Clustering High Dimensional Categorical Data via Topographical Features

Chao Chen

CHAO.CHEN @ QC.CUNY.EDU

CUNY Queens College & Graduate Center, New York, NY, USA

Novi Quadrianto
SMiLe CLiNiC, University of Sussex, Brighton, UK

Abstract

Analysis of categorical data is a challenging
task. In this paper, we propose to compute to-
pographical features of high-dimensional cate-
gorical data. We propose an efficient algorithm
to extract modes of the underlying distribution
and their attractive basins. These topographical
features provide a geometric view of the data
and can be applied to visualization and cluster-
ing of real world challenging datasets. Experi-
ments show that our principled method outper-
forms state-of-the-art clustering methods while
also admits an embarrassingly parallel property.

1. Introduction

Categorical data analysis has been critical in many do-
mains. In biomedical informatics, basic attributes of a pa-
tient include blood type, gender and race. Disease-specific
attributes include the subtypes of disease and the treatments
a patient has received. DNA/RNA sequence data have cat-
egorical values, that is, different nucleobases. These mod-
ern categorical data exhibit high dimensionality, insuffi-
cient samples and inhomogeneity. To handle these chal-
lenges, new methods for visualizing and exploring complex
datasets are crucially needed.

In this paper, we develop a method to characterize the
geometry of a categorical dataset by computing its topo-
graphical features, i.e., modes and their associated attrac-
tive basins. These features provide a geometric description
of a given dataset and naturally lead to practical tools for vi-
sualization and clustering. For a given data and an estima-
tion of its underlying distribution, we compute modes, i.e.,
local maxima whose probability is bigger than all nearby
points. By exploiting modes, we then decompose the dis-
crete domain into regions called the basins of attraction.
Within each basin of attraction, every point converges to

Proceedings of the 83" International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

N.QUADRIANTO @SUSSEX.AC.UK

Figure 1: The topographical landscape of a distribution. There
are two modes, m1 and ma. Their attractive basins are separated
by a valley (dashed line). Each data point converges to one of the
two modes following a discrete gradient ascent path.

the same mode as directed by a discrete version of gradient
ascent. See Figure 1 for a schematic illustration.

It is computationally prohibitive to compute all the
modes and their attractive basins. Instead, we take a data-
centered approach and compute the discrete gradient ascent
paths, each of which starts from a data point and ends at
a mode. These paths associate data points with different
modes and form a natural clustering. The paths merging
into a same mode provide an outline of the attractive basin.
The computation of each discrete gradient ascent step can
be viewed as finding a neighboring point with the highest
probability. This is challenging as the neighborhood of a
high dimensional point can be of exponential size.

To address this issue, we propose to adopt the classic
tree-structured graphical model to approximate the under-
lying probabilistic density function from given data. We
leverage the tree structure of the model and develop a dy-
namic programming algorithm that finds the neighbor with
the highest probability efficiently. While the tree model
brings computational advantage, it also provides a satis-
fying description of high-dimensional data, as have been
proven theoretically and practically (Liu et al., 2011; Minka
& Qi, 2003). Our algorithm is efficient; given a tree model,
computing one gradient ascent step is linear to the dimen-
sion. The method is linear to the data size. But it is ex-
tremely easy to parallelize as we can compute gradient as-
cent paths for all data independently.

Clustering High Dimensional Categorical Data via Topographical Features

Our method offers a different view from most cluster-
ing methods. Unlike the top-down methods that derive
clusters using a mixture of parametric models, our method
does not hold any geometric or probabilistic assumption on
each cluster. It respects the intrinsic geometry of the un-
derlying distribution and uses it to partition the data. Com-
pared with bottom-up approaches that agglomerate data
based on similarities between them, our method is based
on a probabilistic model and is more principled.

1.1. Related Work

Clustering is a classic yet very useful technique for
modern data analysis (Xu & Wunsch, 2005). Many clus-
tering algorithms have been proposed and they are possibly
far beyond what we could keep track of. The classical K-
Means (MacQueen, 1967) associates data from each clus-
ter to a centroid point. The algorithm minimizes an objec-
tive function which is the total squared Euclidean distance
between each data point and its associated centroid. The
algorithm iteratively updates the centroid of each cluster
and the membership of each data point, until it converges.
The initial centroids and the number of clusters are critical
for the quality of the result. Various algorithms have been
developed to find a robust initialization and to estimate
the number of clusters (Bradley & Fayyad, 1998). Prob-
abilistic approaches to clustering such as Gaussian mixture
model (GMM), Dirichlet process Gaussian mixture models
(DPGMM) (Rasmussen, 2000), and Pitman-Yor diffusion
trees (Knowles & Ghahramani, 2015) are also available.

For categorical data, methods such as K-Modes and
ROCK are at one’s disposal. K-Modes (Huang, 1998) opti-
mizes the same objective function as K-Means, except that
the squared Euclidean distance function is replaced by the
Hamming distance and vectors of modes of categorical at-
tributes instead of means are used to represent cluster cen-
ters. Since K-Modes is essentially same as K-Means, each
iteration costs a linear time with respect to both the data
size and the dimension. ROCK (Guha et al., 1999) is a type
of hierarchical clustering algorithm. This method starts
by initializing each data point as a cluster, and iteratively
merge clusters with large similarity until a lowerbound of
threshold is reached. The similarity between two clusters is
measured by the amount of common neighbors the clusters
share. Due to the need to compute list of neighbors and
links among pairs of points, the time complexity of ROCK
is quadratic to the data size.

