, while the less informative fea-
tures play an indirect role in guiding the learning process. We
conjecture that the unselected features help by constraining
the feasible set which is searched for the decision boundary.

We provide exhaustive experimental evaluation on 49 tex-
tual datasets; the results demonstrate that LUFe can indeed
improve classification performance compared to traditional
combinatorial feature selection, without incurring extra costs
at test time. We demonstrate that this improvement occurs for
both filter and wrapper feature selection methods.

2 Background and Related Work
In the context of data analysis, a number of learning tasks
can be performed on a given set of training data. These in-
clude classification, regression, ranking, and novelty detec-
tion. However, before this learning is performed, the di-
mensionality of the data (number of features), is typically
reduced, for a number of reasons [Kohavi and John, 1997;
Molina et al., 2002; Guyon and Elisseeff, 2003; Navot et
al., 2005]. An excessive number of features leads to higher



data collection cost, greater difficulty in model interpreta-
tion, higher computational cost for the classifier, and in many
cases, decreased generalization ability [Song et al., 2012].
Feature selection is therefore an important step in many data
mining and machine learning tasks.

Feature selection methods are grouped into three broad cat-
egories: filter, wrapper, and embedded approaches. Filter ap-
proaches evaluate feature informativeness based on correla-
tion criteria between input data and its labels such as Pear-
son’s Correlation [Van’t Veer et al., 2002], mean differences
between classes such as t-statistics [Smyth, 2004], or the gen-
eralization of those two approaches in terms of non-linear
dependency measure between data and labels with Hilbert-
Schmidt Independence Criterion (HSIC) [Song et al., 2012].

Wrapper methods assess a feature’s value by using a par-
ticular learning method of interest. The de facto example
of wrapper techniques is recursive feature elimination (RFE)
[Guyon et al., 2002], which ‘wraps’ a support vector machine
(this is referred to as RFE-SVM) and removes features with
low SVM weights. RFE relies on a backward feature selec-
tion process, which starts with a full set of features and it-
eratively deletes the least informative ones. Forward feature
selection methods, which start with an empty set and itera-
tively add informative features, are also available.

Sparse regularization methods, such as those based on an
L1 regularization term, are an example of embedded tech-
niques. For these methods, feature selection is performed
as part of the statistical estimation procedure. They are
generally less computationally expensive and less prone to
over-fitting [Guyon and Elisseeff, 2003] than wrapper meth-
ods. Embedded methods are not without computational chal-
lenges; this is mostly caused by the non-smooth nature of the
regularization term. However, due to growing interest, effi-
cient solvers have been proposed for logistic regression with
L1 regularization [Lee et al., 2006; Koh et al., 2007], support
vector machine with L1 regularization [Zhu et al., 2004], and
recently using proximal algorithms [Parikh and Boyd, 2014].

Our work expands upon an earlier proof of concept for
the usage of discarded attributes [Caruana and de Sa, 2003],
wherein these attributes were used as extra outputs in a multi-
task learning setting [Caruana, 1997]. Conversely, our ap-
proach incorporates this information as a secondary input at
train time. We provide more extensive and robust evidence
of the benefit of incorporating discarded features, beyond the
usage in multi-task learning shown in that paper.

The LUFe model described in this paper is designed to al-
low the classifier to employ a global view of the entire feature
space, while using combinatorial feature selection. Wu et al.
followed similar motivation to propose Bayesian model aver-
aging (BMA) as an alternative to feature selection [Wu et al.,
2015]. This model relies on averaging over multiple classi-
fiers, which each uses a different feature subset. The resul-
tant averaged model considers the exponential-sized ‘power
set’ of all possible feature subsets, which effectively enables
access to a global view. However, this approach is restricted
to a naı̈ve Bayes classifier, in order to exploit the assump-
tion of conditional independence between features, to make
the problem computationally tractable. In contrast, our pro-
posed framework is general in principle, as it works with any

suitable choice of classifier. Furthermore, it does not involve
extra computational cost at test time.

