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Abstract

Learning Using Privileged Information (LUPI) is a
new type of inductive inference where additional
(privileged) information is utilized during training.
This paper presents two LUPI-based formulations
for modeling survival data, using univariate privi-
leged information. This special type of privileged
information can be naturally derived from the sur-
vival times readily available in all survival data sets.
The survival time serves an order oracle for the
training examples. Further, we present empirical
comparisons between the proposed methods and
the classical Cox modeling approach for predictive
modeling of survival data. These comparisons
suggest competitive performance of the proposed
formulations vs. classical statistical modeling.

1 Introduction

Learning Using Privileged Information (LUPI) [Vapnik and
Vashist, 2009] is an advanced learning paradigm, where
additional information about training examples are provided
during the training stage. The role of this extra or hidden
information is equivalent to a teacher in human learning,
when a teacher gives students extra explanations, comments,
and comparisons. This paper investigates two LUPI-based
formulations where the dimensionality of the privileged infor-
mation is limited to one. This type of privileged information
is an order oracle, which gives total or partial orderings of the
training examples. For example, the conditional probability
P (y | x) defines a total ordering. Utilizing the ordering
information via a special type of privileged information can
result in improved generalization.

The survival data, which a collection of time-to-event ob-
servations, naturally contain the ordering information. Classi-
cal examples are the time from birth to cancer diagnosis, from
disease onset to death, and from entry to a study to relapse.
All these times are generally known as the survival time, even
when the endpoint is something different from death. These
survival times can naturally be considered as a good reference
for orderings.

In classical statistics, survival analysis has been developed
and used to model the survival data. Typically, survival
analysis focuses on the time elapsed from an initiating event

to an event, or endpoint, of interest [Aalen et al., 2008]. The
models of classical survival analysis describe the occurrence
of the event by means of survival curves and hazard rates and
analyze the dependence (of this event) on covariates by means
of regression [Aalen et al., 2008]. One of the most popular
survival curve estimation is the Cox modeling approach based
on the proportional hazards model.

There have been many attempts to apply machine learning
methods to modeling survival data. Next we briefly com-
ment on several studies applying Support Vector Machine
(SVM) technology to survival data [Khan and Zubek, 2008;
Shim and Hwang, 2009; Shivaswamy et al., 2007]. Most
of these efforts formalize the problem under the regression
setting. Specifically, the SVM regression was used to es-
timate a model that predicts the survival time. However,
formalization using regression setting is intrinsically more
difficult than classification. The SVM+/LUPI formulation
has been applied to survival data under a binary classification
setting [Shiao and Cherkassky, 2014]. This paper follows
the same classification setting, and applies two LUPI-based
formulations for modeling the survival data.

This paper is organized as follows. Section 2 introduces
necessary backgrounds on machine learning (LUPI) and on
survival data analysis. Section 3 describes the proposed
LUPI-based approaches for survival analysis. Empirical
comparisons for several synthetic data sets are presented in
Section 4. Finally, the discussion and conclusion are given in
Section 5.

2 Background

2.1 LUPI

Learning Using Privileged Information (LUPI) [Vapnik,
2006; Vapnik and Vashist, 2009] is a general methodology
for utilizing additional (privileged) information about training
data (often available in our data-rich world). This information
cannot be utilized by most standard supervised learning meth-
ods developed in statistics and machine learning, all of which
assume standard inductive learning setting. Nonetheless, ef-
fectively utilizing this privileged information during training
often results in improved generalization [Vapnik and Vashist,
2009].

Under the LUPI setting for binary classification, the train-
ing data are a set of triplets (xi,x

∗

i , yi), i = 1, . . . , n, where



xi ∈ R
d, x

∗

i ∈ R
k, and yi ∈ {−1,+1}. The (x, y)

is the ‘usual’ labeled training data and (x∗) denotes the
additional privileged information available only for training
data. This additional privileged information has two common
properties:

• it is available only for training samples, and not known
for test samples;

• it has an informative value for estimating a predictive
model ŷ = f(x).