Mixture models can also be used to cluster discrete
data. The latent class analysis (LCA) (McCutcheon, 1987;
Bishop, 2006) method assumes a binary valued discrete do-
main and fits a mixture of discrete distributions. Each com-
ponent of the mixture is a product of D Bernoulli distri-
butions, corresponding to the D independent random vari-
ables. It is straightforward to generalize LCA to multiple-
valued discrete domain (Linzer et al., 2011). We call the

generalized model the mixture of products of discrete dis-
tributions (MPD) and use it as one of our baselines. Like
other mixture model, MPD are learned using an EM algo-
rithm. Each iteration is linear to both the data size and the
dimension. However, unlike other methods, this method is
also linear to L, the maximal number of distinct values a
variable can have. The reason is that the distribution of a
multi-valued variable is expressed as the distribution of L
binary-valued variables. For completeness, we also refer to
more advanced latent class model (Zhang, 2004) for which
the independence assumption is dropped.

Chen et al. (2014) also computed modes based on a
given tree-model. The difference between our method and
their method (called TMode) is twofold. First, unlike our
method, TMode is exponential to the degree of the underly-
ing tree-model. This could be computationally prohibitive
as the tree degree could be linear to the dimension. Sec-
ond, our method not only computes modes, but also com-
putes attractive basins, which are a natural way to associate
all data to their corresponding modes. This is not provided
by TMode. As we will demonstrate in the experiment sec-
tion, simply computing modes and associating data to their
nearest modes will not work well in clustering. We also
note that mode-based clustering method has been proposed
before (Cheng, 1995). Such method, however, is built for
continuous domain. Furthermore, it is based on kernel den-
sity estimation, which suffers from curse of dimensionality
(Hastie et al., 2009) and does not suit high dimension.

Topographical features. For a scalar function, topograph-
ical features, e.g., modes, ridges, attractive basins, and
their combinatorial structure, the Morse-Smale complex,
have been studied extensively in the classic Morse theory
(Milnor, 1963). In recent years, with the development of
topology data analysis (Edelsbrunner & Harer, 2010; Carls-
son, 2009), topographical features of a probabilistic density
function have been used to analyze modern data (Chazal
et al., 2014; Chen et al., 2015; Bubenik, 2015; Chen &
Edelsbrunner, 2011). While the theoretical foundation,
e.g., the theory of persistent homology (Edelsbrunner &
Harer, 2010), has been well studied for general context, the
algorithms for these topographical features (Chen & Ker-
ber, 2011; 2013) are typically exponential to the dimension
and thus are impractical for high-dimensional data.

2. Background

We review discrete graphical models, tree-structured
graphical models, and how to estimate a tree-structured
model from given data. A probabilistic graphical model
(Wainwright & Jordan, 2008; Nowozin & Lampert, 2010)
represents a joint distribution over a set of interdependent
random variables, X = (Xi,...,Xp), using a graph
G = (V,€) and a potential function f. The set of D
vertices/nodes V' corresponds to the set of D random vari-

Clustering High Dimensional Categorical Data via Topographical Features

ables, each of which can be assigned a discrete value
x; € L ={1,...,L}. The edges encode the dependence
between different variables. A value assignment to all ran-
dom variables © = (x1,...,xp) is called a configuration.
We denote by X = L the domain of all configurations.
The potential function f : X — R assigns to each config-
uration a real value, which is inversely proportional to the
logarithm of the probability distribution,

p(z) = exp(—f(z) — 4),

where A = log) . exp(—f(x)) is the log-partition
function. Assuming these variables satisfy the Markov
properties, the potential function can be written as
(@) =3¢ jyee fij(@i,zj), where fi; « Lx L — R
is the potential function for edge (i,) '. For convenience,
we assume any two different configurations have different
potential function values. We call a configuration of a sub-
graph B a partial configuration. For a given configuration
x, we may denote by x g its configurations over B. We de-
note by fp(zp) the potential of the partial configuration,
which is only evaluated over edges within B. When the
context is clear, we drop the subscript B and write f(zp).

2.1)

Tree-structured graphical models. We focus on graph-
ical models whose underlying graph G is a tree. A tree
distribution, i.e., one which can be represented by a tree
structure, T' = (V,), has the following factorization:

p 'I’La'r]

P(X =x)
(@i)p(w;) key

p(zy). (2.2)

z])ES

Here p(x;, x;) is the bivariate marginal density of the vari-
able X; and X, and p(zy) is the univariate marginal den-

sity of the variable X}. The potential can be written as
fij(@is) = —log(p(zs, ;) + (1 — 1/d;) log(p(x:))
+ (1= 1/d;)log(p(z;)), (2.3)

in which d; and d; are the degrees of nodes 7 and j.

