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Abstract—We describe simple yet scalable and distributed
algorithms for solving the maximum flow problem and its
minimum cost flow variant, motivated by problems of interest
in objects similarity visualization. We formulate the funda-
mental problem as a convex-concave saddle point problem. We
then show that this problem can be efficiently solved by a
first order method or by exploiting faster quasi-Newton steps.
Our proposed approach costs at most O(|E|) per iteration
for a graph with |E| edges. Further, the number of required
iterations can be shown to be independent of number of
edges for the first order approximation method. We present
experimental results in two applications: mosaic generation
and color similarity based image layouting.

Keywords-Visualization; Flow networks; Distributed algo-
rithms; Linear programming;

I. INTRODUCTION

The maximum flow problem refers to the problem of
finding a feasible flow through a single-source, single-sink
flow network that is maximal. This flow problem has nu-
merous applications, ranging from image segmentation and
bipartite matching to project selection and airline scheduling,
among others [1]. Within data mining, machine learning
and computer vision, bipartite matching itself has found
applications in shape matching and object recognition [2]
to document ranking [3].

Given the vast range of applications, the maximum flow
problem has obviously been well studied. Many algorithms
have been devised and all of the proposed algorithms have
worst case time complexity that are acceptable from a
practical point of view (for a comprehensive list to [4]).
However, questions arise as to how to adapt those methods
to exploit parallelism or the distributed nature of current
computer architectures and to be able to avoid holding the
entire problem in memory by instead streaming the data off
a disk. Most of the existing methods (if not all) involve some
sort of global search operations and thus it is not obvious
on how to parallelize the algorithms.

We propose a simple algorithm for solving the maximum
flow problem and its minimum cost variant which involves
only local operations, thus scalable and parallelizable. We
formulate the problem as a convex-concave saddle point
problem. We present two algorithms to solve the saddle

point problem, one based on a first order method and
the other one is based on quasi-Newton method. For a
graph with |E| edges, our first order approximation method
scales as O(|E|c(ε)) where c(ε) is a constant that depends
only on the number of iterations needed to achieve an ε-
close approximation and is independent of the number of
edges |E|. Our quasi-Newton method obtains the same worst
case guarantees but demonstrates superior performance in
practice. Note that, the number of edges |E| is always less
than or equal to C2

|V| where |V| denotes the number of nodes.
As the proposed approach admits parallelism in the form
of matrix-vector multiplications, this could possibly further
reduce the computational complexity. Parallelism of matrix-
vector multiplications itself is a well-studied field started
even in the period when massive parallelism architectures
are not readily available (see for example [5]). Consequently,
our new algorithms will facilitate large scale applications
of flow problems including mosaic generation and color
similarity based image layouting discussed in Section VII,
among others.

The remainder of the paper is organized as follows: we
will first discuss related work in Section II. Some back-
ground on the flow problem is then established in Section III.
Sections IV and V are devoted to convex-concave saddle
point reformulation and the two algorithms to solve it.
Before concluding, we demonstrate the effectiveness of our
method in the bipartite matching problems and analyze
empirically the speedup gained for parallelism in a shared
memory architecture in Section VII.

II. RELATED WORK

We discuss several related work in operation research,
optimization, and data mining and machine learning areas.

Anderson and Setubal [6] implemented Goldberg-Tarjan’s
algorithm with a global relabeling heuristic in a sequent
symmetric multiprocessors architecture. Over a decade later,
Bader and Sachdeva [7] designed a parallel algorithm with
a gap relabeling heuristic and a cache-aware consideration
on present-day symmetric multiprocessors. These parallel
implementations share the common lock feature to protect
every push and relabel operation. Several work have also



been done on implementing Goldberg-Tarjan’s algorithm
in graphics card processors [8] by relying on an atomic
operation read-update-write for implementing the locks.