Learning Using Privileged Information (LUPI) is a learn-
ing paradigm that allows extra information, that is available
only for training data, to be incorporated into the classifier
[Vapnik and Vashist, 2009]. This ‘privileged information’ is
portrayed as highly informative data, comparable to the assis-
tance of a teacher during human learning. It is of a different
modality to the standard information, and is unavailable at
test time. The LUFe technique described in this paper takes
inspiration from LUPI. However, our interpretation is novel,
as the secondary data source consists of features which are
of the same modality, and have been designated as less infor-
mative, in contrast to the privileged information described by
[Vapnik and Vashist, 2009]. We will further discuss the rela-
tions between LUFe and LUPI in the remark at the conclusion
of Section 3.

3 Learning using Unselected Features (LUFe)
Let input X = {x1, . . . ,xN} and output Y = {y1, . . . , yN}.
In a typical learning setting, we are given a set of N input-
output data points (X,Y ) = {(x1, y1), . . . , (xN , yN )} ⊂
X × Y . In this paper, we focus on a binary classification
task, that is Y = {+1,−1} and D dimensional feature rep-
resentation of the data, that is X = RD. We seek to infer
a latent binary classification function f : X → {+1,−1}
that is taken from a particular function space F . The inferred
classifier f will then be used to attach a label ynew for a new
input xnew. We assume that it is necessary to reduce data
dimensionality for the purpose of reducing storage and com-
putational requirements at deployment time. To achieve this,
we will focus on filter and wrapper approaches.

Trading off between the number of features used and the
(regularised) training error has usually been solved in a two-
stage approach [Weston et al., 2003]: feature selection via
filter or wrapper, followed by minimizing the training error
in a regularised risk functional framework [Vapnik, 1995].
Here feature selection can be understood as a combinatorial
optimization problem. We denote a full set of features as T .
Each element in the set T is corresponds to one data dimen-
sion, therefore, we have |T | = D. The goal of feature selec-
tion techniques is to select a subset of features S ⊆ T such
that this subset contains the most non-redundant information
of X . Suppose we have defined a feature quality functional
Q(S) that captures the informativeness of a feature subset;
this is computed by restricting the data X to have only fea-
tures that are contained in S. The combinatorial problem of
feature selection can then be formulated as follows:

Ŝ = argmax
S∈T

Q(S) (1a)

subject to |S| ≤ K, (1b)

where K is an upper bound on the desired number of fea-
tures. We will subsequently denote the selected feature sub-
set as Ŝ and the unselected feature subset as Û := T \ Ŝ.
It is generally an NP-hard problem to find a global solution
to the formulation in (1) [Weston et al., 2003]. In practice, a
greedy approach such as forward feature selection, backward



feature selection, or a mixed approach is adopted [Guyon et
al., 2002]. There are numerous candidates for the feature cri-
terionQ(·) in the data mining and machine learning literature
(vide section 2).

It is now worth highlighting the following two important
observations regarding the trade off between the number of
features used and the (regularised) training error in the con-
text of filter and wrapper feature selection methods.

Observation 1: Once a subset of features is unselected,
they will not be considered in the subsequent regularized risk
minimization. Standard feature selection methods simply dis-
card those features Û that were not chosen for subset Ŝ. This
standard practice has been only rarely disputed, such as by
[Caruana and de Sa, 2003] (as discussed in section 2).

Observation 2: Removing unselected features directly
translates to reducing the complexity of the classification
function f . Less complex models will produce lower predic-
tion variability (less variance), but at the expense of higher
bias with respect to the correct value. Bias-variance trade off
translates directly into the generalization performance of the
classifier. Hence, it is desirable to reduce the bias in the con-
text of filter and wrapper feature selection methods.

The main conceptual contribution of this paper is to rethink
the practice of filter and wrapper feature selection approaches
that perform a local view of regularized risk minimization.
Triggered by the two observations above, we ask the follow-
ing question: can we take both selected and unselected fea-
tures into account in different roles during the regularized risk
minimization, to bias the learning process of a classifier to-
wards better generalization performance? It is important to
note that the unselected features will not be available at de-
ployment time, therefore, they can not be used as a direct input
to the latent function f .