For an unknown distribution p*, we approximate it by
finding the oracle tree distribution, q*, namely, the tree
distribution with the minimal Kullback-Leibler (KL) di-
vergence from p*, that is, ¢* := argmin cp,. D(p*||q),
where Pr is the family of all tree distributions and
D(pllq) := > ,cx p(x)(logp(xz) —logq(x)). Bach and
Jordan (Bach & Jordan, 2003) proved that when the un-
known distribution, p*, is a tree distribution, the ora-
cle tree distribution, ¢*, has the same marginal univari-
ate and bivariate distributions as p*. Furthermore, it has
been shown that the tree structure of the oracle tree dis-
tribution is the maximum spanning tree when the edge

'W.l.o.g., we drop unary potentials f;, as they can be absorbed
into binary potentials. That is, any potential function with unary
potentials can be rewritten as a potential function without them.

weights are the pairwise mutual information, formally,
T := argmaxy }; g (r) lij» where E(T) is the edge
set of the tree graph 7" and

Iij = Z

(wi,z;)€L?

(s s * (4, 25)
P T 108 ()

In reality, we do not know the true marginal univariate
and bivariate distributions. Instead, we are given N sam-
ples from the true distribution. We thus calculate empirical
mutual information fij using the empirical marginal dis-
tributions p(x;, x;) and p(zxy). The estimated tree is then
obtained by computing the maximum spanning tree on es-
timated edge weights using Kruskal’s algorithm (Cormen
etal, 2001): T = argmaxy 2 (i) EE(T) I;j. The poten-
tial function on each edge can be estimated similarly us-
ing the estimated marginal univariate and bivariate distri-
butions (as in Equation (2.3)). This estimation algorithm,
first proposed by Chow and Liu (Chow & Liu, 1968), has
various theoretical guarantees (Liu et al., 2011) and will be
the basis of our method. It is linear to the data size and
quadratic to the dimension.

3. Method

Our method clusters discrete data by exploiting the to-
pographical landscape of the underlying probabilistic dis-
tribution. We partition the whole discrete domain into dif-
ferent regions, called the attractive basins, each of which
is represented by a local maximum (mode) of the distri-
bution. We do not explicitly compute all modes and at-
tractive basins. Instead, we focus on each individual data
and find out the mode it is associated with. For a data
point, x, we compute its gradient ascent path by running
a neighborhood-search algorithm: start from x and itera-
tively move to the neighbor with the highest probability.
The point at which the neighborhood-search algorithm con-
verges is a mode and is the representative of x. Figure
1 illustrates the procedure; z is associated with the local
maximum m;. We also show several other data points
associated with another local maximum msy. The valley
(dashed curve) in between the two mountains separates the
domain into two parts/attractive basins, represented by the
two modes, respectively.

First, we provide formal definitions of these concepts
in the discrete setting and subsequently introduce our algo-
rithm in details.

Definitions. We define the neighborhood of a point x as
the Hamming ball with a fixed radius §, formally,

Ns(z) = {y € X | disty(z,y) < 6},

where the Hamming distance, disty(x,y), measures the
number of random variable at which = and y disagree. For
example, in Figure 2a, the vertices of a three-dimensional

Clustering High Dimensional Categorical Data via Topographical Features

cube correspond to a three-dimensional binary-valued dis-
crete domain. The neighborhood of the point (010) with
0 = 1 is highlighted. When § = 2, the neighborhood of
(010) will be everything except for the point (101).

For each point z € X, we say the next step of x is
the maximal probability point within the J-neighborhood,
namely,

next(z, d) = argmax p(y).
yEN;(z)

When the next step from z is still z, next(z,d) = x, we
say x is a local maximum, called a §-mode. In other words,
a mode x has a higher probability than all its neighbors.
In Figure 2b, for the given probability distribution, we use
arrows to show what is the next step of each point. There
are only two modes, (000) and (111). These next(.) and
modes define a natural decomposition of the domain. In
Figure 2b, the domain is decomposed into two parts (red
and blue), represented by the two modes (000) and (111)
respectively. This provides a natural way of clustering the
data. Our main clustering algorithm follows.

The parameter d, called the scale, controls the gran-
ularity of the clustering of the data/decomposition of the
domain. As we increase §, the neighborhood Ny(z) in-
creases and modes may disappear. In Figure 2b, when
d = 2, next((000)) = (110) and next(z) = (111) for
any other x. There is only one mode (111), represent-
ing the whole domain. Intuitively, increasing 6 makes the
landscape less bumpy and smooths out modes. In our al-
gorithm, we assume a fixed ¢ and drop the symbol when
the context is clear. We use simplified notations, e.g., M,
N (z), next(z), etc. In practice, we decide § empirically.

The main algorithm. Our main algorithm is summarized
in Algorithm 1. We first estimate a discrete distribution,
p. Next, we run the neighborhood search procedure start-
ing from each data, s;, and associate it to the mode it con-
verges to. All points that are associated to a same mode
are grouped into one cluster. Their cluster IDs, ¢;’s, are
assigned accordingly.

(a) The neighborhood of (b) Each arrow points to the
(010) is highlighted with highest probability neighbor
purple color. from each point.

Figure 2: A three-dimensional binary-valued discrete domain
and the discrete gradient directions when 6 = 1. For the given
probability in (b), there are two clusters (blue and red).