On the mathematical programming side, there are recent
breakthroughs on solving non-smooth convex optimization
problem. Traditionally, a first-order subgradient algorithm
with complexity O(1/ε2) [9] to achieve ε-optimal solution is
considered to be the cheapest per-iteration yet not practical
algorithm. This pessimistic result is based on treating the
function to be optimized as a black box. By exploiting
the structure of the problem, Nesterov is able to devise a
first-order algorithm with convergence rate O(1/ε) [10].
Very recently, Gilpin, Peña and Sandholm [11] improved
Nesterov’s algorithm with a simple modification of lowering
target accuracy at each iteration and achieved theoretical
convergence rate of O(κ(A) ln(1/ε)). This actually means in
theory, our first order approximation method could achieve
a theoretical guarantee of O(|E|κ(A) ln(1/ε)). However, in
practice the constant κ(A) (a condition measure of the
associated payoff matrix A) can be quite large. In this paper,
we focus on Nesterov’s algorithm.

Recently, there are interests in data mining and machine
learning community to build large-scale parallel algorithms
exploiting advancement in optimization techniques [12].
Specifically, Taskar et al. [13] reformulated a maximum-
margin structured estimation as a convex-concave saddle-
point problem solvable cheaply via Nesterov’s algorithm.
Shah and colleagues formulated a belief propagation (BP)
algorithm in the context of the assignment problem [14] and
recently of the minimum cost flow problem [15]. They prove
that BP converges in pseudo-polynomial time to the optimal
solution when the optimal solution is unique.

III. THE FLOW NETWORK

A flow network is a directed graph with V set of nodes
and E set of edges denoted as G = (V, E) where each edge
has a positive weight called a capacity, c(u, v) for (u, v) ∈ E
and each edge receives a flow. We distinguish two vertices,
s-source node and t-sink node. A flow on the network is a
function f : V × V → R that satisfies

• for any distinct vertices u and v, f(u, v) = −f(v, u):
skew symmetry;

• for any vertex v except source s or sink t,∑
u∈V f(u, v) = 0: flow conservation;

• for any vertices u and v, f(u, v) ≤ c(u, v) (where if
(u, v) /∈ E , c(u, v) = 0): capacity constraint.

The value of the flow is the sum of the edge flows out of
source s.

In this paper, we develop distributed algorithms for the
maximum flow and the minimum cost flow problems asso-
ciated with a given flow network.

A. The Maximum Flow Problem

The maximum flow problem is to input a flow network
and find a flow whose value is as large as possible. This
problem can be formulated as a linear program as follows

maximize
f

R (1)

s.t.
∑
u∈V

f(s, u)−
∑
v∈V

f(v, s) = R (2)∑
u∈V

f(t, u)−
∑
v∈V

f(v, t) = −R (3)∑
u∈V

f(w, u)−
∑
v∈V

f(v, w) = 0 for w ∈ V − {s, t}

(4)
0 ≤ f(u, v) ≤ c(u, v) for (u, v) ∈ E . (5)

In the above, the constraints (2) and (3) define the value
of flow as the sum of flows out of source or equivalently
as the sum of flows into sink, flow conservation (including
skew symmetry) and capacity constraint are enforced in
(4) and (5), respectively. The standard algorithm to solve
the optimization problem in (1) is an implementation of
the Fold-Fulkerson method (Edmonds-Karp and Dinic) and
the more efficient Goldberg-Tarjan’s push-relabel algorithm
[1]. For those algorithms based on the notion of Ford-
Fulkerson augmenting path, parallelism is not possible.
Although Goldberg-Tarjan’s approach consists mostly local
operations but it needs occasional global search operations.
Here we present a reformulation of the maximum flow
problem as a convex-concave saddle point problem which
involves only local operations thus naturally parallelizable.
This reformulation will then enable us to solve large scale
flow problems.

B. The Minimum Cost Flow Problem

A variation of the maximum flow problem described
earlier is to find a flow which has the lowest cost. That is,
there is a cost f(u, v)×w(u, v) for sending a flow of f(u, v)
through an edge (u, v) ∈ E with an associated cost w(u, v).
Thus, the corresponding linear programming formulation of
the minimum cost flow problem is as follows

minimize
f

∑
(u,v)∈E

w(u, v)f(u, v), (6)

subject to the same constraints as the maximum flow prob-
lem. Due to inherent similarity to the maximum flow prob-
lem, most of the algorithms to tackle (6) are generalizations
of maximum flow algorithms [1]. Section VI describes the
reduction of the widely-used assignment problem to the
minimum cost problem, thus the assignment problem will
be solvable in a distributed manner.