These properties suggest another useful interpretation of the
privileged information: it can be viewed as additional feed-
back from an expert teacher, provided during learning [Vap-
nik, 2006]. This feedback, or privileged information, is
provided in a new feature space x

∗. In order to be useful,
this privileged information should be relevant to errors made
by a predictive model in the input (or decision) space x.

Privileged information x
∗ often appears in modern com-

plex clinical data sets. It could be a patient’s survival time
or a patient’s medical history after diagnosis or medical
procedure. Clearly, this information is available in historical
databases, but it cannot be included in the predictive model
which use only patient’s characteristics x known at the time
when diagnosis/medical procedure is performed.

Recently, a new technology called SVM+ has been devel-
oped for learning under LUPI setting [Vapnik and Vashist,
2009]. Technically, the SVM+ approach utilizes the priv-
ileged information to model the training errors (or slack
variables) as the correcting function. Then SVM+ estimates a
decision function in the decision space by using the correcting
function as an additional constraint [Shiao and Cherkassky,
2014].

In the following sections, we describe two formulations
established under the LUPI setting, while the dimensionality
of the privileged information, k, is limited to one.

2.2 Loss-Order SVM

Suppose the privileged information is given as

x∗ = g−1
[

P (y | x)
]

, (1)

or P (y | x) = g(x∗), where g is any nonnegative nonde-
creasing function, and P (y | x) is the conditional probability
of y given x. That is, the actual probability values are not
important, as long as the correct ordering is preserved. As an
extension, we can also consider the privileged information as
P (y = +1 | x) = g+(x

∗) for positive class and P (y = −1 |
x) = g−(x

∗) for negative class.
By limiting the correcting function to a family of non-

decreasing functions, the Loss-Order SVM (Lo-SVM) is
proposed as a new formulation under LUPI setting [Vacek,
2016]. Specifically, the Lo-SVM algorithm solves the fol-
lowing optimization problem:

minimize
1

2
‖w‖2 + C1

n
∑

i=1

ξi + C2

n
∑

i=1

ζi

subject to yi((w · xi) + b) ≥ 1− (ξi + ζi)
ξ � 0
Mζ � 0,

(2)

with variables w ∈ R
d, b ∈ R, ξ ∈ R

n
+, and ζ ∈ R

n
+.

The symbol � denotes componentwise inequality and R+

denotes non-negative real numbers. Here, M is an order-
enforcing matrix that requires ξi + ζi ≤ ξj + ζj if g(x∗

i ) >
g(x∗

j ) for nonzero ξi and ξj . If C2 ≫ C1, then ζi = 0 for all
i, and Problem (2) reduces to the standard SVM. In practice,
we need C1 < C2 so that Problem (2) is not dominant by the
ordering task.

This algorithm tries to maintain correct ordering for the
nonseparable data (training samples with nonzero slack vari-
ables) using the privileged information as a confidence mea-
sure. Ordering provided by the privileged information,
g(x∗

i ) > g(x∗

j ) implies that we have higher confidence on xi.
Hence, xi should be closer to the margin border (or further
away from the decision boundary), compared with xj . Then
ζi and ζj are the amount ‘movements’ we need to enable
the ordering for xi and xj , as illustrated in Figure 1. This
algorithm also involves finding an nondecreasing function g
to ensure g(x∗

i ) > g(x∗

j ) if x∗

i > x∗

j . In fact, the analytic form
of g does not matter, as long as the ordering holds. Further,
the ordering is only comparable within each class, not across
classes.

f(x) = 0

ξ2 + ζ2

ξ1 + ζ1

ξ3 + ζ3

x1

x2

Figure 1: Given g(x∗

1) > g(x∗

2), the ζ1 and ζ2 enforce the
ordering ξ1 + ζ1 < ξ2 + ζ2. The ordering should assure that
x1 is closer to the margin border, compared with x2.