There are two issues that need to be addressed. First,
we need a model to represent the estimated discrete dis-
tribution. This model should be easy to estimate from the
data. Second, we need an efficient algorithm to compute
the next step for any given point. An exhaustive search of
the neighborhood is infeasible as the neighborhood of z,
Njs(z), is a Hamming ball with exponential size.

To this end, we choose to use the tree-structured dis-
crete graphical model as it strikes a good balance between
the flexibility of the model and the computational effi-
ciency. As we mentioned in the background section, a tree-
structured model is a flexible model with an efficient esti-
mation method, i.e., the Chow-Liu algorithm. Furthermore,
the tree-structure can be exploited in any inference tasks. In
our case, we introduce an efficient algorithm that computes
the next step of any point y, next(y), using a dynamic pro-
gramming algorithm. Our algorithm, Compute-Next,

Algorithm 1 Discrete-Clustering

Input: DatasetS = {s1,...,Sn}
Output: Cluster label C = {c1,...,cn}
1: The set of modes M < (), m < 0
2: Estimate a discrete probability distribution using the
tree model (Chow-Liu in Sec. 2)
3: forall s;,o=1,...,N do
4 T S;
5: y <+ next(x) using Compute-Next (Alg. 2)
6: whiley # z do
7.
8
9

Ty
y < next(x) using Compute—Next (Alg. 2)
: end while
10. if y ¢ M then
11: m+<m+1
12: M +— MUy}, y is the m-th mode
13: endif
14: ¢; < the index of y in M
15: end for

Algorithm 2 Compute-Next

Input: A tree GG, a potential function f, a scale § and a
given configuration y
Output: next(y,) = argmin, ¢y, () f(2)
1: Build a rooted tree as in Figure 3a
2: V < the post-order traversal of the tree
3: forveV,v#7do
4: u < the parent of v
5: foralll, € L, 7 €]0,6] do
6: Compute MSG, (€, 7)
7: end for
8: end for
9: f(y*) + ming, MSG, 74y, 9)
0: Recover y* through backtracking
1: return y*

1
1

Clustering High Dimensional Categorical Data via Topographical Features

efficiently searches through the exponential-size neighbor-
hood of y and finds the point with the highest probability.
Unlike previous heuristic methods, such as Iterated Con-
ditional Modes (ICM) (Besag, 1986), our method exploits
the tree structure and finds the optimal solution exactly.

3.1. Computing the Next Step for a Tree Model

By definition (Eq. (2.1)), the smaller the potential of a
configuration is, the bigger its probability is. Therefore, the
next step of a configuration y, next(y) is the configuration
within the neighborhood of y with the minimal potential,
formally,

y* = next(y) = argmin f(z).
zEN (y)

We compute y* using a message-passing algorithm. We se-
lect an arbitrary node as the root, and thus a corresponding
child-parent relationship between any two adjacent nodes.
We add an extra pseudo node 7 as the parent of the root, 7.
A message is a function that is passed from each node to its
parent after collecting messages from all its children. See
Figure 3a for an illustration of the message passing pro-
cess. We visit all nodes and compute their messages in a
post-order traversal (Cormen et al., 2001). This ensures
that when we visit a node and compute its message, all its
children have been visited.

Each message is a real-valued function with two pa-
rameters, a value and an integer. Denote by 7; as the sub-
tree rooted at node i. The message from vertex i to its
parent j, MSG,_,;(¢;,), is the minimal potential one can
achieve within the subtree 7; given a fixed value ¢; at ¢ and
a constraint that the partial configuration of the subtree is
no more than 7 away from y7,, formally,

MSG,,;(4;, 7) = min
21, zi =4y,
distu (21, ,y1;) <T

f(ZTi)ﬂ

where ¢; € £ and 7 € [0,]. Here the message does not de-
pend on node j and the parameter 7 is no more than §. By
definition, miny, MSG,_,7(¢,, §) is the potential of the op-
timal configuration, y*. We recover y* using the standard
backtracking strategy of message passing. See Algorithm
2 for the pseudocode. It remains to explain details of the
computation of each message and the backtracking.

Computing messages. For each ¢; € £ and 7 € [0, §], we
compute the message from i to j, MSG,_,;(¢;, 7). When

e
T] MSGio 1™

(a) (b)
Figure 3: Message passing.

1 is a leaf node, the solution is trivial. When ¢ has only
one child, k, we compute the message as follows. If ¢;
is equal to y;, then we enumerate through all possible
values of node k. For each value ¢, we find the opti-
mal partial configuration of T} with the value ¢, at node
k and within distance 7 from y . Note that the poten-
tial of such configuration has been computed as the mes-
sage from k to ¢, MSGy_,;(¢x, 7). For each of the opti-
mal partial configuration of 7T}, we extend it to a partial
configuration of T; using ¢; for node 7. The potential is
fie(liy €x) + MSGg_;(¢x, 7). We compare potentials of
all the L partial configurations, corresponding to L differ-
ent value choices for node k, and select the smallest as our
message. When /; is not equal to y;, we know that any par-
tial configuration we consider differs from y at 7. Thus we
only consider all partial configurations of 7}, with value ¢,
at node £ and distance upperbound 7 — 1 from y. Unifying
both ¢; = y; and ¢; # y;, we have

MSG;; (s, 7) = n}in {fie(li,) + MSGri (0, 7) },
k

3.1
where 7 = 7 if {; = y; and 7 = 7 — 1 otherwise.

