
Do	Deep	Nets	Really	Need	to	be	Deep?	
Lei Jimmy Ba, Rich Caruana, U of Toronto, Microsoft, NIPS 2014, (cited 53times)

1. Empirical work shows that it is difficult to train shallow nets to be as accurate as deep nets

(for example, vision tasks, 150 layers)
2. We empirically demonstrate that shallow feed-forward nets can learn the complex functions

previously learned by deep nets and achieve accuracies previously only achievable with
deep models. We do this by first training a state-of-the-art deep model, and then training a
shallow model to mimic the deep model (model compression).

3. We are not able to train these shallow nets to be as accurate as the deep nets when the
shallow nets are trained directly on the original labeled training data.

4. If a shallow net with the same number of parameters as a deep net can learn to mimic a
deep net with high fidelity, then it is clear that the function learned by that deep net does not
really have to be deep.

Model compression works by passing unlabeled data through the large, accurate model to collect
the scores produced by that model. This synthetically labeled data is then used to train the smaller
mimic model. The mimic model is not trained on the original labels—it is trained to learn the
function that was learned by the larger model. If the compressed model learns to mimic the large
model perfectly it makes exactly the same predictions and mistakes as the complex model.

In the deep model, the output is given by the softmax layer: .
The shallow model is trained using logits, i.e. values z! before the softmax activation. The learning
objective is given as a regression problem:

	
where W is the weight matrix between input features x and hidden layer, β is the weights from
hidden to output units, g(x(t);W,β) = βf(Wx(t)) is the model prediction on the t-th training data point
and f (·) is the non-linear activation of the hidden units. The parameters W and β are updated using
standard error back-propagation algorithm and stochastic gradient descent with momentum.

5. Model compression works best when the unlabeled set is very large, and when the unlabeled

samples do not fall on train points where the deep model is likely to have overfit.

Speech recognition:

	
Image	classification:	
In	preliminary	experiments	we	observed	that	non-convolutional	nets	do	not	perform	well	on	
CIFAR-10,	no	matter	what	their	depth.	We	allow	our	shallow	models	to	benefit	from	
convolution	while	keeping	the	models	as	shallow	as	possible.		
	

2 Training Shallow Nets to Mimic Deep Nets

2.1 Model Compression

The main idea behind model compression [3] is to train a compact model to approximate the func-
tion learned by a larger, more complex model. For example, in [3], a single neural net of modest
size could be trained to mimic a much larger ensemble of models—although the small neural nets
contained 1000 times fewer parameters, often they were just as accurate as the ensembles they were
trained to mimic. Model compression works by passing unlabeled data through the large, accurate
model to collect the scores produced by that model. This synthetically labeled data is then used to
train the smaller mimic model. The mimic model is not trained on the original labels—it is trained
to learn the function that was learned by the larger model. If the compressed model learns to mimic
the large model perfectly it makes exactly the same predictions and mistakes as the complex model.

Surprisingly, often it is not (yet) possible to train a small neural net on the original training data to be
as accurate as the complex model, nor as accurate as the mimic model. Compression demonstrates
that a small neural net could, in principle, learn the more accurate function, but current learning
algorithms are unable to train a model with that accuracy from the original training data; instead, we
must train the complex intermediate model first and then train the neural net to mimic it. Clearly,
when it is possible to mimic the function learned by a complex model with a small net, the function
learned by the complex model wasn’t truly too complex to be learned by a small net. This suggests
to us that the complexity of a learned model, and the size and architecture of the representation best
used to learn that model, are different things.

2.2 Mimic Learning via Regressing Logits with L2 Loss

On both TIMIT and CIFAR-10 we use model compression to train shallow mimic nets using data
labeled by either a deep net, or an ensemble of deep nets, trained on the original TIMIT or CIFAR-10
training data. The deep models are trained in the usual way using softmax output and cross-entropy
cost function. The shallow mimic models, however, instead of being trained with cross-entropy on
the 183 p values where pk = ezk/

P
j e

zj output by the softmax layer from the deep model, are
trained directly on the 183 log probability values z, also called logits, before the softmax activation.