2.3 Global-Order SVM

The ν-SVM formulation [Schölkopf et al., 2000] solves the
following optimization problem:

minimize
1

2
‖w‖2 − νρ+

1

n

n
∑

i=1

ξi

subject to yi((w · xi) + b) ≥ ρ− ξi
ξ � 0
ρ ≥ 0,

(3)

with variables w ∈ R
d, b ∈ R, ξ ∈ R

n
+, and ρ ∈ R+.

The parameter ν ∈ [0, 1] is a lower bound on the fraction
of support vectors, and an upper bound on the fraction of
training errors. Note that for ξ = 0, the first constraint in
Problem (3) simply states that the two classes are separated
by the margin 2ρ/‖w‖ [Schölkopf et al., 2000].

Using the same assumption (1) about the privileged
information, the Global-Order SVM (Go-SVM) proposed



in [Vacek, 2016] is a formulation under LUPI framework,
extended from ν-SVM. This formulation is

minimize
1

2
‖w‖2 + γ

(

−νρ+
1

n

n
∑

i=1

ξi

)

+(1− γ)

(

−ν∗ρ∗ +
1

n∗

n
∑

i=1

|ζi|

)

subject to yi((w · xi) + b) ≥ ρ− ξi

h(i) +
ρ∗

2
≤ (w · xi) + ζi ≤ h(i)+1 −

ρ∗

2
ξ � 0
ρ ≥ 0,

(4)
with variables w ∈ R

d, b ∈ R, ξ ∈ R
n
+, ζ ∈ R

n, ρ ∈ R+,
and ρ∗ ∈ R+. For γ = 1, Problem (4) reduces to ν-SVM.
User-defined constant n∗ controls the feasible range of ν∗,
such that Problem (4) is feasible for 0 ≤ ν∗ ≤ 1.

Compared with Problem (3), this formulation contains
one extra term in the objective function and one additional
constraint. Both arise from incorporating the privileged
information. In Problem (4), the set of ordered boundaries
h(·) is established according to g(x∗) such that if g(x∗

i ) ∈
[h(i), h(i)+1], then g(x∗

j ) < g(x∗

i ) can only live within
an interval with upper bound less than h(i). Graphically,

g(x∗

j ) belongs to one of the interval on the left-hand side of

[h(i), h(i)+1], as shown in Figure 2. The Go-SVM algorithm

enforces a within-class ordering on (w ·xi) to interval [h(i)+
ρ∗/2, h(i)+1 − ρ∗/2], a shrinking version of [h(i), h(i)+1],
while ζi is the amount of movement to achieve the ordering.

h(i)−1 h(i) h(i)+1 h(i)+2

ρ∗

2
ρ∗

2

Figure 2: Illustration of ordered boundaries h(·) established

from g(x∗). The × symbol represents (w · xi) + ζi.

This algorithm tries to maintain correct ordering for all
within-class training data using the privileged information
as a confidence measure. For any xj with g(x∗

j ) < g(x∗

j ),
meaning that we have less confidence on xj than xi and
(w · xj) should stay in left-hand side of the interval where
(w · xi) lives. Then ζi and ζj ensure (w · xj) + ζj <
(w · xi) + ζi. We illustrate this ordering scheme in Figure 3.
Again, the actual analytic form of g does not matter, as long
as the proper ordering is maintained.

2.4 Remarks

While SVM+, Lo-SVM, and Go-SVM learning approaches
incorporate the privileged information, there are differences
between them.

The SVM+ uses the privileged information for model-
ing (or shaping) the slack variables directly, expecting an
improvement in the hyperplane’s separability and leading
to better generalization. Both Lo-SVM and Go-SVM are
limited to univariate privileged information. By considering

f(x) = 0

x1

x4

x5

Figure 3: Given g(x∗

1) < g(x∗

5) < g(x∗

4), the ζ1, ζ4, and
ζ5 enforce the ordering (w · x1) + ζ1 < (w · x5) + ζ5 and
(w ·x5)+ζ5 < (w ·x4)+ζ4. This ordering enforces ordering
of distances between samples and decision boundary.

the privileged information as a confidence measure (through a
proper transformation g), the privileged information provides
us with an adequate ordering for training samples.