In a more general case, when ¢ has ¢ children, k1, . . ., k¢
(Figure 3b), we consider partial configurations of the union
of all subtrees T}, U ... U T}, within distance 7 from yr,,
where 7 is either 7 or 7 — 1, depending on whether ¢; = y;
or not. We want to find the optimal partial configurations
for all subtrees so that their total Hamming distance from
yr, is no more than 7 and they jointly form a partial con-
figuration of 7; with the minimal potential. In this case,
we decompose the solution space into different subspaces,
each corresponding to a tuple (71, ..., 7¢), specifying a dis-
tance upperbound for each subtree. For each tuple satisfy-
ing ZZ=1 T, = T, we find the optimal partial configuration
for each subtree within the corresponding upperbound, 7.
In total, there are at most (7 + 1)*=1/((¢ — 1)!) possible
upperbound tuples satisfying the constraints that their sum
is 7. However, we have an efficient way to search through
all of them.

For the a’s subtree with root k,, and for each possible
upperbound 7, € [0, 7], we compute the optimal potential
of subtree T}, plus the potential of edge (¢, kg),

F(a,1,) = I?in (fika Uiy i,) +MSGp, 5i(Cr,» Ta))

ka

3.2)
This gives us 7 + 1 different values for the a’s subtree, as-
sociated with upperbound 7, = 0,...,7. Going through
all t subtrees, we have a t x (7 + 1) matrix. For any tuple
(71, ...,7t), the optimal potential of the partial configura-
tion of T; corresponds to selecting the 7,’s number from

the a’s row and sum them up.
Our goal is to decide the best tuple achieving a mini-
mal total potential under the constraint that the total upper-
bound is 7. This can be solved using a standard dynamic

Clustering High Dimensional Categorical Data via Topographical Features

programming (DP) approach (Cormen et al., 2001). For-

mally, the optimization objective function is
t

min F(a,,)
(T1yeesTe): Dby Ta=F az::l

(3.3)

Backtracking. In the backtracking process, we visit all
nodes in a pre-order traversal (Cormen et al., 2001), so that
each node is visited after its parent. For each node ¢, we fix
an optimal pair of parameters (£;, 7). For the root note r,
we fix 7 = § and £; = argmin, MSG, _,7(¢,,0). For any
subsequent node, k, we fix the optimal parameters based
on the optimal parameters fixed for its parent 4, (£}, 7).
When calculating the message of the parent using the fixed
optimal parameters, we choose an optimal upperbound for
each of its children (optimal 7,’s in Equation (3.3)). These
numbers are used as 7*’s of the children nodes k1, - - - , k;.
For each k,, we fix the optimal value /), as the one mini-
mizing Equation (3.2) with £; = £ and 7, = 7;; . Finally,
all the £’s give the optimal configuration y*.

3.2. Complexity

Denote by d the degree of the tree. For each ¢ and
each parameter setting of the message (¢;, 7), we compute
the matrix of F'(a,7,)’s and run dynamic programming to
compute Eq. (3.3). The table has O(dJ) entries. Comput-
ing each entry of the table take O(L). Furthermore, run-
ning DP on the table takes O(dd?). Since we have O(L6)
input parameter pairs (¢;, 7), the complexity of computing
each message is O(dLd?(L + 6)). Therefore, the complex-
ity of Compute-Next is O(DdL&*(L + §)).

Our algorithm runs through every data point once. For
each data, the gradient ascent path is computed, which in-
clude the computation of next(z) for K times, where K is
the maximal number of gradient ascent steps a data point
can take. Finally, we need to maintain a set of no more
than N modes, each of which is a length D configuration.
Therefore, the overall complexity of O(N (K DdL&*(L +
d)+ Dlog N)). Assuming § is constant, our algorithm has
O(ND(KdL? +1og N)). Itis linear to the dimension and
almost linear to the data size.

Parallelization. The desirable property of our method is
that it can be very easily parallelized. Once the tree model
is estimated. We can execute the neighborhood search for
all data in parallel and record the modes they converge to.
In the end, we just need to go through all data once and
identify data associated with the same mode as one cluster.
Being embarrassingly parallel makes our method rather ap-
pealing compared with others discrete clustering methods;
to the best of our knowledge, none of these methods can be
easily parallelized.

4. Experiments

We validate our method on various synthetic and real
world categorical datasets. We focus on the clustering task

and show that our method outperforms various existing
clustering methods. We use synthetic, UCI and biological
datasets. See Table 1 for a summary of different datasets.

Synthetic datasets. We create a synthetic categorical
dataset with two elongated and two isotropic clusters. The
domain has 110 dimensions. Each dimension can take 4
different categorical values (L = 4). We randomly corrupt
5% or 10% of the data, i.e., for each data point, 5% or 10%
of its attributes are randomly selected to be corrupted. The
value of each corrupted attribute is changed to a random
value. In Figure 4, we visualize the data with 5% corrup-
tion rate.

UCI datasets. We use several categorical datasets from the
UClI repository (Lichman, 2013), namely, Votes, Molecular
Biology, Lymphography, Soybean and Mushroom. These
data come from various domains such as social science,
biomedicine and biology.