Training on logits, which are logarithms of predicted probabilities, makes learning easier for the
student model by placing equal emphasis on the relationships learned by the teacher model across
all of the targets. For example, if the teacher predicts three targets with probability [2⇥10�9, 4⇥
10�5, 0.9999] and those probabilities are used as prediction targets and cross entropy is minimized,
the student will focus on the third target and tend to ignore the first and second targets. A student,
however, trained on the logits for these targets, [10, 20, 30], will better learn to mimic the detailed
behaviour of the teacher model. Moreover, consider a second training case where the teacher predicts
logits [�10, 0, 10]. After softmax, these logits yield the same predicted probabilities as [10, 20, 30],
yet clearly the teacher models the two cases very differently. By training the student model directly
on the logits, the student is better able to learn the internal model learned by the teacher, without
suffering from the information loss that occurs from passing through logits to probability space.

We formulate the SNN-MIMIC learning objective function as a regression problem given training
data {(x(1), z(1)),...,(x(T), z(T)) }:

L(W,�) =
1

2T

X

t

||g(x(t);W,�)� z(t)||22, (1)

where W is the weight matrix between input features x and hidden layer, � is the weights from
hidden to output units, g(x(t);W,�) = �f(Wx(t)) is the model prediction on the tth training data
point and f(·) is the non-linear activation of the hidden units. The parameters W and � are updated
using standard error back-propagation algorithm and stochastic gradient descent with momentum.

We have also experimented with other mimic loss functions, such as minimizing the KL divergence
KL(pteacher⇤pstudent) cost function and L2 loss on probabilities. Regression on logits outperforms all
the other loss functions and is one of the key techniques for obtaining the results in the rest of this

2

2 Training Shallow Nets to Mimic Deep Nets

2.1 Model Compression

The main idea behind model compression [3] is to train a compact model to approximate the func-
tion learned by a larger, more complex model. For example, in [3], a single neural net of modest
size could be trained to mimic a much larger ensemble of models—although the small neural nets
contained 1000 times fewer parameters, often they were just as accurate as the ensembles they were
trained to mimic. Model compression works by passing unlabeled data through the large, accurate
model to collect the scores produced by that model. This synthetically labeled data is then used to
train the smaller mimic model. The mimic model is not trained on the original labels—it is trained
to learn the function that was learned by the larger model. If the compressed model learns to mimic
the large model perfectly it makes exactly the same predictions and mistakes as the complex model.

Surprisingly, often it is not (yet) possible to train a small neural net on the original training data to be
as accurate as the complex model, nor as accurate as the mimic model. Compression demonstrates
that a small neural net could, in principle, learn the more accurate function, but current learning
algorithms are unable to train a model with that accuracy from the original training data; instead, we
must train the complex intermediate model first and then train the neural net to mimic it. Clearly,
when it is possible to mimic the function learned by a complex model with a small net, the function
learned by the complex model wasn’t truly too complex to be learned by a small net. This suggests
to us that the complexity of a learned model, and the size and architecture of the representation best
used to learn that model, are different things.

2.2 Mimic Learning via Regressing Logits with L2 Loss

On both TIMIT and CIFAR-10 we use model compression to train shallow mimic nets using data
labeled by either a deep net, or an ensemble of deep nets, trained on the original TIMIT or CIFAR-10
training data. The deep models are trained in the usual way using softmax output and cross-entropy
cost function. The shallow mimic models, however, instead of being trained with cross-entropy on
the 183 p values where pk = ezk/

P
j e

zj output by the softmax layer from the deep model, are
trained directly on the 183 log probability values z, also called logits, before the softmax activation.

Training on logits, which are logarithms of predicted probabilities, makes learning easier for the
student model by placing equal emphasis on the relationships learned by the teacher model across
all of the targets. For example, if the teacher predicts three targets with probability [2⇥10�9, 4⇥
10�5, 0.9999] and those probabilities are used as prediction targets and cross entropy is minimized,
the student will focus on the third target and tend to ignore the first and second targets. A student,
however, trained on the logits for these targets, [10, 20, 30], will better learn to mimic the detailed
behaviour of the teacher model. Moreover, consider a second training case where the teacher predicts
logits [�10, 0, 10]. After softmax, these logits yield the same predicted probabilities as [10, 20, 30],
yet clearly the teacher models the two cases very differently. By training the student model directly
on the logits, the student is better able to learn the internal model learned by the teacher, without
suffering from the information loss that occurs from passing through logits to probability space.