The ordering in Lo-SVM takes places in the nonzero
slack variables. In Go-SVM, the ordering is attained for
the “biased” decision values. Hence, the Go-SVM not only
tries to correctly estimate the decision boundary, but also
differentiates easier instances (P (y | x) larger) from harder
ones (P (y | x) smaller), whether or not they occur near
the decision boundary [Vacek, 2016]. Further, both perform
a within-class ordering, rather than a total ordering for the
positive and negative classes.

In terms of the computational implementation, the dual
form of SVM+ contains 2n Lagrange multipliers. In contrast,
the dual problems of Lo-SVM and Go-SVM both require
finding 3n Lagrange multipliers. Solving for Problem (2)
and (4) can become difficult for large n, especially during
the process of ordering.

Note that both Lo-SVM and Go-SVM formulations shown
as (2) and (4) are presented only for linear parameterization;
they can be readily extended to nonlinear case using kernels.

2.5 Survival Data Analysis

This section provides general background description of sur-
vival data analysis and its terminology. The survival data
(or failure time data) are obtained by observing individuals
from a certain initial time to either the occurrence of a
predefined event or the end of the study [Aalen et al., 2008;
Shiao and Cherkassky, 2014]. The predefined event is often
the failure of a subject or the relapse of a disease.

A common feature of these data sets is the possibility
of censored observations. Censored data arise when an
individual’s life length is known to occur only during a certain
period of time. In this paper, we only consider the right
censoring scheme, which means we only know the individual
is still alive at a given time.

The graphical representation of the survival data for a
hypothetical study with six subjects is shown in Figure 4. In
this study, subject 2 and 6 experienced the event of interest
prior to the end of the study and they are called the exact



observations. On the contrary, no events occur to subject 1,
3, and 5 before the end of the study. These subjects, who
might experience the event after the end of the study, are only
known to be alive at the end of the study. Subject 4 was
included in the study for some time but further observation
cannot be obtained. The data for subject 1, 3, 4, and 5 are
called censored (right-censored) observations. Thus, for the
censored observations, it is known that the survival time is
greater than a certain value, but it is not known by how much.

Time

Subject

1

2

3

4

5

6

δ1 = 0

δ2 = 1

δ3 = 0

δ4 = 0

δ5 = 0

δ6 = 1

U1 U2 U5U4, U60

Figure 4: Example of survival data in a study-time scale.
The exact observations are indicated by solid dots, and the
censored observations by hollow dots.

Let T denote the event time, such as death or lifetime;
C denote the censoring time, e.g., the end of study or loss
to follow-up. The T ’s are assumed to be independent and
identically distributed with probability density function ϕ(t)
and survival function S(t). For right censoring scheme, we
only know Ti > Ci with observed Ci. Then the survival
data can be represented by pairs of random variables (Ui, δi),
i = 1, . . . , n. The δi indicates whether the observed survival
time Ui corresponds to an event (δi = 1) or is censored
(δi = 0). The Ui is equal to Ti if the lifetime or event is
observed, and to Ci if it is censored. Mathematically, we
have

Ui = min(Ti, Ci), (5)

and

δi = I(Ti ≤ Ci) =

{

0, for censored observation,

1, for exact observation.
(6)

In Figure 4, subject 4 and 6 have the same observed
survival time (U4 = U6), but their event indicators are
different (δ4 = 0, δ6 = 1). Hence, in the survival analysis,
we are given a set of data, (xi, Ui, δi), i = 1, . . . , n, where
xi ∈ R

d, Ui ∈ R+ and δi ∈ {0, 1}. In contrast, under
supervised learning setting, we are given a set of training data,
(xi, yi), i = 1, . . . , n, where xi ∈ R

d and yi ∈ R. The target
values yi’s can be real-valued such as in standard regression,
or binary class labels in classification.