Biological datasets. We use DNA barcoding datasets from
(Kuksa & Pavlovic, 2009). Each dataset is a collection
of DNA samples with equal length/dimension. The at-
tribute values of each dimension include different nucle-
obases such as cytosine (C), guanine (G), adenine (A) and
thymine (T). These data are well aligned and thus are com-
parable. Overall, we have 5 different datasets: ACG,> Bats
of Guyana, Birds, Fish of Australia and Hesperiidae. Each
dataset is used twice, using the genera (denoted by “G”)
and the species (denoted by “S”) of the DNA samples as
the ground truth respectively.

4.1. Baseline Methods

We compare our method to various state-of-the-art
clustering methods for continuous data, including K-Means
(MacQueen, 1967), Dirichlet process Gaussian mixture
model (DPGMM) (Rasmussen, 2000), affinity propagation
(AP) (Frey & Dueck, 2007) and spectral clustering (SC)
(Ng et al., 2002). We include these methods because they
generally have computational advantage and can still per-
form reasonably well on discrete data (as shown in the re-
sults). To apply these continuous methods, we map a vari-
able of L possible categorical values to L binary variables.
The /-th variable has value one if and only if the original
variable has value [. This way we can map the categori-
cal data into a binary-valued high dimensional domain. We
further relax the domain into a high dimensional zero-one
cube by allowing each variable to take real values between
zero and one. This preprocessing delivers good baseline
results for continuous methods

We also compare to methods designed for categorical
data. We implemented baselines such as mixture of prod-
ucts of discrete distributions (MPD) using the pyMix pack-
age (Georgi et al., 2010). Note that the latent class analysis

2DNA samples from the species-rich fauna of Area de Conser-
vacion Guanacaste (ACG) in northwestern Costa Rica.

Clustering High Dimensional Categorical Data via Topographical Features

SRy w r Ry . Ry D e
» K = = 5 »F K KRS =
™ R R W R - N
gy iy R anad Ty ot gy R
(a) Groundtruth. (b) K-Means. (c) DPGMM. (d) AP. (e) SC. (f) K-Modes. (g) ROCK.

Figure 4: A synthetic categorical data with four clusters. Two of them are elongated clusters. The domain has 110 dimensions. Each
dimension can take four discrete values. The data are plotted using multidimensional scaling so that their pairwise Hamming distance
is approximated by their pairwise 2D Euclidean distance. (a): the groundtruth clustering, which is also our clustering result. (b) to (g):
Results of other methods.

Table 1: Data Information: dimension (D), number of samples (/V) and number of clusters (C).

Data D N C' || Data D N C Data D N C
Synthetic | 110 | 520 Soybean 35 307 19 Birds G/S | 990 | 2589 | 289/658
Votes 16 435 Mushroom | 22 8124 | 2 Fish G/S 901 | 754 113/211

Molecule | 57 106
Lymph. 18 148

ACG G/S | 663 | 4267 | 206/573 || Hesp. G/S | 664 | 2185 | 148/364
Bats G/S 659 | 840 | 50/96

4
2
2
4

Table 2: Comparison in terms of NMI and running time.

Synthetic Data

K-Means | DPGMM | AP SC MPD TMode | K-Modes | ROCK | Ours
5% Corrupted 0.75 0.75 0.73 0.08 0.72 0.63 0.74 0.47 1.00
10% Corrupted | 0.75 0.74 0.72 0.05 0.70 0.63 0.74 0.47 0.90

UCI

K-Means | DPGMM | AP SC MPD TMode | K-Modes | ROCK | Ours
Votes 0.50 0.52 0.35 0.32 0.49 0.40 0.46 0.34 0.53
Molecule 0.28 0.24 0.14 0.05 0.43 0.03 0.03 0.39 0.39
Lymph. 0.03 0.04 0.16 0.06 0.26 0.28 0.16 0.41 0.28
Soybean 0.69 0.67 0.67 0.38 0.74 0.68 0.59 0.55 0.68
Mushroom 0.37 0.36 0.33 0.17 0.14 0.41 0.33 0.28 0.44

DNA Barcoding

K-Means | DPGMM | AP SC MPD TMode | K-Modes | ROCK | Ours
ACG G 0.60 0.49 0.53 0.42 0.63 0.42 0.75 0.76 0.79
ACG S 0.80 0.50 0.61 0.62 0.84 0.49 0.86 0.88 0.89
Bats G 0.81 0.79 0.82 0.39 0.84 0.49 0.82 0.72 0.82
Bats S 0.91 0.79 0.89 0.48 0.92 0.79 0.87 0.80 0.89
Birds G 0.61 0.35 0.48 0.40 0.78 0.16 0.80 0.82 0.82
Birds S 0.79 0.45 0.58 0.56 0.82 0.19 0.88 0.90 0.89
Fish G 0.88 0.44 0.89 0.59 0.84 0.77 0.90 0.84 0.88
Fish S 0.94 0.44 0.75 0.89 0.91 0.81 0.91 0.92 0.94
Hesp. G 0.61 0.43 0.45 0.47 0.70 0.13 0.75 0.78 0.81
Hesp. S 0.80 0.48 0.57 0.61 0.87 0.15 0.87 0.89 0.90

Average Running Time (seconds)
K-Means | DPGMM | AP SC MPD TMode | K-Modes | ROCK | Ours
30.2 138.9 112.4 | 1689.7 | 1872.5 | 829.5 473.9 2013.0 | 540.6

Clustering High Dimensional Categorical Data via Topographical Features

(LCA) method is only a special case of MPD. We compare
to non-probabilistic methods including K-Modes (Huang,
1998) and ROCK (Guha et al., 1999).