In the subsequent section, we describe a convex-concave
saddle point reformulation of the maximum flow and its
minimum cost flow variant.



IV. CONVEX-CONCAVE SADDLE POINT SOLUTION

We can rewrite the maximum flow problem in (1) in
the canonical form as follows: define two vectors x ∈
R|E|+1 and d ∈ R|E|+1 with the following components
x = [R, f(e1), . . . , f(e|E|)]T and d = [−1, 0, . . . , 0] where e
denotes an edge of the flow network. Further, define a matrix
A ∈ R|V|×(|E|+1) which can be represented as A = [AR|AE ]
where AR ∈ R|V| denotes a column vector multiplying the
variable R and AE ∈ R|V|×|E| denotes a matrix multiplying
the flow vector. The matrix AE is the node-edge incidence
matrix of the graph G, that is AE [i, j] = 1 if the edge ej
leaves vertex vi and AE [i, j] = −1 if the edge ej enters
vertex vi. Similarly, AR[s, 1] = −1 and AR[t, 1] = 1 and
0 otherwise. Specifically, this vector AR corresponds to
an edge connecting the sink node to the source node. In
the subsequent sections, the set of edges E includes this
additional closing-the-loop edge. The maximum flow linear
program is now1

minimize
x

dTx s.t. Ax = 0 xe ∈ [0, ce] for e ∈ E ,
(7)

We further replace the constraint (except the capacity con-
straint) by a partial Lagrangian as follows

min
x

max
λ

dTx− λTAx s.t. xe ∈ [0, ce] for e ∈ E .
(8)

Here λ ∈ R|V| and λi are constants which act as Lagrange
multipliers to ensure that suitable constraints, i.e. flow con-
servation property and flow value, are met.

Lemma 1: The solution of 8 and 7 are equivalent.
Proof: Denote by L∗(λ) the value of (8) at the solution

of (8). It follows that L(λ) is concave in λ and moreover,
L(λ) is maximized for a choice of λ for which the solution
of (8) satisfies the flow conservation constraints of (7).

Lemma 2: The following objective functions are equiva-
lent

min
x

max
λ

dTx− λTAx s.t. xe ∈ [0, ce] for e ∈ E
(9)

max
λ

min
x

dTx− λTAx s.t. xe ∈ [0, ce] for e ∈ E .
(10)

Proof: First we need to show that there exist Λ such
that the saddlepoint is contained in a ball of radius Λ. From
the saddle point conditions, d = A>λ. Since the matrix A
is totally unimodular and thus A is a full row rank matrix, it
clearly follows that ‖A>λ‖ ≥ eig0∗‖λ‖ where eig0 denotes
the smallest eigenvalue. The equivalency follows from Sion’s
minimax theorem since the function is closed and convex in
x and closed, bounded and concave in λ.

1For minimum cost flow problem, d ∈ R|E| is the associated cost for
each edge and A ∈ R|V|×|E| is the node-edge incidence matrix.

We tackle the maximum flow and minimum cost flow
problems in its natural saddle point form as this will allow
us to exploit the structure of x and λ separately and thus
will enable us to have efficient yet scalable solutions. Note
that a simple strategy to alternatingly fix one of x and λ
while optimizing the other will usually lead to oscillations
and in general is not guaranteed to converge [16].

V. THE ALGORITHMS

We present two algorithms that sidestep the oscillations
and provably converge to the saddle point solution. One is
based on Quasi-Newton method [17] and the other is based
on first order method called Nesterov’s smoothing method
[10], [13]. We will discuss both in the subsequent section.