Classical statistical approach for modeling survival data
aims at estimating the survival function S(t), which is the
probability that the time of death is greater than a certain
time t, or Pr(T > t). More generally, the goal is to
estimate S(t | x), or survival function conditioned on sub-
ject’s characteristics, denoted as feature vector x. Assuming
that the probabilistic model S(t | x) is known, or can

be accurately estimated from the available data, this model
provides complete statistical characterization of the data. In
particular, it can be used for prediction and for explanation
(i.e., identifying input features that are strongly associated
with an outcome, such as death).

3 Predictive Modeling of Survival Data via

LUPI

Suppose our goal is to estimate (or predict) survival at a cer-
tain pre-specified time point τ . Such time point, for example,
could be the survival of cancer patients two years after initial
diagnosis, or the survival status of patients one year after
the bone marrow transplant procedure. Next we describe
a possible formalization of this problem under predictive
setting, leading to a binary classification formulation.

Given the training survival data, (xi, Ui, δi, yi), i =
1, . . . , n, where xi ∈ R

d, Ui ∈ R+, δi ∈ {0, 1}, and
yi ∈ {−1,+1}, estimate a classification model f(x) that
predicts a subject’s status at a pre-specified time τ based on
the input (or covariates) x. In the survival data, the status of
subject i at time τ is a binary class label through the following
encoding:

yi =

{

+1, if Ui < τ,

−1, if Ui ≥ τ,
(7)

where Ui is the observed survival time and δi is the cor-
responding event indicator. Note that Ui and δi are only
available for training, not for prediction (or testing stage).

In the hypothetical study shown in Figure 5, suppose a
subject’s status is given by (7), then there is no ambiguity in
the statuses of subject 2 and 6. Likewise, the survival status of
subject 5 is known, even though the observation is censored.
However, the survival statuses of subjects 1, 3, and 4 are not
established.

Time

Subject
y = +1 y = −1

1

2

3

4

5

6

δ1 = 0

δ2 = 1

δ3 = 0

δ4 = 0

δ5 = 0

δ6 = 1

U1 U2 U5U4, U6 τ0

Figure 5: Example of survival data under the predictive
problem setting. The goal is to find a model f(x) that predicts
the subjects’ statuses at time τ .

This paper proposes a strategy for incorporating survival
time and ignoring censoring information. Suppose Di =
|τ − Ui|, then Di can be considered as a confidence measure
for a subject’s status at time τ , as shown in Figure 6. For
all exact observations, the interpretation of Di is straightfor-
ward. However, for a censored observation, such as subject
3, D3 should be viewed as an upper bound on the confidence
measure. In other words, we are at most with confidence D3



on the status of subject 3. Similarly, D5 is a lower bound for
subject 5, and we are at least with confidence D5.

Time

Subject

1

2

3

4

5

6

τ0

D1

D2

D3

D4

D5

D6

Figure 6: The univariate privileged information for Lo-SVM
and Go-SVM is defined as Di = |τ − Ui| for modeling the
survival data. While ignoring the censoring information, Di

is considered as a confidence measure.

By ignoring the event indicator δi, we can translate the
survival data (xi, Ui, yi) into (xi, |τ − Ui|, yi). Then x∗ =
|τ − Ui| is a univariate privileged information ready for the
Lo-SVM and Go-SVM. Also note that only a portion of
the privileged information will be utilized by the Lo-SVM.
Specifically, the Lo-SVM exploits the order of instances near
the decision boundary. Those are the instances with small
Di. As for the instances with large Di, they are not involved
in the ordering by the Lo-SVM. However, the Go-SVM uses
the privileged information to organize all instances.