Finally, we compare to TMode by Chen et al. (2014).
The original method only computes modes. We decide
the clusters by associating each data to its closest mode in
terms of the Hamming distance. Note that TMode method
is exponential to the degree of the tree model. For data set
with high dimension, e.g., DNA Barcoding datasets, the
average tree degree is 65. To ensure TMode finishes in a
reasonable amount of time, we restrict the tree degree to
no more than eight during model estimation and use this
degree-restricted tree for TMode method. This restriction
partially contributes to the relatively low performance of
the TMode. This shows the advantage of our new algo-
rithm, which runs on trees with arbitrary degree.

Metric and parameters. We compare all methods in terms
of the normalized mutual information (Strehl & Ghosh,
2003), NMI(X,Y)=I1(X,Y)/+/H(X)H(Y), which is
commonly used for clustering evaluation. Our method au-
tomatically decides the number of clusters as the number
of modes. The only parameter we need is the scale param-
eter 0. Empirically, we observe § = 1 is the best choice,
although § = 2 and 6 = 3 also work well. For the com-
peting methods, we provide the true number of clusters to
K-Means, K-Modes and mixture models.

4.2. Results and Discussion

Results are reported in Table 2. For methods that de-
pend on initialization, we run five times and report the
mean score. We report the average running time in Table 2.
Our method is reasonably efficient compared with others.
The continuous methods are generally more efficient.

On synthetic data, our method outperforms other meth-
ods with a large margin. See Figure 4 for a visualization
of several methods. Our method successfully identifies all
four clusters. The main reason is that it is able to cap-
ture the probability gap between the modes even though
they are close-by in terms of Hamming distance. Mean-
while, the whole elongated cluster becomes a single at-
tractive basin. All data in this cluster gradient ascent to
the right mode. Other methods fail to produce good re-
sults. K-Means and K-Modes cut each elongated cluster
into two halves because they depend on distance based ob-
jective functions. DPGMM makes the same mistake, due
to the limitation of the model; the elongated and bent clus-
ter cannot be expressed by a single anisotropic Gaussian.
Proximity-graph-based methods, such as affinity propaga-
tion and ROCK, tend to produce over-segmentations.

On real world data, our method outperforms other
methods on a majority of the datasets. As expected, other
categorical clustering methods, e.g., MPD, K-Modes and
ROCK, are strong competitors. K-Means has good scores
in general, although it is based on Euclidean distance.

5. Conclusion

In this paper, we proposed a new method to compute to-
pographical features for high dimensional categorical data
and used it in the clustering task. These topographical fea-
tures provide a geometric description of the data, which
can be very useful for analysis. In particular, our method
has shown very good performance on the clustering task
of a wide range of challenging real world datasets. This
gives us the confidence to continue our effort in transform-
ing it into a powerful tool for modern data analysis. Some
of the interesting future directions are: 1) proving theoret-
ical guarantees for the algorithm; 2) computation of other
topographical features such as ridges and the Morse-Smale
complex; and 3) extend to loopy graph and exploit the con-
nection between topographical features and intrinsic graph
structures, e.g., the soft-clique (Quadrianto et al., 2012).

Acknowledgment. We thank anonymous reviewers for
valuable comments. We thank Vladimir Pavlovic, Han Liu,
and Viktoriia Sharmanska for helpful discussions.

References
Bach, Francis R and Jordan, Michael I. Beyond indepen-

dent components: trees and clusters. The Journal of Ma-
chine Learning Research, 4:1205-1233, 2003.

Besag, Julian. On the statistical analysis of dirty pic-
tures. Journal of the Royal Statistical Society. Series B
(Methodological), pp. 259-302, 1986.

Bishop, Christopher M. Pattern Recognition and Machine
Learning, volume 4. springer New York, 2006.

Bradley, Paul S and Fayyad, Usama M. Refining initial
points for k-means clustering. In International Confer-
ence on Machine Learning (ICML), pp. 91-99, 1998.

Bubenik, Peter. Statistical topological data analysis using
persistence landscapes. The Journal of Machine Learn-
ing Research, 16(1):77-102, 2015.

Carlsson, Gunnar. Topology and data. Bulletin of the Amer-
ican Mathematical Society, 46(2):255-308, 2009.

Chazal, Frédéric, Glisse, Marc, Labruére, Catherine, and
Michel, Bertrand. Convergence rates for persistence di-
agram estimation in topological data analysis. In Inter-
national Conference on Machine Learning (ICML), pp.
163-171, 2014.

Chen, Chao and Edelsbrunner, Herbert. Diffusion runs low
on persistence fast. In IEEE International Conference on
Computer Vision (ICCV), pp. 423-430. IEEE, 2011.

Chen, Chao and Kerber, Michael. Persistent homology
computation with a twist. In European Workshop on
Computational Geometry, volume 11, 2011.