A. First Order Method

First note that the objective function in (9) is piecewise
linear in x and λ, thus there are several non-differentiable
points. For a non-differentiable objective function like ours,
first order subgradient algorithms are often employed. How-
ever, the required number of iterations to achieve ε-close
solution is O(1/ε2) [9]. Direct application of subgradient
algorithms render the optimization problem impractical.
Here we focus on first order method which only required
O(1/ε) iterations [10]. We now turn our attention to the
following convex-concave problem

max
λ

min
x

dTx− λTAx+
1

2µ
‖x− xc‖2`2 −

1
2µ
‖λ− λc‖2`2︸ ︷︷ ︸

L(x,λ)

(11)
s.t. xe ∈ [0, ce] for e ∈ E .

for some setting of constant µ ∈ R and xc and λc denote
(arbitrary) proximal centers for x and λ, respectively. This
additional quadratic term on both primal variables x and dual
variables λ is commonly known as a proximal regularization
term [18], [19]. Note that, at xc, the gradient of the primal-
proximal regularization term is zero and similarly, at λc, the
gradient of the dual-proximal regularization term is zero.
Crucially, our problem is now smooth and strongly convex
in x and smooth and strongly concave in λ. Denote a joint
feasible space, Z = X × Λ where x ∈ X and λ ∈ Λ, our
gradient operator on this joint space is now[

∇xL(x, λ)
−∇λL(x, λ)

]
=
[

0 −AT
−A 0

]
︸ ︷︷ ︸

:=F

[
x
λ

]
︸ ︷︷ ︸

:=z

−
[
d
0

]
︸ ︷︷ ︸

:=a

.

(12)

A summary of the primal-proximal dual-proximal ap-
proach based on Nesterov’s smoothing [10], [13] is de-
scribed in Algorithm 1.

Note in Algorithm 1, ΠZ(.) refers to a projection to the
joint feasible space. In the primal space, X this only involves
a simple projection into a box constraint associated with the



Algorithm 1 Primal-Proximal Dual-Proximal Method
Initialize ẑ ∈ Z
Initialize s−1 = 0
for t = 0 to τ do
y = ΠZ(ẑ + µst−1)
zt = ΠZ(y − µ(Fy − a))
st = st−1 − (Fzt − a)

end for
output zτ = 1

1+τ

∑τ
t=0 zt.

maximum allowed flow to be sent across a particular edge,
i.e. xe to [0, ce] via xe ← max(0,min(ce, xe)). There is
no projection into feasible space involved in the dual space,
Λ. The stepsize µ is set to be the inverse of the Lipschitz
constant of the gradient operator with respect to some
norm ‖.‖ [10]. This is a direct consequence of relationship
between strong convexity and Lipschitz continuous gradient
[20]. For our joint gradient operator, the Lipschitz constant,
for example, with respect to `2-norm is upper bounded by

L ≡ max
z,z′∈Z

‖F (z − z′)‖`2
‖z − z′‖`2

≤ ‖F‖`2 ≤ max degree(G).

(13)

In the above, ‖F‖`2 denotes the largest singular value of
F and the last inequality is due to the Gershgorin circle
theorem. It is clear that our method will scale well for
sparse graph or graphs with small largest eigenvalue [21].
An example of this kind of graph is social network graphs.

Convergence: The convergence of the first order
method is usually described as a function of objective values.
Define the following gap function

G(x, λ) =
[
max
λ̂
{dTx− λ̂TAx}

]
−
[
min
x̂
{dT x̂− λTAx̂}

]
.

(14)

For an optimal point (x∗, λ∗), the gap G(x∗, λ∗) is zero and
a point (x, λ) is an ε-solution if and only if G(x, λ) ≤ ε.

Lemma 3: [10, Theorem 2] Denote zt as the sequence
generated by Algorithm 1 and zτ = 1

1+τ

∑τ
t=0 zt.