4 Comparisons for Synthetic Data Sets

The empirical comparisons among the classical Cox regres-
sion, standard SVM, and the proposed LUPI-based approach
for modeling survival data are presented in this section. In
these comparisons, the Cox modeling approach based on
the proportional hazards model is used under the predictive
setting as follows. Once a survival function S(t | x) is
estimated (from training data), it is used for prediction via
a simple thresholding rule:

yi =

{

+1, if S(t | xi) < r,

−1, if S(t | xi) ≥ r,
(8)

where the threshold value r reflects the misclassification costs
given a priori. All comparisons presented in Sections 4
assume equal misclassification costs. So the threshold level
is set to r = 0.5. Additionally, both the survival times and
event indicators are ignored for the standard SVM.

Our implementation of the LUPI-based model involves
additional simplifications, i.e. only the linear mapping is eval-
uated for Lo-SVM and Go-SVM. Consequently, Lo-SVM has
two tuning parameters, C1 and C2; and Go-SVM has three
tuning parameters, ν, ν∗, and γ. We also opt to set γ = 0.5
for Go-SVM in this paper. In contrast, there is no tuning
parameter in the Cox modeling approach.

The purposes of the empirical comparisons using synthetic
data are to understand relative advantages and limitations of
LUPI-based methods for modeling the survival data. The

synthetic data are designed to incorporate various statistical
characteristics, such as the number of training samples, the
noise in the observed survival times, and the proportion of
censoring. First, we consider the synthetic data set generated
as follows [Zhou, 2015]:

• Set the number of input features d to 30, and generate
x ∈ R

d with each element xi being a random number
uniformly distributed within [−1, 1].

• For the coefficient vector

β = [1, 1, 2, 3, 3, 1, 1, 1, 1, 0, 2, 0, 2, 2, 0,

2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

generate the event time Ti via exponential distribution
Exp((β ·x)+2). The Gaussian noise N (0, 0.04) is also
added to the event time Ti. Generate the censoring time
Ci via exponential distribution Exp(λ).

• The survival time Ui and event indicator δi are obtained
according to (5) and (6). The rate of the exponential
distribution, λ, is used to control the proportion of
censoring in the training set.

• Assign a class label to each data vector by the rule in (7).
The time of interest, τ , is set to the median value among
the survival times, so that the prior probability for each
class is about the same.

• Generate 50 samples for training, 50 for validation, and
2000 for testing.

The training data are used for model estimation, the vali-
dation data are used for model selection, and the testing data
are used for estimating the prediction error. Each experiment
is repeated ten times with different random realizations of
(training, validation, test) data. This data set conforms to
the probabilistic assumptions (i.e., exponential distribution)
underlying the statistical modeling approach. So the Cox
modeling approach is expected to be very competitive for the
synthetic data set.

4.1 Number of Training Samples

To investigate the effect of training sample size on the test
errors, the training sample size is increased from 50 to 400.
The validation sample sizes are changed accordingly. The
proportion of censored observations is kept around 16%.
Table 1 summarizes the relative performance of the three
methods, as a function of sample size.

As expected, when the number of training samples is
increased, the test errors of all methods are reduced. The Cox
model is outperformed by Lo-SVM and Go-SVM regardless
of the training sample size. However, the relative advantage
of LUPI-based methods compared with SVM linear are not
obvious when the size of the training data is increased.

4.2 Noise in the Survival Time

To examine how the noise in the survival time affects the
test error, noise with different levels (standard deviations) are
added to the survival time. The noise level ranges from 0
to 0.5 and the training and validation sample sizes are set to
200. The proportion of censored observations is kept around



Table 1: Test errors (%) as a function of training sample size.
Training size 50 100 200 400

Censoring % 17.80 16.20 15.70 16.65

Cox 31.9 ± 3.1 26.4 ± 2.5 23.9 ± 1.8 21.9 ± 1.6
SVM linear 30.5 ± 2.3 26.9 ± 1.9 22.3 ± 1.3 19.9 ± 1.5