We formulate the SNN-MIMIC learning objective function as a regression problem given training
data {(x(1), z(1)),...,(x(T), z(T)) }:

L(W,�) =
1

2T

X

t

||g(x(t);W,�)� z(t)||22, (1)

where W is the weight matrix between input features x and hidden layer, � is the weights from
hidden to output units, g(x(t);W,�) = �f(Wx(t)) is the model prediction on the tth training data
point and f(·) is the non-linear activation of the hidden units. The parameters W and � are updated
using standard error back-propagation algorithm and stochastic gradient descent with momentum.

We have also experimented with other mimic loss functions, such as minimizing the KL divergence
KL(pteacher⇤pstudent) cost function and L2 loss on probabilities. Regression on logits outperforms all
the other loss functions and is one of the key techniques for obtaining the results in the rest of this

2

SNN-50k, and SNN-400k) trained on the original training data. Despite having up to 10X as many
parameters as DNN, CNN, and ECNN, the shallow models are 1.4% to 2% less accurate than the
DNN, 3.5% to 4.1% less accurate than the CNN, and 4.5% to 5.1% less accurate than the ECNN.

3.2 Learning to Mimic an Ensemble of Deep Convolutional TIMIT Models

The most accurate single model that we trained on TIMIT is the deep convolutional architecture in
[6]. Because we have no unlabeled data from the TIMIT distribution, we use the same 1.1M points
in the train set as unlabeled data for compression by throwing away the labels.1 Re-using the 1.1M
train set reduces the accuracy of the student mimic models, increasing the gap between the teacher
and mimic models on test data: model compression works best when the unlabeled set is very large,
and when the unlabeled samples do not fall on train points where the teacher model is likely to have
overfit. To reduce the impact of the gap caused by performing compression with the original train
set, we train the student model to mimic a more accurate ensemble of deep convolutional models.

We are able to train a more accurate model on TIMIT by forming an ensemble of nine deep, con-
volutional neural nets, each trained with somewhat different train sets, and with architectures of
different kernel sizes in the convolutional layers. We used this very accurate model, ECNN, as the
teacher model to label the data used to train the shallow mimic nets. As described in Section 2.2
the logits (log probability of the predicted values) from each CNN in the ECNN model are averaged
and the average logits are used as final regression targets to train the mimic SNNs.

We trained shallow mimic nets with 8k (SNN-MIMIC-8k) and 400k (SNN-MIMIC-400k) hidden
units on the re-labeled 1.1M training points. As described in Section 2.3, to speed up learning both
mimic models have 250 linear units between the input and non-linear hidden layer—preliminary
experiments suggest that for TIMIT there is little benefit from using more than 250 linear units.

3.3 Compression Results For TIMIT

Architecture # Param. # Hidden units PER

SNN-8k 8k + dropout �12M �8k 23.1%trained on original data

SNN-50k 50k + dropout �100M �50k 23.0%trained on original data

SNN-400k 250L-400k + dropout �180M �400k 23.6%trained on original data

DNN 2k-2k-2k + dropout �12M �6k 21.9%trained on original data

CNN c-p-2k-2k-2k + dropout �13M �10k 19.5%trained on original data

ECNN ensemble of 9 CNNs �125M �90k 18.5%

SNN-MIMIC-8k 250L-8k �12M �8k 21.6%no convolution or pooling layers

SNN-MIMIC-400k 250L-400k �180M �400k 20.0%no convolution or pooling layers

Table 1: Comparison of shallow and deep models: phone error rate (PER) on TIMIT core test set.

The bottom of Table 1 shows the accuracy of shallow mimic nets with 8000 ReLUs and 400,000
ReLUs (SNN-MIMIC-8k and -400k) trained with model compression to mimic the ECNN. Surpris-
ingly, shallow nets are able to perform as well as their deep counterparts when trained with model
compression to mimic a more accurate model. A neural net with one hidden layer (SNN-MIMIC-
8k) can be trained to perform as well as a DNN with a similar number of parameters. Furthermore,
if we increase the number of hidden units in the shallow net from 8k to 400k (the largest we could

1That SNNs can be trained to be as accurate as DNNs using only the original training data highlights that it
should be possible to train accurate SNNs on the original training data given better learning algorithms.

