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1. Empirical work shows that it is difficult to train shallow nets to be as accurate as deep nets
(for example, vision tasks, 150 layers)

2. We empirically demonstrate that shallow feed-forward nets can learn the complex functions
previously learned by deep nets and achieve accuracies previously only achievable with
deep models. We do this by first training a state-of-the-art deep model, and then training a
shallow model to mimic the deep model (model compression).

3. We are not able to train these shallow nets to be as accurate as the deep nets when the
shallow nets are trained directly on the original labeled training data.

4. If a shallow net with the same number of parameters as a deep net can learn to mimic a
deep net with high fidelity, then it is clear that the function learned by that deep net does not
really have to be deep.

Model compression works by passing unlabeled data through the large, accurate model to collect
the scores produced by that model. This synthetically labeled data is then used to train the smaller
mimic model. The mimic model is not trained on the original labels—it is trained to learn the
function that was learned by the larger model. If the compressed model learns to mimic the large
model perfectly it makes exactly the same predictions and mistakes as the complex model.

In the deep model, the output is given by the softmax layer: P+ = e/ 2 e
The shallow model is trained using logits, i.e. values z, before the softmax activation. The learning
objective is given as a regression problem:
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where W is the weight matrix between input features x and hidden layer, B is the weights from
hidden to output units, g(x(t);W,B) = Bf(Wx(t)) is the model prediction on the t-th training data point
and f (+) is the non-linear activation of the hidden units. The parameters W and 8 are updated using
standard error back-propagation algorithm and stochastic gradient descent with momentum.

5. Model compression works best when the unlabeled set is very large, and when the unlabeled
samples do not fall on train points where the deep model is likely to have overfit.

Speech recognition:
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Table 1: Comparison of shallow and deep models: phone error rate (PER) on TIMIT core test set. Number of Parameters (millions)

Image classification:

In preliminary experiments we observed that non-convolutional nets do not perform well on
CIFAR-10, no matter what their depth. We allow our shallow models to benefit from
convolution while keeping the models as shallow as possible.
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1.

The relative probabilities of incorrect answers tell us a lot about how the complex model
tends to generalize. An image of a BMW, for example, may only have a very small chance of
being mistaken for a garbage truck, but that mistake is still many times more probable than
mistaking it for a carrot.

It is generally accepted that the objective function used for training should reflect the true
objective of the user as closely as possible. Despite this, models are usually trained to
optimize performance on the training data when the real objective is to generalize well to new
data. When we are distilling the knowledge from a large model into a small one, we can train
the small model to generalize in the same way as the large model.

Distillation idea is to raise the temperature of the final softmax until the complex model
produces a suitably soft set of targets. We then use the same high temperature when training
the small model to match these soft targets, and after it has been trained it uses a
temperature of 1.

= _cmp(z/T)
FT S ean(z/T)

T is a temperature that is normally set to 1. Using a higher value for T produces a softer
probability distribution over classes. In practice, when the distilled model is much too small to
capture all of the knowledge in the complex model, intermediate temperatures work best.

4.Matching logits is a special case of distillation.