Lo-SVM 29.5 ± 2.8 25.1 ± 1.6 20.0 ± 0.8 19.6 ± 1.4
Go-SVM 29.6 ± 3.0 24.6 ± 1.7 21.8 ± 1.6 20.0 ± 1.9

Table 2: Test errors (%) as a function of noise level.
σ 0 0.05 0.2 0.5

Censoring % 15.1 16.8 15.3 18.4

Cox 11.0 ± 0.8 17.9 ± 1.5 28.8 ± 1.5 35.8 ± 1.4
SVM linear 14.7 ± 0.7 17.4 ± 1.5 27.5 ± 1.9 34.2 ± 2.2

Lo-SVM 13.1 ± 1.4 16.0 ± 1.4 27.5 ± 2.3 34.7 ± 1.4
Go-SVM 12.5 ± 1.8 16.7 ± 1.9 27.4 ± 1.7 33.6 ± 1.6

Table 3: Test errors (%) as a function of censoring rate.
λ 0 0.05 0.2 1.2

Censoring % 0.0 11.1 19.8 38.7

Cox 22.5 ± 1.4 23.0 ± 1.9 25.0 ± 1.4 32.3 ± 1.1
SVM linear 21.9 ± 2.5 22.2 ± 2.2 23.6 ± 2.4 30.3 ± 1.2

Lo-SVM 20.0 ± 1.9 21.0 ± 1.8 22.1 ± 1.4 30.9 ± 1.8
Go-SVM 21.2 ± 2.3 21.7 ± 1.9 23.5 ± 2.2 30.1 ± 1.0

16%. The test errors of the three methods are summarized in
Table 2 as a function of noise level.

It is evident that the test errors are reduced in all methods
when the noise level is decreased. When there is no noise in
the survival time, the data are generated from a distribution
that follows exactly the Cox modeling assumption. It is
expected that the Cox model achieves the lowest test error
under this zero-noise scenario. However, the increasing of
noise variance has much larger negative effect in the Cox
modeling approach.

For noise level lower than 0.05, Lo-SVM and Go-SVM
perform better than SVM linear. But when the level is higher
than 0.2, the performance of these three methods are similar.

4.3 Proportion of Censoring

We also adjust the proportion of censoring in the training
data to investigate the effect of censoring on the test errors.
The percentage of censored observations in the training data
varies from 0% to 39% in our experiment. The noise level is
set to 0.1 and the training and validation sample sizes are kept
at 200. The experiment results are summarized in Table 3.
Both Lo-SVM and Go-SVM perform better than the Cox
model for all the censoring rates. Further, when all samples
are exact observations (zero censoring rate), the survival time
offers highly reliable privileged information. The Lo-SVM
effectively utilizes this information to address samples mainly
near the decision boundary and to improve the generalization.

5 Discussion and Conclusion

This paper presents predictive modeling of survival data as a
binary classification problem. We apply the Lo-SVM and Go-

SVM formulations under the LUPI framework to solve the
problem. These two approaches incorporate the information
about survival time to estimate an SVM classifier. We have
illustrated the advantages and limitations of these modeling
approaches using several synthetic data sets.

Advanced LUPI-based methods appear very effective
when the observed survival time are highly reliable, e.g., with
low noise level or small censoring rate. The performance
differences between the Lo-SVM and Go-SVM are not sig-
nificant. The evaluation is not intended to be a statement
about the superiority of the LUPI-based methods, but only
about the competitive and equivalent ability of the methods
in a predictive setting. Additional experiments with real-life
survival data (not shown here due to space constraints) also
confirm competitive prediction performance of the proposed
LUPI-based formulations.

The equal misclassification cost is assumed throughout this
paper; however, realistic medical applications use unequal
costs, i.e., the costs for false-positive and false-negative errors
are different. We will incorporate different misclassifica-
tion costs into the LUPI-based formulations. Further, our
methodology for predictive modeling of survival data can be
readily extended to other (non-medical) applications, such
as predicting business failure (aka bankruptcy) or predicting
marriage failure (aka divorce).
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