4

train), we see that a neural net with one hidden layer (SNN-MIMIC-400k) can be trained to perform
comparably to a CNN, even though the SNN-MIMIC-400k net has no convolutional or pooling lay-
ers. This is interesting because it suggests that a large single hidden layer without a topology custom
designed for the problem is able to reach the performance of a deep convolutional neural net that
was carefully engineered with prior structure and weight-sharing without any increase in the number
of training examples, even though the same architecture trained on the original data could not.

!"#

!""

!"$

!"%

!$&

!$'

!$(

!$)

!' !'& !'&&

*
+
+
,
-.
+
/
!0
1
!2
34
32
!5
6
7
!8
6
9

:,;<6-!0=!>.-.;696-?!@;ABBA01?C

8D.BB0E:69
566F:69

8D.BB0E4A;A+:69
G0170B,9A01.B!:69
H1?6;<B6!0=!G::?

Figure 1: Accuracy of SNNs, DNNs, and Mimic SNNs vs. # of parameters on TIMIT Dev (left) and
Test (right) sets. Accuracy of the CNN and target ECNN are shown as horizontal lines for reference.

Figure 1 shows the accuracy of shallow nets and deep nets trained on the original TIMIT 1.1M data,
and shallow mimic nets trained on the ECNN targets, as a function of the number of parameters in
the models. The accuracy of the CNN and the teacher ECNN are shown as horizontal lines at the top
of the figures. When the number of parameters is small (about 1 million), the SNN, DNN, and SNN-
MIMIC models all have similar accuracy. As the size of the hidden layers increases and the number
of parameters increases, the accuracy of a shallow model trained on the original data begins to lag
behind. The accuracy of the shallow mimic model, however, matches the accuracy of the DNN until
about 4 million parameters, when the DNN begins to fall behind the mimic. The DNN asymptotes
at around 10M parameters, while the shallow mimic continues to increase in accuracy. Eventually
the mimic asymptotes at around 100M parameters to an accuracy comparable to that of the CNN.
The shallow mimic never achieves the accuracy of the ECNN it is trying to mimic (because there
is not enough unlabeled data), but it is able to match or exceed the accuracy of deep nets (DNNs)
having the same number of parameters trained on the original data.

4 Object Recognition: CIFAR-10

To verify that the results on TIMIT generalize to other learning problems and task domains, we ran
similar experiments on the CIFAR-10 Object Recognition Task[12]. CIFAR-10 consists of a set
of natural images from 10 different object classes: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, truck. The dataset is a labeled subset of the 80 million tiny images dataset[18] and is
divided into 50,000 train and 10,000 test images. Each image is 32x32 pixels in 3 color channels,
yielding input vectors with 3072 dimensions. We prepared the data by subtracting the mean and
dividing the standard deviation of each image vector to perform global contrast normalization. We
then applied ZCA whitening to the normalized images. This pre-processing is the same used in [9].

4.1 Learning to Mimic an Ensemble of Deep Convolutional CIFAR-10 Models

We follow the same approach as with TIMIT: An ensemble of deep CNN models is used to label
CIFAR-10 images for model compression. The logit predictions from this teacher model are used
as regression targets to train a mimic shallow neural net (SNN). CIFAR-10 images have a higher
dimension than TIMIT (3072 vs. 1845), but the size of the CIFAR-10 training set is only 50,000
compared to 1.1 million examples for TIMIT. Fortunately, unlike TIMIT, in CIFAR-10 we have
access to unlabeled data from a similar distribution by using the superset of CIFAR-10: the 80
million tiny images dataset. We add the first one million images from the 80 million set to the
original 50,000 CIFAR-10 training images to create a 1.05M mimic training (transfer) set.

5

	
	
	
	
	
	
	
	
Distilling	the	Knowledge	in	a	Neural	Network,		
Geoffrey Hinton, Oriol Vinyals, Jeff Dean, Google Inc., arXiv2015 (cited 54times)

1. The relative probabilities of incorrect answers tell us a lot about how the complex model

tends to generalize. An image of a BMW, for example, may only have a very small chance of
being mistaken for a garbage truck, but that mistake is still many times more probable than
mistaking it for a carrot.