Let p(x, x′) := 1
2µ ‖x− x

′‖2`2 be the proximal func-

tion and Gr(x, λ) :=
[
max
λ̂
{L(x, λ̂) : p(λ, λc) ≤ Dλ}

]
−[

min
x̂
{L(x̂, λ) : p(x, xc) ≤ Dx}

]
be the gap function with

restricted proximal regularizers. Then, for L-Lipschitz con-
tinuous gradient operator, after τ iterations the gap of
(xτ , λτ ) = zτ is

Gr(xτ , λτ ) ≤ L(Dx +Dλ)
τ + 1

. (15)

The above lemma implies O(1/ε) iterations are required
to achieve ε−close solution. Note that, although the lemma
is upper-bounding Gr(., .), for Dx ≥ p(xc, x∗) and Dλ ≥

p(λc, λ∗), the restricted gap function Gr(., .) coincides with
the gap function G(., .) [10].

Lemma 4: The cost per iteration of primal-proximal dual-
proximal method is at most O(|E|).

Proof: The most costly operation in our primal-
proximal dual-proximal method involves a vector-matrix
multiplication, λA in the primal updates or a matrix-vector
multiplication, Ax in the dual updates. Exploiting the struc-
ture of the node-edge incidence matrix A, we know that A
is sparse with number of non-zero elements at most 2×|E|.
Thus, the matrix-vector multiplication costs at most O(|E|).

Lemma 5: The time complexity of Algorithm 1 to achieve
ε−close solution is O((L(Dx+Dλ)

ε )|E|).
Proof: Follows directly from Lemma 3 and Lemma 4.

Memory Efficiency and Parallelism: Note that while
Algorithm 1 is presented in the form of joint values (x, λ),
primal flow variables x and dual Lagrange variables λ can
indeed be solved separately. Note that y, z and s are vectors
with elements consist of concatenation of flow vector x and
dual vector λ. Denote y|x as the variables y restricted to
x components and define similarly for zt|x, st|x and for λ
restricted components. The updates in Algorithm 1 can now
be explicitly written as:

y|x = ΠX (ẑ|x+ µ · st−1|x) (16)
y|λ = ẑ|λ+ µ · st−1|λ (17)

zt|x = ΠX (y|x− µ · [d−AT × y|λ]) (18)
zt|λ = y|λ− µ · [A× y|x] (19)

st|x = st−1|λ− [d−AT × zt|λ] (20)
st|λ = st−1|λ− [A× zt|x]. (21)

Noticeably, primal gradients computations as well as dual
gradients computations involve only matrix-vector multipli-
cation operations and thus are amenable to parallelism.

B. Quasi-Newton Method

It is known that for a convex but non-smooth objective
function, many off-the-shelf optimization algorithms includ-
ing the widely used BFGS [17], are not applicable. However,
recent progress has been made to systematically modify
BFGS for non-smooth objective functions [22]. We first note
that the primal flow variable in (8) will have three possible
solutions:

xe =


0 if

[
d−ATλ

]
e
> 0

ce if
[
d−ATλ

]
e
< 0

[0, ce] if
[
d−ATλ

]
e

= 0

Define g(λ) := min
x
{dTx− λTAx}, the subdifferential2

2For a convex function f : Rd → R, the subdifferential ∂f(x) at x is
the set of all vectors g such that f(y) ≥ f(x)+gT (y−x) for all y ∈ Rd

and elements belonging to the subdifferential are known as subgradients.



Algorithm 2 Quasi-Newton Method
Initialize λ randomly
repeat

Set the value of primal flow variables according to
sign(d−ATλ)
For each flow variables which have zero value
of (d − ATλ), set their values by solving

minimize
x|{xe=0 for [d−ATλ]e>0; xe=ce for [d−ATλ]e<0}

‖Ax‖2`2
Solve outer maximization in (8) using non-smooth
BFGS [22], obtain new λ

until λ has converged (λ = λ∗)

∂g(λ) is then

{Ax : x ∈ arg min{dTx− λTAx}}. (22)

At the optimum, we know that 0 ∈ ∂g(λ). Our strategy is
now clear, for those undefined values of primal variables
(whenever

[
d−ATλ

]
e

= 0), we can then optimally set
them by solving minimize

x
‖Ax‖2`2 . For a summary of

Quasi-Newton method, refer to Algorithm 2.
Convergence: BFGS is widely known to have a con-

vergence rate at worst in the same rate as first order methods
[17], [22]. Although the analysis on required number of
iterations is missing, there exist empirical studies showing
the superiority of quasi-Newton method which practically
exploits second order information to other optimizers in-
cluding first order methods (see for example [23]).