The main intuition of our proposed Learning using Uns-
elected Features (LUFe) method is that the feature criterion
computed for unselected features, i.e. Q(Û), can be used
to define a data-dependent upper bound on the classifier’s
loss function incurred using selected features. In effect, the
unselected features will constrain the feasible set which is
searched for the classifier’s decision boundary. This ‘upper
bound’ is a heuristic, which depends on the choice of feature
evaluation metric.

Definition 1: for each data point xi, the data-dependent up-
per bound on the classifier’s loss incurred when using selected
features xŜi is defined as Qi(Û) =

〈
xÛi ,Q(Û)

〉
, where xÛi

is the restriction of a data point xi to have only unselected
features and we have abused the notation Q(Û) to denote an
array of computed feature criterion on all singletons of Û .

The following assumption is needed for LUFe.
Assumption 1: The feature criterion Q(·) is non-negative.
Assumption 1 is rather a weak assumption and is fulfilled

in almost all criteria of feature selection methods, such as,
RFE [Guyon et al., 2002], HSIC [Song et al., 2012], mutual
information [Lefakis and Fleuret, 2014], and leverage score
[Paul et al., 2015].

Consider now the linear form of a classifier function
f(x) := 〈w,x〉+ b, the LUFe optimization problem can then

be described as follows:

minimize
w,b

‖w‖2`2 (2a)

subject to, for all i = 1, . . . , N,

1−yi[〈w,xŜi 〉+ b]︸ ︷︷ ︸
classifier’s loss

based on selected features

≤
〈
xÛi ,Q(Û)

〉
.︸ ︷︷ ︸

data-dependent upper bound
based on unselected features

(2b)

The above problem formulation resembles hard-margin
SVMs with a data-dependent margin for i-th data point de-
fined as 1 − Qi(Û). The constraint in (2b) enforces the fol-
lowing:

• A small value of data-dependent upper bound Qi(Û)
means the informativeness of unselected features is rel-
atively low and of selected features is relatively high,
therefore we expect the classifier based on selected fea-
tures to perform well. This is reflected by a small upper
bound value on the classifier’s loss.

• On the contrary, a large value of data-dependent upper
bound Qi(Û) means the informativeness of unselected
features is relatively high and of selected features is rela-
tively low (albeit it is of course still higher than the infor-
mativeness of unselected features), therefore we should
not expect the classifier to perform well. This is reflected
by a large upper bound value on the classifier’s loss.

Based on Definition 1, we can further generalize the LUFe
formulation in (2) by replacing the array of computed feature
criterion on all singletonsQ(Û) with an unknown weight vec-
tor w?. The general formulation of LUFe is now:

minimize
w,b,w?

‖w‖2`2 + λ1 ‖w?‖2`2 + λ2

N∑
i=1

〈
xÛi ,w

?
〉

(3a)

subject to, for all i = 1, . . . , N,

1− yi[〈w,xŜi 〉+ b] ≤
〈
xÛi ,w

?
〉

(3b)〈
xÛi ,w

?
〉
≥ 0. (3c)

In the above, the weight vector w is a K-dimensional vec-
tor and w? is a (D-K)-dimensional vector. The scalar param-
eters λ1 and λ2 are the trade-off parameters. The second and
third terms of the objective function in (3a) are added to en-
sure that the pseudo feature criterion values on all singletons
do not take unreasonably large values. Assumption 1 is en-
forced by the constraint in (3c). The optimization problem in
(3) can be solved in the dual representation using a standard
quadratic programming (QP) solver. For the pseudocode of
LUFe, please refer to algorithm 1.