2. It is generally accepted that the objective function used for training should reflect the true
objective of the user as closely as possible. Despite this, models are usually trained to
optimize performance on the training data when the real objective is to generalize well to new
data. When we are distilling the knowledge from a large model into a small one, we can train
the small model to generalize in the same way as the large model.

3. Distillation idea is to raise the temperature of the final softmax until the complex model

produces a suitably soft set of targets. We then use the same high temperature when training
the small model to match these soft targets, and after it has been trained it uses a
temperature of 1.

T is a temperature that is normally set to 1. Using a higher value for T produces a softer
probability distribution over classes. In practice, when the distilled model is much too small to
capture all of the knowledge in the complex model, intermediate temperatures work best.

4. Matching logits is a special case of distillation.

mapping from input vectors to output vectors. For cumbersome models that learn to discriminate
between a large number of classes, the normal training objective is to maximize the average log
probability of the correct answer, but a side-effect of the learning is that the trained model assigns
probabilities to all of the incorrect answers and even when these probabilities are very small, some
of them are much larger than others. The relative probabilities of incorrect answers tell us a lot about
how the cumbersome model tends to generalize. An image of a BMW, for example, may only have
a very small chance of being mistaken for a garbage truck, but that mistake is still many times more
probable than mistaking it for a carrot.

It is generally accepted that the objective function used for training should reflect the true objective
of the user as closely as possible. Despite this, models are usually trained to optimize performance
on the training data when the real objective is to generalize well to new data. It would clearly
be better to train models to generalize well, but this requires information about the correct way to
generalize and this information is not normally available. When we are distilling the knowledge
from a large model into a small one, however, we can train the small model to generalize in the same
way as the large model. If the cumbersome model generalizes well because, for example, it is the
average of a large ensemble of different models, a small model trained to generalize in the same way
will typically do much better on test data than a small model that is trained in the normal way on the
same training set as was used to train the ensemble.

An obvious way to transfer the generalization ability of the cumbersome model to a small model is
to use the class probabilities produced by the cumbersome model as “soft targets” for training the
small model. For this transfer stage, we could use the same training set or a separate “transfer” set.
When the cumbersome model is a large ensemble of simpler models, we can use an arithmetic or
geometric mean of their individual predictive distributions as the soft targets. When the soft targets
have high entropy, they providemuch more information per training case than hard targets and much
less variance in the gradient between training cases, so the small model can often be trained on much
less data than the original cumbersome model and using a much higher learning rate.

For tasks like MNIST in which the cumbersome model almost always produces the correct answer
with very high confidence, much of the information about the learned function resides in the ratios
of very small probabilities in the soft targets. For example, one version of a 2 may be given a
probability of 10−6 of being a 3 and 10−9 of being a 7 whereas for another version it may be the
other way around. This is valuable information that defines a rich similarity structure over the data
(i. e. it says which 2’s look like 3’s and which look like 7’s) but it has very little influence on the
cross-entropy cost function during the transfer stage because the probabilities are so close to zero.
Caruana and his collaborators circumvent this problem by using the logits (the inputs to the final
softmax) rather than the probabilities produced by the softmax as the targets for learning the small
model and they minimize the squared difference between the logits produced by the cumbersome
model and the logits produced by the small model. Our more general solution, called “distillation”,
is to raise the temperature of the final softmax until the cumbersome model produces a suitably soft
set of targets. We then use the same high temperature when training the small model to match these
soft targets. We show later that matching the logits of the cumbersome model is actually a special
case of distillation.

The transfer set that is used to train the small model could consist entirely of unlabeled data [1]
or we could use the original training set. We have found that using the original training set works
well, especially if we add a small term to the objective function that encourages the small model
to predict the true targets as well as matching the soft targets provided by the cumbersome model.
Typically, the small model cannot exactly match the soft targets and erring in the direction of the
correct answer turns out to be helpful.

2 Distillation

Neural networks typically produce class probabilities by using a “softmax” output layer that converts
the logit, zi, computed for each class into a probability, qi, by comparing zi with the other logits.

qi =
exp(zi/T)

∑

j exp(zj/T)
(1)

2