Below lemma states that quasi-Newton incurs the same
cost per iteration as first order method.

Lemma 6: The cost per iteration of Quasi-Newton
method is at most O(|E|).

Proof: Same as 4. The additional optimal selection
of undefined flow variables does not add a signification
computational overhead.

Memory Efficiency and Parallelism: Limited-memory
BFGS [24] is available as a variant of BFGS with a matrix-
free approach designed for reducing the cost of storing and
updating approximate Hessian from O(|V|2) to O(|V|m)
where m is freely chosen with typical values 6 − 10 re-
gardless of problem size. In term of parallelism, the updates
of the primal flow variables can be done independently to
each other, i.e. each element of x can be set based on
the value of de − AT.,eλ. Subsequently the updated flow
variables are re-distributed to BFGS to compute the next
iterate of the dual variables. BFGS requires computation of
subdifferential, ∂g(λ) = {Ax} and further parallelization
can be done for this costly operation.

There are several libraries that provide optimized sparse
matrix-vector operations: Intel MKL and OSKI3.

3http://bebop.cs.berkeley.edu/oski/

VI. ASSIGNMENT PROBLEM AS A FLOW PROBLEM

In this section, we describe the reduction of the widely-
used assignment problem to a flow problem, this will enable
us to solve the assignment problem in a distributed manner.

Let Gb = (V1 ∪ V2, E) be a bipartite graph and let
w : E → R+ be a weight function on the edges. A perfect
matching of Gb is a subset M ⊆ E of the edges such
that for every node v ∈ V = V1 ∪ V2 there is exactly
one incidence edge e ∈ M . The weight of a matching
M is given by the sum of the weights of its edges, that
is w(M) =

∑
e∈M w(e). Now the minimum (maximum)

weight bipartite matching problem is to find for a given
bipartite graph Gb and a given weight function w a perfect
matching of minimum (maximum) weight. This problem is
also known as assignment problem in operations research
area. We assume without loss of generality that |V1| = |V2|
as dummy nodes with the corresponding super-high or super-
low weights can be introduced to achieve this matched size.

It is known that the minimum weight matching problem
for bipartite graphs can be reduced to the minimum cost
flow problem [25]. The source and sink nodes, s and t
respectively, are introduced to the bipartite graph. The source
node is connected by an edge (s, v) with capacity c(s, v) = 1
and weight −|V|×maxe∈E(w(e)) to every node v ∈ V1 and
every node v ∈ V2 is connected to the sink node by an edge
(v, t) with capacity c(v, t) = 1 and weight w(v, t) = 0.
The large negative weights on the outgoing edges of source
node assure that there will be maximum flow on these edges
and therefore every node will be matched. For every edge in
the original bipartite graph from V1 to V2 admits capacity
of 1 and the original weight. The edge (t, s) has weight 0
and capacity ∞. It is now clear that the integral solution
of minimum cost flow problem corresponds to a minimum
weight matching in the original bipartite graph.

VII. EXPERIMENTS

We perform weighted bipartite matching experiments on
randomly generated data as well as on image data for
generating a mosaic and layouting images.

A. Toy Data

In this experiment, we compare the running time of
our quasi-Newton approach with the Hungarian method
which is known to have worst case time complexity of
O(|V|3) [26]. We implement our method in Python and use
the following implementation of the Hungarian algorithm4.
For our method, instead of performing optimal selection
of primal flow variables as described in Algorithm 2, we
randomly select subgradient whenever we are at the non-
differentiable points. We generate our toy bipartite graph
data with edge weight which is sampled from a uniform
distribution, w(e) ∼ Unif[0, 10]. The result for 10 repeat

4http://www.clapper.org/software/python/munkres/



Figure 1. Left: Speedup (in wallclock time) as a function of number of processors; Right: Speedup (in wallclock time) as a function of problem size.