Remark The LUFe formulation in (3) coincides with the
SVM+ [Vapnik and Vashist, 2009] algorithm for LUPI when
the unselected feature representation in LUFe is interpreted
as an additional data modality in SVM+. There are two clear
distinctions between LUFe and LUPI: first, LUPI considers



Algorithm 1 Learning using Unselected Features (LUFe)
Input a set of data points X = {x1, . . . ,xN}, xi ∈ RD,
an upper bound on the number of selected features K, and
trade-off parameters λ1 and λ2
Apply a feature selection method to produce a feature sub-
set Ŝ with Ŝ ⊆ T and |Ŝ| ≤ K
Solve an optimization problem in (3)
Return a classifier f that works on selected feature subset
Ŝ but does not discard the Û features during training.

two different data modalities, X and X ?, for example im-
ages and texts, whereas selected Ŝ and unselected Û fea-
tures in LUFe express the same modality. Secondly, the in-
terpretation differs where LUPI uses privileged information
to discriminate between easy and difficult examples in the
privileged space X ? and subsequently transfer this informa-
tion to the original data space X [Vapnik and Vashist, 2009;
Sharmanska et al., 2013; Hernández-Lobato et al., 2014;
Vapnik and Izmailov, 2015]. Conversely, LUFe uses features
which have been designated as less informative as the sec-
ondary data source, therefore the interpretation of easy and
hard transfer between privileged and original data does not
explain LUFe’s behaviour. We instead consider the unse-
lected features as a data-dependent upper bound on the clas-
sifier’s loss function incurred using selected features.

4 Experiments
This paper aims to address the following questions:

1. Following combinatorial feature selection, can classifier
performance be improved by Learning using Unselected
Features?

2. Is a performance improvement consistent across differ-
ent combinatorial feature selection methods?

3. Can the performance be improved further by using only
a subset of unselected features?

This initial experimentation will focus on the application of
LUFe to SVM - one of the most widely-used learning meth-
ods. However, our notion of using unselected features to up-
per bound the loss is, in principle, applicable to any classifier.

Dataset We follow the protocol of [Paul et al., 2015], in
using a subset of the TechTC-300 collection consisting of 49
datasets, pre-processed to remove all features corresponding
to any word of less than 5 characters. The TechTC-300 col-
lection consists of 300 textual datasets, which have baseline
SVM error rate uniformly distributed between 0.4 and 0.0.1

Model selection A consistent model selection procedure
was carried out in all experiments. All experimental set-
tings were tested over 100 repeats, and each repeat, strati-
fied 5-fold cross-validation was used to estimate the λ pa-
rameters for each setting. All parameters were selected from
seven log-spaced values in the range {10−3...103}). The two
SVM+ parameters for LUFe (λ1 and λ2) were jointly op-
timised through grid search; that is, 49 combinations were

1http://techtc.cs.technion.ac.il/techtc300/techtc300.html

assessed. This LUFe model selection over two parameters
added a small computational overhead but the main bottle-
neck for our method is RFE feature selection.

4.1 Experiment 1: Assessing LUFe performance
on 49 datasets

Motivation The purpose of this experiment was to assess
whether LUFe can provide a boost in classification accuracy
compared to standard combinatorial feature selection, by al-
lowing the classifier to have a global view of the data at train-
ing. The RFE baseline setting consisted of an SVM trained
and tested using just the top K features, chosen using fea-
ture selection. The LUFe-RFE setting was trained with the
same top K features used as normal information, but supple-
mented with the remaining D-K features. A further baseline
setting, ALL, was a standard SVM trained and tested using all
features.

Experimental Protocol We follow the protocol of [Paul et
al., 2015] in using RFE to select the top 300 and top 500 most
informative features, and in using 10x10-fold cross-validation
experiments to compare our technique with the baselines.
This protocol was observed in all experiments.

Results The results demonstrate an improvement by LUFe
over standard feature selection. While RFE does reduce error
rate compared to the ALL baseline, LUFe produces a bigger
reduction. Results for the 3 settings (RFE, LUFe-RFE and
ALL) across 49 datasests are shown in Figure 1, and sum-
marised in Table 1.