Clustering High Dimensional Categorical Data via Topographical Features

Chen, Chao and Kerber, Michael. An output-sensitive al-
gorithm for persistent homology. Computational Geom-
etry, 46(4):435-447, 2013.

Chen, Chao, Liu, Han, Metaxas, Dimitris, and Zhao,
Tianqi. Mode estimation for high dimensional discrete

tree graphical models. In Neural Information Processing
Systems (NIPS), pp. 1323—-1331, 2014.

Chen, Yen-Chi, Genovese, Christopher R., Tibshirani,
Ryan J., and Wasserman, Larry. Non-parametric modal
regression. The Annals of Statistics, 2015.

Cheng, Yizong. Mean shift, mode seeking, and clustering.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 17(8):790-799, 1995.

Chow, C and Liu, C. Approximating discrete probability
distributions with dependence trees. IEEE Transactions
on Information Theory, 14(3):462—467, 1968.

Cormen, Thomas H, Leiserson, Charles E, Rivest,
Ronald L, Stein, Clifford, et al. Introduction to algo-
rithms, volume 2. MIT press Cambridge, 2001.

Edelsbrunner, Herbert and Harer, John.
Topology: an Introduction. AMS, 2010.

Computational

Frey, Brendan J and Dueck, Delbert. Clustering by passing
messages between data points. Science, 315(5814):972—
976, 2007.

Georgi, Benjamin, Costa, Ivan Gesteira, and Schliep,
Alexander. Pymix-the python mixture package-a tool for
clustering of heterogeneous biological data. BMC Bioin-
formatics, 11(1):1, 2010.

Guha, Sudipto, Rastogi, Rajeev, and Shim, Kyuseok.
ROCK: A robust clustering algorithm for categorical at-
tributes. In International Conference on Data Engineer-
ing (ICDE), pp. 512-521, 1999.

Hastie, Trevor, Tibshirani, Robert, Friedman, Jerome,
Hastie, T, Friedman, J, and Tibshirani, R. The Elements
of Statistical Learning, volume 2. Springer, 2009.

Huang, Zhexue. Extensions to the k-means algorithm for
clustering large data sets with categorical values. Data
Mining and Knowledge Discovery, 2(3):283-304, 1998.

Knowles, David A. and Ghahramani, Zoubin. Pitman yor
diffusion trees for bayesian hierarchical clustering. IEEE
Trans. Pattern Anal. Mach. Intell., 37(2):271-289, 2015.

Kuksa, Pavel and Pavlovic, Vladimir. Efficient alignment-
free dna barcode analytics. BMC Bioinformatics, 2009.

Lichman, Moshe. UCI machine learning repository, 2013.
URL http://archive.ics.uci.edu/ml.

Linzer, Drew A, Lewis, Jeffrey B, et al. polca: An r pack-
age for polytomous variable latent class analysis. Jour-
nal of Statistical Software, 42(10):1-29, 2011.

Liu, Han, Xu, Min, Gu, Haijie, Gupta, Anupam, Lafferty,
John, and Wasserman, Larry. Forest density estima-
tion. Journal of Machine Learning Research, 12:907—
951, 2011.

MacQueen, James. Some methods for classification and
analysis of multivariate observations. In Berkeley Sym-
posium on Mathematical Statistics and Probability, vol-
ume 1, pp. 281-297. Oakland, CA, USA., 1967.

McCutcheon, Allan L. Latent class analysis. Number 64.
Sage, 1987.

Milnor, J.W. Morse theory, volume 51. Princeton Univer-
sity Press, 1963.

Minka, Thomas and Qi, Yuan. Tree-structured approxima-
tions by expectation propagation. In Neural Information
Processing Systems (NIPS), 2003.

Ng, Andrew Y, Jordan, Michael I, and Weiss, Yair. On
spectral clustering: Analysis and an algorithm. In Neural
Information Processing Systems (NIPS), pp. 849-856,
2002.

Nowozin, Sebastian and Lampert, Christoph H. Structured
learning and prediction in computer vision. Foundations
and Trends in Computer Graphics and Vision, 6(3-4):
185-365, 2010.

Quadrianto, Novi, Chen, Chao, and Lampert, Christoph H.
The most persistent soft-clique in a set of sampled

graphs. In International Conference on Machine Learn-
ing (ICML), 2012.

Rasmussen, Carl E. The infinite gaussian mixture model.
In Neural Information Processing Systems (NIPS), 2000.

Strehl, Alexander and Ghosh, Joydeep. Cluster
ensembles—a knowledge reuse framework for combin-

ing multiple partitions. The Journal of Machine Learn-
ing Research, 3:583-617, 2003.

Wainwright, Martin J. and Jordan, Michael I. Graphical
models, exponential families, and variational inference.

Foundations and Trends in Machine Learning, 1(1-2):1—
305, 2008.

Xu, Rui and Wunsch, Donald. Survey of clustering algo-
rithms. IEEE Transactions on Neural Networks, 16(3):
645-678, 2005.

Zhang, Nevin L. Hierarchical latent class models for cluster
analysis. The Journal of Machine Learning Research, 5:
697-723, 2004.

http://archive.ics.uci.edu/ml