Figure 2. Left: Mosaic of President Obama generated with Quasi-Newton minimum cost flow algorithm. The equivalent flow problem has |E| = 29170801
and |V| = 10802. Right: Color-based image layouting with quasi-Newton algorithm. Images with similar color are found in proximal locations, for example,
black colored images are located at the top right while white colored images are put at the bottom left.

trials is summarized in Figure 3(a). Our approach seems to
have a comparable scaling properties in comparison to the
Hungarian algorithm. We also assess the parallelism property
of our method on a simple shared memory architecture. The
program with primal-parallel and gradient-parallel is run on
a Intel Xeon Core 2 Quad 2GHz machine. Our machine is a
Quad core with 2 hyperthreads per core and this might not
give us a full speedup as compare to an Octa core machine.
The speedup as a function of varying number of processors
from one to eight is illustrated in Figure 1–Left. As expected,
the more the number of cores, the higher the speedup.

Note that we are distributing 0.251 · 106 flow variables on
{1, . . . , 8} processors. The better way to utilize current com-
puter architectures is to move to graphics card processors or
to computer clusters where massive parallelism is achievable
albeit with the trade-off between communication cost and
speedup gained. This factor will be investigated in our future
research. Figure 1–Right shows the scaling properties when
the problem size varies, {0.251, 1, 4, 9, 25.010} · 106, while
fixing the number of processors at two. Although at first we
might expect the matrix-vector multiplication is memory-
bounded which can potentially introduce serious degradation



in the speedup gained, experimental analysis shows more
gracious decaying. Lastly, we also assess the performance
of our first order approximation method in Algorithm 1.
As a baseline, we use a direct application of subgradient
algorithm which exhibit O(1/ε2) convergence. The results
are summarized in Figure 3(b). It is evident that as the
number of iterations increased, the dual Lagrange variables
which basically enforce flow conservation property (enforce
a one-to-one assignment in the weighted bipartite matching
problem) gradually approach the optimum point.

B. Mosaic Generation

The generation of mosaics is a popular application in
the processing of composite images. A template image and
a collection of reference images are needed to generate a
mosaic where the individual ‘pixels’ of the mosaic are taken
from the set of reference images such that the mosaic best
resembles the given template. This is exactly a minimum
weight bipartite matching problem. For our experiment, we
use a President Obama image as the template image. The set
of reference images are taken from LabelMe dataset [27]. We
simply extract RGB color features from images and use `2
norm distance between features as the weight of the bipartite
graph. The generated mosaic are shown in Figure 2–Left.

C. Image Similarity Visualization

A recently proposed machine learning technique called
kernelized sorting [28] allows, among others, layouting of
images into arbitrary structures such as grids or spheres
so that images that are visually or semantically similar are
placed in proximal locations. This layouting is shown to
be advantageous for visualization, web image browsing and
photo album summarization [29], [30]. Kernelized sorting
is a general technique to perform matching between pairs
of objects from different domains which only requires sim-
ilarity measure within each of the two domains. In this
visualization experiment, images form one set of objects
while the other set of objects contains coordinate positions of
the structure. At the heart of kernelized sorting, a succession
of linear assignment problems is solved. We layout images
from LabelMe dataset with respect to a simple 2D grid
structure. Lab color features, which approximate human
visual perception better than RGB space, are extracted from
images and are used as the basis of layouting such that
images with similar color are to be found nearby, as shown
in Figure 2–Right.

VIII. DISCUSSION AND CONCLUSION

We present scalable and distributed algorithms for flow
problem by casting it as a convex-concave saddle point
problem. Our first order approximation method scales as
O(|E|/ε)5 to achieve an ε-close approximation. Thus, this

5vide Related Work on the convergence rate that the algorithm could
have achieved.

method is particularly appealing when the desired accuracy
ε is not too small. Our second method exploits quasi-Newton
steps and while the number of required iterations can not
be characterized, we find that this method works amazingly
well in practice. Further, as the two proposed methods
involve only local operations, they admit a straightforward
parallelism which is attractive considering the evolvement
of today’s computer architectures. Exploring the usage of
our proposed algorithms for other large scale similarity
visualizations is an ongoing research.
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