For the K = 300 setting, LUFe was better than RFE in
44 of 49 (89.8%) cases, with mean improvement of 1.97%.
LUFe performance surpassed all-features performance in 41
of 49 cases (83.67%), with a mean improvement of 4.4%. In
comparison, RFE performance bettered all-features in just 31
cases, with mean improvement of 2.5%.

Similar results were observed for K = 500; LUFe outper-
formed RFE in 43 cases (87.76%), with mean improvement
of 1.65%. LUFe achieved 3.72% improvement over ALL, im-
proving in 45 cases, whereas RFE achieved only 2.07% mean
improvement, in 36 cases.

To verify that the improved performance by LUFe-RFE
was not simply a result of the higher capacity afforded by its
additional weight vector w?, performance was further com-
pared with an additional setting, LUFe-RFE-random. This
selected the top K features as before, but replaced the sup-
plementary information with random Gaussian features of the
same dimensionality. LUFe-RFE-random produced small im-
provements over RFE but was outperformed by LUFe-RFE in
37 of 49 datasets.

Concluding remarks These initial findings demonstrate
the ability of LUFe to improve classification accuracy beyond
RFE performance, on a wide variety of datasets.

4.2 Experiment 2: Assessing the use of LUFe with
different feature selection metrics

Motivation Experiment 1 demonstrated that LUFe can ex-
ploit the information from features which are not selected by
RFE, which would otherwise be lost when these features were
discarded. The purpose of this experiment is to extend the ap-
plication of LUFe to other feature selection methods, beyond



(a) K = 300 (b) K = 500

Figure 1: Top: Error rates (%) for ALL, RFE and LUFe-RFE settings, across 49 datasets (sorted by performance of ALL setting).
Bottom: Improvement in accuracy score by LUFe-RFE over RFE (%)

‘wrapper’ methods such as RFE. A common sub-class of ‘fil-
ter’ feature selection methods is univariate methods; these as-
sess each attribute individually in terms of some statistical
measure. The ANOVA F-value was chosen as an exemplar
metric for univariate feature selection.

Experimental Protocol Experimental protocol followed
experiment 1, except that features were ranked by ANOVA F-
scores, instead of using RFE. The topK features were used to
train a baseline classifier; this setting is referred to as ANOVA.
The sameK features were used as primary information in the
LUFe-ANOVA setting, with the remaining D-K features used
as supplementary information.

Results The benefit of LUFe was maintained while us-
ing this different feature selection procedure; LUFe-ANOVA
improved on ALL by a larger margin than ANOVA. LUFe-
ANOVA-300 was shown to perform better than ANOVA in 44
cases, with a mean improvement of 2.65%. LUFe-ANOVA-
300 accuracy exceeded that of the ALL in 45 cases, with
mean improvement 5.38%. This compares favourably with
ANOVA-300 helped in 37 cases vs baseline with mean im-
provement=2.73%. Results are shown in Figure 2 and Table
1.

Concluding remarks These findings show that LUFe is
still beneficial to classifier performance when using filter, as
well as wrapper, feature selection methods.

4.3 Experiment 3: Improving performance with a
subset of unselected features

Motivation The final experimental procedure sought to fur-
ther improve LUFe by incorporating only a specific subset of
the unselected features. Whereas Experiments 1 and 2 used
the entire set of unselected features as secondary informa-
tion, it was hypothesised that the performance enhancement
may be greater if some selectivity was applied. In much the
same way that feature elimination in the domain of standard

Table 1: Summary Results
Accuracy scores for different settings, with improvements relative to
ALL, and to corresponding feature selection setting, using the num-
ber of datasets where performance improved (out of 49 datasets),
and the difference in mean accuracy score. In the setting column,
300 and 500 refer to the number of selected features.

Improvements
vs ALL vs RFE/ANOVA

Setting Accu- Wins Mean Wins Mean
racy (/49) (%) (/49) (%)

ALL 72.04 - - - -
RFE-300 73.85 33 1.81 - -

LUFe-RFE-300 75.82 41 3.78 44 1.97
RFE-500 74.11 36 2.07 - -

LUFe-RFE-500 75.76 45 3.72 43 1.65
ANOVA-300 74.77 37 2.73 - -

LUFe-ANOVA-300 77.42 45 5.38 44 2.65
ANOVA-500 74.26 36 2.22 - -

LUFe-ANOVA-500 76.81 44 4.77 44 2.55

information can improve classifier performance, discarding
some unselected features may also allow a more generaliz-
able model to be constructed, improving classification per-
formance.

Experimental Protocol Features were ranked according to
RFE, with the topK features used as standard information, as
before. The same RFE ranking was then used again, to select
the top-ranking t% of unselected features and only this top
t% of unselected features were used as secondary information
in this protocol. The remaining unselected features were not
used in training the classifier.

The t parameter was varied over the set {10,20,...,100}; for
t=100, all unselected features are used as secondary infor-
mation, recovering the LUFe-RFE setting from Experiment
1. It was expected that the accuracy score would (a) initially



(a) K = 300 (b) K = 500

Figure 2: Top: Error rates (%) for ALL, ANOVA and LUFe-ANOVA settings, across 49 datasets (sorted by performance of ALL
setting). Bottom: Improvement in accuracy score by LUFe-ANOVA over ANOVA (%)

increase with t%, as more useful features were incorporated
into the secondary information and (b) then decrease and con-
verge with the performance seen in Experiment 1, when less
useful features were taken into consideration by the classifier.

LUFe-RFE was also compared with an ‘RFE-augmented’
setting, wherein the same top t unselected features were con-
catenated with the selected features, and this expanded fea-
ture set used to train and test a standard SVM.

Results Figure 3 depicts the variation in classifier perfor-
mance on all 49 datasets, when trained on a subset of sec-
ondary data, according to two metrics: the mean improve-
ment over the ALL, RFE, RFE-augmented baselines, and the
number of datasets where performance exceeded ALL, RFE
and RFE-augmented.

All settings led to a mean improvement over the ALL
baseline, but the amount of improvement grew as more sec-
ondary information was provided. This suggests that the
LUFe paradigm depends strongly on the size, and not just the
quality of the secondary information. This growth in perfor-
mance levelled out, with little difference between using 70%
and 100% of secondary data - perhaps as the lowest-ranked
30% of features convey little benefit to the classiifer.

The number of datasets where LUFe-RFE outperformed
both ALL and RFE-augmented remained constant at 41. The
number where LUFe-RFE beat RFE grew with increasing
amounts of secondary data, peaking at 46 of 49 datasets,
when 60 to 80% of unselected features were used, and drop-
ping to 44 when all were used. This suggests that the in-
formativeness of the unselected features may play a part in
borderline cases where LUFe can slightly improve over RFE.

Concluding remarks This work demonstrates that the size
of performance increase gained by LUFe is dependent on the
amount of secondary data provided. This leads to broader
research questions, concerning which attributes of secondary
data are necessary to gain peak benefit from LUFe.

Figure 3: Variation in LUFe performance, compared to RFE
and ALL baselines in terms of mean improvement and number
of improvements

5 Conclusions and Future Work

We have outlined a promising new approach to feature se-
lection called Learning using Unselected Features, where at-
tributes that are discarded in feature selection are utilised as
secondary input to a classifier. This allows a ‘global view’
of the feature space, without increasing testing time. We
have shown that LUFe can outperform standard feature se-
lection practices on a wide range of datasets, and that this en-
hancement is consistent across both filter and wrapper types
of feature selection. Finally, we have carried out introduc-
tory research suggesting that LUFe can be improved further
by using only a subset of discarded features. Future work
will seek to replicate the performance boost due to LUFe on
a wider range of datasets, extend our method of using unse-
lected features to upper bound the loss to other classifiers, and
formulate a joint optimization problem of LUFe and feature
selection by taking a regularization viewpoint [Schölkopf et
al., 2001; Kimeldorf and Wahba, 1971]. These research ideas
will invigorate research into re-thinking how feature selection
is used.
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